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Abstract

Several imaging techniques employed in the life sciences heavily rely on machine learning methods
to make sense of the data that they produce. These include calcium imaging and multi-electrode
recordings of neural activity, single molecule localization microscopy, spatially-resolved transcrip-
tomics and particle tracking, among others. All of them only produce indirect readouts of the
spatiotemporal events they aim to record. The objective when analysing data from these methods
is the identification of patterns that indicate the location of the sought-after events, e.g. spikes in
neural recordings or fluorescent particles in microscopy data.

Existing approaches for this task invert a forward model, i.e. a mathematical description of the
process that generates the observed patterns for a given set of underlying events, using established
methods like MCMC or variational inference. Perhaps surprisingly, for a long time deep learning
saw little use in this domain, even though it became the dominant approach in the field of pattern
recognition over the previous decade. The principal reason is that in the absence of labeled data
needed for supervised optimization it remains unclear how neural networks can be trained to solve
these tasks. To unlock the potential of deep learning, this thesis proposes different methods for
training neural networks using forward models and without relying on labeled data. The thesis
rests on two publications:

In the first publication we introduce an algorithm for spike extraction from calcium imaging
time traces. Building on the variational autoencoder framework, we simultaneously train a neural
network that performs spike inference and optimize the parameters of the forward model. This
approach combines several advantages that were previously incongruous: it is fast at test-time,
can be applied to different non-linear forward models and produces samples from the posterior
distribution over spike trains.

The second publication deals with the localization of fluorescent particles in single molecule
localization microscopy. We show that an accurate forward model can be used to generate simula-
tions that act as a surrogate for labeled training data. Careful design of the output representation
and loss function result in a method with outstanding precision across experimental designs and
imaging conditions.

Overall this thesis highlights how neural networks can be applied for precise, fast and flex-
ible model inversion on this class of problems and how this opens up new avenues to achieve
performance beyond what was previously possible.





Zusammenfassung

Eine Reihe von bildgebenden Verfahren in den Biowissenschaften ist auf Methoden des maschinellen
Lernens angewiesen um die Daten, die sie produzieren, auszuwerten. Dazu gehören, unter an-
deren, Aufnahmen neuronaler Aktivität mittels Kalzium Imaging und Mikroelektrodenarrays, Ort-
sauflösende Transkriptomik und Partikelverfolgung. All diese Verfahren deuten nur indirekt auf
die raum-zeitlichen Ereignisse, die sie versuchen aufzunehmen, hin. Deshalb ist das Ziel bei der
Auswertung der entstehenden Daten die Identifikation von Mustern die auf die Position der
gesuchten Ereignisse hinweisen, z.B. Spikes in neuronalen Aufnahmen oder fluoreszierende Par-
tikel in Mikroskopie Daten. Vorhandene Ansätze für diese Aufgabe invertieren ein generatives
Modell, also eine mathematische Beschreibung des Prozesses, der die beobachteten Muster für eine
gegebene Zusammenstellung von Ereignissen erzeugt. Dies geschieht mit bewährten Methoden
wie MCMC oder Variational Inference. Methoden des Deep Learnings haben lange Zeit nur sehr
begrenzte Anwendung in diesem Feld gefunden, und das obwohl sie in der vergangenen Dekade
der dominante Ansatz in der Mustererkennung geworden sind. Der Hauptgrund dafür ist, dass es
ohne verfügbare Ziel-Variablen die für das überwachte Lernen nötig sind, unklar ist wie neuronale
Netzwerke trainiert werden können um diese Aufgaben zu lösen. Um das Potential des Deep Learn-
ings zu erschließen stellt diese Arbeit verschiedene Methoden vor, mit denen neuronale Netzwerke
mithilfe von generativen Modellen trainiert werden können, ohne dabei auf bereits ausgewertete
Daten angewiesen zu sein. Die Arbeit beruht auf zwei Publikationen:

In der ersten Publikation beschreiben wir einen Algorithmus zur Identifikation von Spikes in
Kalzium Imaging Zeitreihen. Auf dem Konzept des Variational Autoencoders aufbauend, trainieren
wir ein Netzwerk das Spikes identifiziert und optimieren gleichzeitig die Parameter des generativen
Modells. Dieser Ansatz vereinigt mehrere Vorteile die bisher unvereinbar waren: er ist schnell bei
der Auswertung, kann einfach mit verschiedenen nicht-linearen generativen Modellen verwendet
werden und produziert Stichproben aus der A-posteriori-Verteilung über Abfolgen von Spikes.

Die zweite Publikation dreht sich um die Lokalisation von fluoreszenten Partikeln in der
Einzelmolekül-Fluoreszenzmikroskopie. Wir zeigen, dass ein akkurates generatives Modell uns
erlaubt Simulationen zu generieren, die als Surrogat für echte Aufnahmen als Trainingsdaten
verwendet werden können. Die sorgfältige Ausarbeitung der Ausgaberepräsentation des Netzw-
erks und der Verlustfunktion ergeben eine Methode, die hervorragende Leistung unter diversen
experimentellen Bedingungen erreicht.

Zusammenfassend stellt diese Arbeit heraus wie neuronale Netzwerke für die präzise, schnelle
und flexible Invertierung von generativen Modellen in dieser Klasse von Problemen als Lösungsstrate-
gie verwendet werden können.





