187 research outputs found

    Simulation Intelligence: Towards a New Generation of Scientific Methods

    Full text link
    The original "Seven Motifs" set forth a roadmap of essential methods for the field of scientific computing, where a motif is an algorithmic method that captures a pattern of computation and data movement. We present the "Nine Motifs of Simulation Intelligence", a roadmap for the development and integration of the essential algorithms necessary for a merger of scientific computing, scientific simulation, and artificial intelligence. We call this merger simulation intelligence (SI), for short. We argue the motifs of simulation intelligence are interconnected and interdependent, much like the components within the layers of an operating system. Using this metaphor, we explore the nature of each layer of the simulation intelligence operating system stack (SI-stack) and the motifs therein: (1) Multi-physics and multi-scale modeling; (2) Surrogate modeling and emulation; (3) Simulation-based inference; (4) Causal modeling and inference; (5) Agent-based modeling; (6) Probabilistic programming; (7) Differentiable programming; (8) Open-ended optimization; (9) Machine programming. We believe coordinated efforts between motifs offers immense opportunity to accelerate scientific discovery, from solving inverse problems in synthetic biology and climate science, to directing nuclear energy experiments and predicting emergent behavior in socioeconomic settings. We elaborate on each layer of the SI-stack, detailing the state-of-art methods, presenting examples to highlight challenges and opportunities, and advocating for specific ways to advance the motifs and the synergies from their combinations. Advancing and integrating these technologies can enable a robust and efficient hypothesis-simulation-analysis type of scientific method, which we introduce with several use-cases for human-machine teaming and automated science

    Bioinformatics

    Get PDF
    This book is divided into different research areas relevant in Bioinformatics such as biological networks, next generation sequencing, high performance computing, molecular modeling, structural bioinformatics, molecular modeling and intelligent data analysis. Each book section introduces the basic concepts and then explains its application to problems of great relevance, so both novice and expert readers can benefit from the information and research works presented here

    CORNN: Convex optimization of recurrent neural networks for rapid inference of neural dynamics

    Full text link
    Advances in optical and electrophysiological recording technologies have made it possible to record the dynamics of thousands of neurons, opening up new possibilities for interpreting and controlling large neural populations in behaving animals. A promising way to extract computational principles from these large datasets is to train data-constrained recurrent neural networks (dRNNs). Performing this training in real-time could open doors for research techniques and medical applications to model and control interventions at single-cell resolution and drive desired forms of animal behavior. However, existing training algorithms for dRNNs are inefficient and have limited scalability, making it a challenge to analyze large neural recordings even in offline scenarios. To address these issues, we introduce a training method termed Convex Optimization of Recurrent Neural Networks (CORNN). In studies of simulated recordings, CORNN attained training speeds ~100-fold faster than traditional optimization approaches while maintaining or enhancing modeling accuracy. We further validated CORNN on simulations with thousands of cells that performed simple computations such as those of a 3-bit flip-flop or the execution of a timed response. Finally, we showed that CORNN can robustly reproduce network dynamics and underlying attractor structures despite mismatches between generator and inference models, severe subsampling of observed neurons, or mismatches in neural time-scales. Overall, by training dRNNs with millions of parameters in subminute processing times on a standard computer, CORNN constitutes a first step towards real-time network reproduction constrained on large-scale neural recordings and a powerful computational tool for advancing the understanding of neural computation.Comment: Accepted at NeurIPS 202

    Recent Advances of Deep Learning in Bioinformatics and Computational Biology

    Get PDF
    Extracting inherent valuable knowledge from omics big data remains as a daunting problem in bioinformatics and computational biology. Deep learning, as an emerging branch from machine learning, has exhibited unprecedented performance in quite a few applications from academia and industry. We highlight the difference and similarity in widely utilized models in deep learning studies, through discussing their basic structures, and reviewing diverse applications and disadvantages. We anticipate the work can serve as a meaningful perspective for further development of its theory, algorithm and application in bioinformatic and computational biology

    Generative Model based Training of Deep Neural Networks for Event Detection in Microscopy Data

    Get PDF
    Several imaging techniques employed in the life sciences heavily rely on machine learning methods to make sense of the data that they produce. These include calcium imaging and multi-electrode recordings of neural activity, single molecule localization microscopy, spatially-resolved transcriptomics and particle tracking, among others. All of them only produce indirect readouts of the spatiotemporal events they aim to record. The objective when analysing data from these methods is the identification of patterns that indicate the location of the sought-after events, e.g. spikes in neural recordings or fluorescent particles in microscopy data. Existing approaches for this task invert a forward model, i.e. a mathematical description of the process that generates the observed patterns for a given set of underlying events, using established methods like MCMC or variational inference. Perhaps surprisingly, for a long time deep learning saw little use in this domain, even though it became the dominant approach in the field of pattern recognition over the previous decade. The principal reason is that in the absence of labeled data needed for supervised optimization it remains unclear how neural networks can be trained to solve these tasks. To unlock the potential of deep learning, this thesis proposes different methods for training neural networks using forward models and without relying on labeled data. The thesis rests on two publications: In the first publication we introduce an algorithm for spike extraction from calcium imaging time traces. Building on the variational autoencoder framework, we simultaneously train a neural network that performs spike inference and optimize the parameters of the forward model. This approach combines several advantages that were previously incongruous: it is fast at test-time, can be applied to different non-linear forward models and produces samples from the posterior distribution over spike trains. The second publication deals with the localization of fluorescent particles in single molecule localization microscopy. We show that an accurate forward model can be used to generate simulations that act as a surrogate for labeled training data. Careful design of the output representation and loss function result in a method with outstanding precision across experimental designs and imaging conditions. Overall this thesis highlights how neural networks can be applied for precise, fast and flexible model inversion on this class of problems and how this opens up new avenues to achieve performance beyond what was previously possible
    corecore