Acknowledgements

Even more than in our natural state of being, as a PhD student one often feels subject to circum-
stances beyond one’s control. When working on research projects that might go nowhere for years
on end to finally send them to review processes that approach total randomness, we depend on
the people around us to keep the experience wholesome.

First and foremost my gratitude goes to my supervisor Jakob Macke for assembling such a group
of people and letting me be part of it. Beyond that I’m thankful that I could rely on his continuous
support, his trust and the freedom he afforded me to work in my own idiosyncratic ways. Similarly
I want to thank Srinivas Turaga who I worked with continuously throughout my PhD and who
gave me the great opportunity to repeatedly travel to Janelia Research Campus. He has been an
inexhaustible source of ideas and was willing to discuss science at any time of the day.

I am especially grateful for the people that made up our group in the past and present. They
made me feel at home wherever our lab happened to be at any specific time. Special thanks go
to Marcel Nonnenmacher with whom I shared my office and my opinions throughout this time. I
want to thank Auguste Schulz for her dedication and resourcefulness in bringing this group even
closer together. My special gratitude goes to Poornima Ramesh and her continued support right till
the end when she provided valuable feedback on this thesis.

I want to thank Jonas Ries and Lucas-Raphael Müller for their help in bringing the DECODE
project to a successful end and making it something I’m proud of.

I want to thank everyone who made it possible to participate in the various conferences, work-
shops and summer schools I was lucky enough to attend. More specifically, I am grateful for the
outstanding support I got from Ezgi Bulca, Bettina Bosse and Franziska Weiler in all administrative
matters. I would like to extend my gratitude to Philipp Berens for agreeing to referee this thesis.

I want to thank my family for their support, their care and attention.
My final thanks go to my partner Zoe, who became an expert in the business of blob detection

just so she could partake in every small success and mishap, for her encouragement, her help and
love.





Contents

1 Introduction 1

2 Background 3
2.1 Two-photon calcium imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Single molecule localization microscopy . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Inference methods 9
3.1 Problem setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Variational inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Markov chain Monte Carlo (MCMC) . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5 Nonnegative deconvolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.6 Maximum-Likelihood Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Deep Learning 15
4.1 Supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Simulator learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Autoencoder learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4 Influence of model mismatch on NN training . . . . . . . . . . . . . . . . . . . . . . 17

5 Publications 21
5.1 Fast amortized inference of neural activity from calcium imaging data with varia-

tional autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Deep learning enables fast and dense single-molecule localization with high accuracy 23

6 Conclusion 25

Appendices 35
1 Fast amortized inference of neural activity from calcium imaging data with variational

autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2 Deep learning enables fast and dense single-molecule localization with high accuracy 48





Chapter 1

Introduction

In recent years researchers claim that we have entered a ’golden age’ of neuroscience.29,75 What
they refer to is the proliferation in the availability of data which can be observed across the life
sciences. This growth progresses on two axis simultaneously. On the one hand we can observe
biological processes in ever greater detail, on the other hand the sheer amount of available data
is growing rapidly. To name just some of the most visible examples, the connectome for a large
area of the fly brain is now mapped and available;72 spatial transcriptomics can be used to analyze
the organization of cell types in the brain,13 and the growth in the number of neurons for which
we can simultaneously record activity has recently further accelerated due to the development of
optical calcium imaging techniques82 (see Fig. 1.1). This is obviously an exciting development for
scientists from many disciplines, who are challenged to generate insights from this data.

Before that can happen though, the data often has to go through multiple processing steps to
extract the variables of interest from the raw recordings. The optical imaging of neural activity is a
good example: the raw data consists of videos showing a number of shapes that vary in brightness
over time. Each of them indicates the activity-induced changes in calcium concentration in a single
neuron.22 The desired outputs are the exact timings of action potentials for all the depicted neurons.
Going from the videos to the desired spike times is a non-trivial task that has spawned a large
amount of research61,80 dealing with multiple issues common to statistical analysis of imaging data:
How do we quantify uncertainty? How can we incorporate our prior knowledge of the underlying
processes to increase performance? How do we deal with background?

In parallel to the advances in imaging techniques the last decade saw a paradigm shift in
machine learning. Since its resurgence in 2012,36,40 deep learning has begun to dominate method-
ological development in many disparate fields. Unsurprisingly, this is also the case for the analysis
of microscopy data: deep learning has unique potential to achieve performance beyond what was
hitherto possible.

In this thesis I present two deep learning algorithms: DeepSpike for the analysis of calcium
imaging (CI) data, and DECODE for single molecule localization microscopy (SMLM) recordings.
While apparently very distinct applications, they, and several other imaging methods, share some
crucial properties that should guide the development of any analysis algorithm. In both cases, we
want to recover a sparse signal consisting of discrete spatiotemporal events from noisy observa-
tions. Labeled data, i.e. pairs of images and ground truth information of the desired outputs, is
rare or not available at all. Instead, we have extensive knowledge about the underlying biophysical
processes that constitute the image-formation. We can express this knowledge via equations which
encapsulate the process that goes from a set of latent events to the recorded images. Such a set
of equations is often called the forward or generative model. The task at at hand can therefore be
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CHAPTER 1. INTRODUCTION 2

framed as one of inverting the generative model to go from recorded images to a (preferably prob-
abilistic) estimate of the latents. Many of the available methods for such problems follow this logic,
using well established techniques like Markov chain Monte Carlo (MCMC),1 maximum likelihood
estimation (MLE),39 deconvolution18 and variational inference8 to carry out the inversion, each
with their unique advantages and drawbacks.

This thesis explores how we can use neural networks to perform amortized inference under such
circumstances. The generative model is used to optimize the parameters of the neural network.
Once this is done, the network performs model inversion by means of a single forward pass. The
result is an algorithmic framework that is precise and fast at test time. Furthermore, it provides a
large amount of flexibility with regard to the design of the generative model and the inputs that
are used to carry out the inference.

Following this introduction, in chapter 2 I will briefly introduce the two microscopy methods,
calcium imaging of neural activity and SMLM, and describe why they pose challenging inference
tasks. In chapter 3 the problem settings are formalized and I discuss various approaches that
have been previously implemented to solve these two tasks. In chapter 4 I show how deep neural
networks can be trained on such data and introduce the methods that are employed in the two
publications discussed in this thesis. Chapter 5 contains brief summaries and discussions of the
publications. They are attached in full in the appendix. Finally, in chapter 6 I offer some concluding
remarks and speculate on future developments.
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Figure 1.1: Scaling of neural recordings over time. Each data point indicates the number of simultane-
ously recorded neurons in an experiment using either electrophysiology (blue) or optical calcium imaging
(red). Black line shows an exponential fit from the year 2011 that predicted a doubling time of 7.4 years.79

For comparison the approximate number of neurons in the brains of several species is given. Figure from
Urai et alia.82



Chapter 2

Background

In this chapter I briefly introduce calcium imaging (CI) and single molecule fluorescence microscopy
(SMLM). To this end I characterize the observations that they produce and show examples. Finally,
I state the goal of the inference task in each case.

CI as well as SMLM are variants of fluorescence microscopy. Many materials have physical
properties that allow them to fluoresce. This means that their molecules are able to absorb photons
which leads to their excitation to a higher energetic state. This state usually persists for less than a
microsecond, after which the molecule drops into a lower state and emits a photon with a different
energy than that of the excitation light.27,44 This difference in energy, and therefore wavelength,
makes it possible to effectively separate the excitation light from the fluorescence signal. Due to
its unique capabilities for visualizing cells and sub-microscopic cellular components the technique
has become ubiquitous throughout the biological sciences. Nowadays a wide range of fluorophores
(molecules capable of fluorescing) are available and can be used to illuminate different structures
and molecules in a targeted fashion.16

2.1 Two-photon calcium imaging

Across animal species action potentials, or spikes, play a dominant role in the encoding and trans-
mission of information in the central nervous system. Recordings of spiking activity are therefore
one of the most valuable means to learn about the inner workings of the brain. Such recordings
were first acquired in 1939 by Hodgkin and Huxley, when they measured the membrane potential
in the giant squid axon using glass electrodes.24 The methodology to perform electrophysiology,
i.e. of using electrodes to directly measure the membrane potential of neurons, has undergone
considerable development since then. Using multi-electrode arrays, it is today possible to measure
the activity of small populations of cells simultaneously (see Fig. 1.1). However, the total num-
ber of simultaneously recorded neurons remains limited and the method is highly invasive. An
altogether different approach is the use of fluorescence microscopy to monitor the intra-cellular
calcium concentration. Within neurons, voltage-gated calcium channels open whenever an action
potential occurs. This causes a sudden influx of calcium into the cell. These transient changes in
can be measured using specifically designed calcium indicators, which change their fluorescent
properties when they bind to calcium ions. The development of calcium indicators began as early
as 196274 and their sensitivity and applicability have steadily improved since then. Compared
to classical approaches for the recording of neural activity based on electrodes, calcium imaging
allows for a much higher number of neurons to be observed simultaneously (Fig. 1.1). It is there-
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CHAPTER 2. BACKGROUND 4

fore extensively used for to analyze the activity of whole populations of neurons of animals in
vivo. Another important innovation that drastically improved the performance of calcium imaging
was two-photon excitation microscopy (2PE). In 2PE, two coincident photons are needed for an
electron to bridge the energy gap and spawn a fluorescent photon. This increases the resolution
of the images and allows for imaging in deeper tissue layers while avoiding tissue damage.60 The
data recorded in calcium imaging experiments consists of videos showing the cells bodies that
"light up" when an action potential occurs (see Fig. 2.1). The analysis of such videos is usually
a two-step process. First, each neuron is identified and segmented. The brightness of each pixel
assigned to a neuron is then added up for each frame, resulting in an indirect measurement of the
calcium concentration in the cell across time. In the second step, the time traces are analyzed to
extract a more immediate readout of the neuronal activity, e.g. a continuous firing rate estimate or
discrete spike times. While both steps are interesting problems, I focused on the second task. This
means that we assume the spatial separation was successfully executed and we are provided with
one-dimensional time traces for each neuron.

0 20 40 60 80 100 120 140
Time in seconds

Figure 2.1: Calcium imaging data. Top: Four frames from a dataset of two-photon recordings showing
a neuronal population expressing GCaMP6s. The white box indicates a manual segmentation of a neuron.
Bottom: Time trace of the summed fluorescence from the area indicated by the white box. Orange arrows
indicate the time points corresponding to the four frames in the top row.

A part of such a time trace is shown in Fig. 2.2 . It was recorded in vivo in the mouse visual cortex
using the genetically encoded calcium indicator GCaMP6s.12,81 This data was specifically recorded
to measure the exact relationship between observed fluorescence signal and spiking activity. In
parallel to the calcium imaging experiment, electrophysiological measurements of the membrane
potential using loose-seal cell-attached electrodes were carried out. Such data is very valuable as it
provides ground-truth information on the spike timings. The example illustrates the task of spike
inference from calcium imaging and some of the properties which make it a challenging problem:
An isolated spike causes a sharp increase in fluorescence, followed by a slower decline back to
the baseline. For multiple spikes the dynamics are highly nonlinear. A quick succession of spiking
events causes a much larger response than the linear addition of single-spike responses, an effect
called facilitation. We can also observe saturation, which means that there is a maximum amount
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of fluorescence which can not be surpassed regardless of the spike rate. Oftentimes, background
activity in the form of transients in fluorescence on long timescales further complicates the analysis.
Besides the nonlinearity of the observed behaviour and background activity, another factor which
makes spike inference so difficult is the heterogeneity of the data, both across and within datasets.
The amplitude of the transient caused by a spike, its rise time and the degree of nonlinearity
in the dynamics are properties of the specific calcium dye used. They determine our ability to
identify spikes to a critical degree and novel dyes are constantly being developed to optimize these
features.45 However, these parameters, as well as the average firing rates, also vary considerably
between individual cells. Finally, the experimental conditions, such as whether the experiment is
carried out in vitro or in vivo, how deep in the tissue the measurement takes place, or how large
the field of view is (which in turn determines the imaging rate) also have considerable impact on
the collected data.
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Figure 2.2: Segment of a fluorescence trace recorded in the mouse visual cortex using GCaMP6s. Electro-
physiologically measured spike timings are shown in black. The cumulative number of spikes is drawn in
green.

2.2 Single molecule localization microscopy
Like with other forms of light microscopy, the resolution that can be achieved in fluorescence
microscopy is limited by the physical properties of light itself. When looking at an arbitrarily small
light source through a microscope, a fraction of that light is collected by the objective and focused in
the imaging plane. However, due to inference of the light waves at the focal point what we observe
is not an infinitely small point but a point spread function (PSF) with a size on the order of roughly
half the wavelength of the fluorescent light. When two such light sources are to close to each other,
their images merge into each other and they can no longer be distinguished. This diffraction limit
prevents us from resolving subcellular structures using conventional microscopy. Crucially though,
a single PSF can be located very precisely. To illustrate this core principle we can look at simulations.
Using an intensity profile of a typical PSF and a noise model that accounts for the random number
of emitted photons and the camera properties we create synthetic images of a single fluorescent
spot. If we run a well calibrated localization algorithm on these images, we will obtain localizations
which are distributed around the ground truth position. Figure 2.3a shows one such image, the
ground truth position of the simulated fluorophore and 130 localizations. It is apparent that the
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localizations are centered in an area which is much smaller than the corresponding PSF. As subpixel
shifts of the position are reflected in the asymmetry of recorded intensity values, the precision is
not limited by the pixel size nor the wavelength. Single-molecule localization microscopy makes
use of this fact by activating a random small subset of all present fluorophores at a time and then
recording a long series of images (usually in the range of one thousand to one hundred thousand)
showing isolated spots. These spots can then be localized with high precision and recombined
to form an image of the specimen with a resolution that is much higher than what the classical
limit would allow for (see Figure 2.3b). There are different methods to achieve the switching of
fluorophores between dark OFF and bright ON states. For example, fluorescence photoactivated
localization microscopy (PALM)7 uses proteins that can be activated with UV light, while stochastic
optical reconstruction microscopy (STORM)70 relies on suitable buffers to control the switching
behavior. Point accumulation in nanoscale topography (PAINT)73 is not based on photoswitching at
all: instead fluorophores are imaged when they temporarily bind to a target. Additionally, various
optical systems are able to modify the shape of the PSF depending on the position of the emitter
relative to the focal plane of the microscopy. This allows for the localization of emitters in three
dimensions. For an extensive review of different SMLM techniques see Lelek et al..41

Independent of the exact technical choices, the central task when analyzing SMLM data is the
exact detection and localization of PSFs.

Biological sample

Reconstruction

Activated fluorophores

Localized fluorophores

Image sequence

Stochastic
activation

Rendering

Imaging

Localization

Point spread function

X-Y X-Z100 nm

1 nm

Inferred locations
Ground truth location

ba

Figure 2.3: SMLM a) Localization precision of isolated PSFs. Using an empirical PSF model we generated
a typical spatial intensity distribution of an activated emitter. We then sampled 130 images from the noise
model which includes the statistics of the number of photons hitting each pixel and the camera properties.
The upper image shows one such sample. Running a localization algorithm on the 130 images results
in localizations that are tightly clustered around the true location. b) Principle of SMLM. Fluorophores
are stochastically activated and recorded using fluorescence microscopy. A localization algorithm infers the
underlying sources from noisy and blurred imaging measurements. Rendering methods turn inferred sources
into an estimate of the underlying structure.

The difficulty of this task is mainly driven by the signal-to-noise ratio (SNR) and the density
of the emitters. While the SNR is mostly determined by the microscopy setup and the SMLM
technique used for the experiment, the emitter density can be directly controlled over a large range
by adjusting the intensity of the activation light. Fig. 2.4 shows example frames and reconstructions
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from an experiment where the same structure was imaged multiple times at different emitter
densities. It makes sense that a simple procedure that first detects emitters using a peak finding
approach and then fits a model of the PSF to each spot would give good results in the low density
regime, while it might struggle for higher densities where PSFs regularly overlap. Because a certain
overall number of localizations is needed to obtain a contiguous image, low densities require a
higher number of recorded images, and therefore lead to longer experiments. When setting the
activation density the experimenter therefore has to trade off the achievable localization precision
against the imaging time. Long imaging times are at best inconvenient and at worst prohibiting for
certain applications, for example when imaging moving specimens. Algorithms that can correctly
identify emitters in dense configurations where their PSFs regularly overlap are therefore highly
sought after.
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Figure 2.4: Effect of emitter density on reconstruction quality Microtubules were repeatedly imaged
at four different emitter densities using STORM microscopy. Upper row shows representative images from
each dataset. Lower row shows reconstructions obtained with an iterative localization method (CSpline4).
Colorcoding indicates inferred axial location.

.
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Chapter 3

Inference methods

In this chapter the problem setting for spike inference (SI) and single molecule localization (SML)
is formalized and relevant notation introduced. Afterwards, different approaches that have been
employed for both problems are introduced and discussed. The problem is formulated as an attempt
to perform statistical inference using probabilistic modeling.6 It should be noted that not all algo-
rithmic approaches work within this framework. For example, a peak-finding method could serve
as a heuristic approach for identifying spikes or emitters, without explicitly using a probabilistic
model.

3.1 Problem setting

Both CI and SML, as well as many other problems in imaging, neuroscience and other disciplines
share some crucial properties: We have observations X∗ = x∗1, ...,x

∗
N , which are samples from a

probability distribution which spans the space of all possible observations X . They are referred
to as observations, recordings, or real data. This probability distribution p∗ represents the true
underlying data generating process. If we use CI as an example, where the observations are N time
traces, p∗ includes many factors: the underlying biology of neural activity, the properties of the
calcium dye, the imaging properties of the microscope, as well as several steps of data-processing,
e.g. neuron segmentation and signal normalization. In this scenario, and basically any other case of
a real-world process, the true generative process is unknown. Instead we work with a parametrized
observational model which tries to mimic p∗. The observational model is a probability density
function p(x|φ) over the observational space i.e., x ∈ X , where φ includes all the parameters for
all components of the observational model (e.g. dye dynamics, microscope settings).

The two problems in this thesis share a more specific structure which should be reflected in
the observational model. In both cases the the observations are directly linked to binary latents
z∗ ∈ 0, 1 which are the primary items of interest. The remaining parameters play an important role
but only in so far as they help us to correctly infer z∗.

This structure can be easily expressed in our observational model: p(x|φ) = pθ(x|z) where we
make the dependence on the latent variables explicit and introduce a new set of parameters θ that
does not include z.

It is important to note that a parametric observational model will never perfectly match the
true generative process, as we will not be able to capture the full complexity of the real world. This
difference is called the model mismatch. The amount of model mismatch depends on the fidelity of
our generative model and the parameters φ. We will now introduce the two observational models

9



CHAPTER 3. INFERENCE METHODS 10

that are most commonly used to describe CI and SMLM data and are at the core of many of the
algorithms introduced later.

Linear calcium dynamics model Observations from CI take the form of time traces, where
each value ft represents the spatially summed measured fluorescence at a certain time-point for a
previously identified neuron. The calcium dynamics are described as a sequence of equally sized
instant rises in calcium concentration at the spike times followed by an exponential decay

ct = γct−1 + δst (3.1)

with a decay constant γ < 1 and spike-amplitude δ. st is the number of spikes that the neuron
fired at timestep t and corresponds to the latent variable of interest z, in this case. The fluorescence
ft is then simply ct re-scaled by a factor α, with an added baseline β and additive measurement
noise εt ∼ N (0, σ2):

ft = αct + β + εt (3.2)

This model was first described by Vogelstein et al85 specifically as a observational model for
calcium induced fluorescence. However, the idea of using a series of decaying exponentials to
fit the signal was around even earlier.30 We will refer to this model as SCF, since the generative
process is described by the spikes, the calcium concentration and the f luorescence intensity.

Image formation model SMLM The observational model of SMLM data describes the purely
physical processes of light diffraction and the image registration of a camera. These have been
studied extensively and are very well understood. Observations are images I of a set of N activated
fluorophores Sn, n = 1, 2, ...N . The fluorescent signal of these images can be modeled as the sum
of their diffracted images, or PSFs, scaled by individual intensities.

I ∼
i∑

n

AnSn (3.3)

where An = αn · PSF(Zn) is a matrix implementing convolution with a normalized PSF,
down-sampling to the camera resolution and scaling by the number αn of photons emitted by a
fluorophore during the time the frame was recorded. Importantly, the exact shape of the PSF usually
depends on the distance Zn of the fluorophore to the focal plane of the microscope. This property
can be used to perform localization in three dimensions. The recorded signal then depends on the
exact noise model used to model a given camera and the assumed background. The observational
models used for various SMLM inference methods mostly vary in the detail of their noise modeling
and in the way the PSF is parametrized, In the simplest and most common case, the PSF is modeled
as a 2D Gaussian with a single σ-parameter.58 More elaborate approaches use Zernike polynomials2

or splines.4,43

Both of these models are linear with respect to z. For example, in the SCF model the response
to two concurrent spikes equals twice the response from a single spike. This property makes these
models amenable for many different inference algorithms.
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3.2 Inference
We want to find configurations of latent variables z that underlie our observations x∗. Statistical
inference relies on the likelihood function which gives us a relative measure of consistency for
different settings of z. We obtain the likelihood of a given observation x∗0 by evaluating Lx∗

0
(z, θ) :

pθ(x = x∗0|z). While the absolute probability value is usually of little use, when comparing the
likelihood values for different z, a higher likelihood value indicates a set of latents that is more
consistent with the observation.

Following this line of reasoning, the maximum likelihood (ML) approach tries to identify the
single point in latent parameter space that has the highest likelihood value for a given observation.

ẑθ,ML = argmax
z

pθ(x = x∗0|z) (3.4)

As discussed below, ML is a widely used approach for the kind of problems we deal with in
this thesis. In contrast, Bayesian inference targets the full distribution of latents p(z|x). Therefore,
when working as intended, it not only identifies parameter points that best explain our observation
under the model, but also the uncertainty of the inferred values.

The principle of Bayesian inference is expressed in Bayes’ formula:

pθ(z|x) =
pθ(x|z)p(z)

p(x)
(3.5)

The posterior pθ(z|x) is our inference target. It is proportional to the product of the likelihood
p(x|z) and the prior p(z), and normalized by the marginal. The prior distribution encapsulates our
prior belief about the parameter distribution. As an example, this could be the firing rates we expect
to observe in the recorded neurons when performing spike inference. Intuitively, Bayes’ formula
states how to correctly update our prior beliefs after collecting evidence. The joint distribution
p(x, z) = p(x|z)p(z) is the full generative model as it allows us to draw samples X = x1, ...,xN
(referred to as simulated data) 1.

While appealing in principle, a posterior distribution can only be analytically calculated using
Bayes formula in rare cases where all terms involved belong to specific probability distributions.
Oftentimes, the normalizing factor, which is the integral over all possible parameter settings p(x) =∫
θ p(x|z, )p(z) dz, is intractable. In SML, for example, this would require integrating over all possible

emitter arrangements which is a very large combinatorial space. We discuss two methods that can
overcome this difficulty: Markov chain Monte Carlo and variational inference, below.

Somewhat in between ML and Bayesian inference lies the maximum a posteriori (MAP) es-
timation. Similar to ML we are looking for a point estimate, however instead of maximizing the
likelihood, we target the mode of the posterior by maximizing

ẑθ,MAP = argmax
z

pθ(x = x∗0|z)p(z) (3.6)

3.3 Variational inference
Variational inference (VI) is a method for Bayesian inference which lets us approximate the in-
tractable posterior p(z|x) introduced in 3.5. As our DeepSpike method is based on VI we discuss

1In the literature, oftentimes the likelihood is referred to as the generative model. In our definition, a generative
model also includes a prior distribution.
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it in more detail. The core idea is to approximate the true posterior with a parametrized density
of our choosing i.e., p(z|x) ≈ qψ(z) (the proposal distribution) and optimize the parameters ψ to
minimize the distance between the approximate and the true posterior. This requires a measure-
ment of similarity between the two distributions that is amenable to optimization. Most commonly,
the Kullback–Leibler divergence (KL-divergence) is used, which is defined as:

DKL(qφ(z)||pθ(z|x)) =
∫
qφ(z) log

qφ(z)

pθ(z|x)
dz (3.7)

Rewriting pθ(z|x) = pθ(x, z)/pθ(x) and reshuffling the terms we obtain:

DKL(qφ(z)||pθ(z|x)) =
∫
qφ(z) log

qφ(z)

pθ(x, z)
dz

︸ ︷︷ ︸
−L(θ,φ;x)

+ log pθ(x) (3.8)

This leaves us with the compact relationship between the log marginal, also called log evidence
pθ(x), the KL-divergence and the evidence lower bound (ELBO) L(θ, φ;x):

log pθ(x) = DKL(qφ(z)||pθ(z|x)) + L(θ, φ;x) (3.9)

The KL-divergence is always positive and only vanishes if the two distributions are identical.
Furthermore, pθ(x) is independent of qφ(z) and the ELBO is tractable if we chose qφ(z) appropriately.
Therefore, we have transformed the intractable problem of Bayesian inference into an optimization
problem that lets us minimize the dissimilarity between qφ(z) and pθ(x|z) by maximizing the ELBO.
Nevertheless, coming up with a parametric model qφ(z) that is suitable for a given problem and
for which we can obtain closed form gradients for optimization is laborious and often not possible.
A much less restrictive approach is Black Box Variational Inference65 where the expectation in the
ELBO is approximated using samples from the proposal distribution. This allows us to obtain the
necessary gradients as long as we can effectively evaluate pθ(x, z) and draw samples from qφ(z)
which is a very mild constraint.

Sun et al. use VI to perform SML. Specifically they use outputs of another algorithm as initial es-
timates for the emitter number and positions and then refine them with VI. A unique characteristic
of the algorithm is that when performing inference for a given frame, an estimate of the structure
obtained from all other frames (global context) is used as a sparsifying prior. This improves per-
formance in difficult conditions. One drawback is that the predictions lie on a super-resolved grid,
which limits resolution. Gabitto et al.20 apply VI on the output of any SML algorithm with the goal
to infer the identities of emitters, grouping them across frames by precisely modeling the temporal
dynamics of fluorophores. To my knowledge, DeepSpike was the first attempt to apply VI to the
problem of SI.

3.4 Markov chain Monte Carlo (MCMC)

MCMC methods are a well established class of algorithms that allow sampling from a desired
probability distribution. In our case this distribution is a constellation of discrete events in space
and/or time. A Markov chain can be constructed by defining operations that add, remove or shift
these events around. In the case of SI such an operation could be the addition of a spike event in a
specific time bin. This new state would then be accepted or rejected with a probability that reflects
how well the new setting (together with the generative model) explains the observation compared
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to the previous state. The parameters of the generative model can be treated in the same way, or
instead be optimized in a more efficient manner between sampling steps (for example using MAP).
MCMC is a widely used method that comes with a theoretical guarantee of eventually generating
samples from the correct posterior. It is in principle also very flexible in regards to the generative
model used. The biggest issue of the approach is the computational cost and slow sampling time,
which can easily render it impractical depending on how it is implemented.

Pnevmatikakis et al. developed an MCMC algorithm for spike inference62 which uses a linear
generative model and is still slow. Greenberg et al.21 used a sequential Monte Carlo (SMC) algo-
rithm with an elaborate nonlinear generative model. However, even with a heavily optimized GPU
implementation, the computation time is on the order of seconds for a single trace. Cox et al.14

adopted MCMC for the problem of localization, modeling all fluorophores of an image sequence
simultaneously with a generative model that includes blinking dynamics and bleaching. Again, this
is computationally extremely expensive, requiring multiple hours to process a small dataset.

3.5 Nonnegative deconvolution

A much faster, but also more approximate approach is nonnegative deconvolution. The generative
model is centered on a convolution of the latent variables z with a kernel function with an added
noise variable ε.

z ~ g + ε = f (3.10)

In the case of single molecule data, the kernel g would correspond to the PSF. For calcium
imaging data, usually an instant rise in calcium concentration at spike time, followed by an expo-
nential decay is assumed. Vogelstein et al.84 derive the deconvolution method starting from the
MAP objective. They note that optimizing this objective is intractable because "it requires a non-
linear search over an infinite number of possible spike trains". Therefore, they relax the constraint
zt ∈ N0 to zt >= 0. That means the latents are assumed to be continuous instead of discrete.
Such a model can be effectively optimized on recorded data using available optimization methods
like the Newton-Raphson algorithm or Richardson-Lucy deconvolution.68 However, the inferred
latents cannot be directly interpreted as spikes or detected emitters anymore. The practitioner
therefore either has to adapt the downstream analysis or threshold the outputs to obtain binary
values. Another limiting factor is that the generative model is linear by definition. This is a serious
drawback when analyzing calcium imaging data because, as described in section 2.1, many calcium
dyes exhibit nonlinear properties.

Nevertheless, algorithms based on non-negative deconvolution19,59,84 are extremely popular for
spike inference due to their ease of application and speed. Deconvolution is also extensively used
in the context of SMLM.3,90 In this case the localization is usually performed on a sub-pixel grid,
followed by a center-of-mass algorithm to obtain a final position estimate. The FALCON algorithm50

uses these estimates to initialize a final step which optimizes the locations on a continuum.

3.6 Maximum-Likelihood Estimation

Maximum-likelihood estimation (MLE) is one of the most prominent approaches in SMLM. An ini-
tial heuristic detection step finds spots in the images which are treated as candidates for emitters.
The exact continuous position coordinates in 2 or 3 dimensions as well as the intensity of the spot
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are then optimized to maximize the likelihood of the data under the generative model. The param-
eters describing the PSF are not optimized during inference, but instead determined beforehand
using calibration datasets. For an isolated spot that was correctly detected, this approach achieves
optimal performance, i.e. it reaches the Cramér–Rao lower bound (CRLB).53 Different methods
are used to carry out the initial detection step. Single-emitter algorithms focus on identifying well
separated emitters in low density data. Emitter candidates are identified by extracting local maxima
or by calculating the correlation between the image and a model PSF and thresholding the corre-
lation image. A region of interest (ROI) around each candidate is then cut out from the original
image and the MLE optimization is carried out under the assumption that the ROI includes a single
emitter. Samples where this is not the case often result in lower likelihoods, and can be discarded.
On the other hand, multi-emitter approaches try to detect all emitters in dense configurations with
overlapping PSFs. To this end, steps of adding or removing localizations are alternated with MLE
optimization of individual localizations. This procedure is repeated until a maximum number of
iterations, or until some some criterion is reached that indicates a stable configuration.

For SI, the MLspike algorithm15 uses MLE to find the spike train that provides the best explana-
tion for a given fluorescence trace. It uses a variation of the Viterbi algorithm:83 the likelihood for
all possible calcium trajectories is evaluated going backwards in time, and the most likely trajectory
chosen. Jumps in the inferred calcium trace are then read out as spike times. This approach works
even for nonlinear generative models and the authors propose their own ’MLphys’ model which
includes effects like facilitation and saturation. The parameters of the generative model are not
part of the MLE procedure and are instead estimated beforehand using several heuristics.



Chapter 4

Deep Learning

Even though deep learning started to be used for more and more tasks since the seminal ImageNet
paper in 2012,36 it took some time until it was applied to the class of problems addressed in
this thesis. This might be surprising given that these problems are typical instances of pattern
recognition tasks at which deep learning usually excels. One reason is that deep learning usually
requires large amounts of labeled data, i.e. pairs of recorded data and ground truth information,
for network training. In the case of calcium imaging, such labeled data is hard to obtain and
therefore scarce. In SMLM such ground truth labels don’t exist altogether. Current deep learning
approaches therefore either try to optimally use the limited amount of available labeled data (for
calcium imaging), generate training data using a generative model or use unsupervised methods
like variational autoencoders. I will discuss these approaches in turn.

4.1 Supervised learning

Supervised learning refers to the optimization of network parameters by back-propagating errors
between network outputs and ground truth labels. When enough labeled data is available it can
be regarded as the go-to approach for deep learning. As mentioned before obtaining labeled data
for CI is very laborious though. Berens et al.5 assembled a dataset of labeled CI data and designed
a benchmarking challenge to compare different available SI methods. To that end, the dataset
was split into a training set including electrophysiologically measured spike times and a test set.
Several submissions 1 trained different deep neural network (DNN) architectures on the training
data and achieved high overall scores competitive with the MLE-based state-of-the-art algorithm
MLspike.15 However, it should be noted that the quality of the dataset puts certain limitations on
the analysis: Some of the time-traces contained large recording artifacts and the SNRs were often
very low. This resulted in many algorithms achieving similar (low) performance numbers, and
makes it difficult to draw conclusions about their relative strength. It was also unclear how the
deep learning approaches could be adopted to a completely different dataset for which no labeled
data is available. Rupprecht et al.69 tackled this problem very recently by collecting a large database
of labeled CI data specifically with the goal of training DNNs for SI. To ensure that their method
also performed on data from experiments for which no ground truth information was available,
they developed a procedure for re-sampling their labeled dataset with the sampling rate and noise
level of the target data, so that they could retrain a network on data with similar statistics.

1Including a version of our DeepSpike network which we trained in a supervised fashion

15
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4.2 Simulator learning

Especially for SML, the data generating process is well understood.71,78 This allows us to design real-
istic generative models pθ(x, z). Data sampled from such a model can act as a surrogate for labeled
observations for the purpose of network training. To this end we take samples z ∼ p(z), x ∼ pθ(x|z)
and optimize the log-likelihood log qψ(z|x). This procedure minimizes the forward KL-divergence
between the posterior of the generative model and the recognition network DKL(pθ(z|x)||qφ(z))
where we take the expectation over the simulated data distribution.46

Multiple groups developed deep learning based SML approaches10,54 concurrently to our work
on DECODE. We will discuss the major differences in chapter 5. More specialized methods use deep
learning to extract parameters describing single isolated emitters such as color, emitter orientation,
z coordinate, background or aberrations.31,52,86,88

4.3 Autoencoder learning

The variational autoencoder (VAE)32,67 adopts VI for the task of neural network training. Instead of
optimizing qφ(z) for each observation x∗ separately, a network is trained which takes observations x
as input and infers latents z conditional on x. This network, usually called the recognition network,
parametrizes a distribution of the form qφ(z|x).

We can obtain a useful identity by rewriting 3.9 and replacing qφ(z) with qφ(z|x):

L(θ, φ;x) = log pθ(x|z)−DKL(qφ(z|x)||p(z)) (4.1)

The name "variational autoencoder" highlights the similarity to deterministic autoencoders,35

which becomes apparent in equation above. Both methods attempt to find encodings of unlabeled
data that allow to reconstruct the input from the encoding. Optimizing the ELBO maximizes the
likelihood pθ(x|z), which is similar to minimizing a reconstruction error. The main difference be-
tween deterministic and variational autoencoders is that in the latter distributions over latents are
inferred (instead of point estimates) and that the loss function not only rewards good reconstruc-
tions but also tries to minimize the dissimilarity between the posterior estimate qφ(z|x) and the
prior p(z).

VAEs allow for amortized inference: once the network is trained, inference on an observation
amounts to a single forward pass through the network, which is cheap. Usually, for example when
VAEs are trained on natural images, in parallel to the recognition network, a second network which
parameterizes the likelihood pθ(x|z) is trained. In my methods for SI and SML the observation
model instead takes the form of an explicit parametric model as introduced in 3.1 with much fewer
parameters.

It should be noted that the gradients of the ELBO with respect to φ can not be evaluated in
a straightforward manner when the latents are discrete, as it is the case in SI and SML. Various
methods to train such models on multi-sample variations of the ELBO are discussed in Le et al..38

We here include any such algorithm as performing autoencoder learning. Fig. 4.1 graphically
represents the training loops for simulator learning and autoencoder learning using SML as an
example.
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Figure 4.1: Network training approaches on SMLM data. a) Simulator learning. Synthetic images are
constructed by the simulated imaging of randomly located fluorophore point sources using a generative
model, and a network is trained to detect and localize the fluorophores using supervised learning. b)
Autoencoder learning. A neural network is used to infer putative locations from a measured camera image,
and subsequently the generative model is used to reconstruct the original camera image. Both the parameters
of the generative model and of the DECODE network are optimized. The loss is computed between measured
and reconstructed images.

4.4 Influence of model mismatch on NN training

During my work on the DECODE algorithm, I extensively tested and compared different versions of
autoencoder learning, simulator learning as well as combinations of both. In the final version of the
algorithm, simulator learning is used to train the network and for the sake of clarity, the publication
contains no reference to VAE learning. I therefore want to use the opportunity to summarize the
findings of this comparative work here as it might be of value for researchers who have to make
similar choices in different problem settings.

As a first step, it is important to note that if we have access to the true generative model, simu-
lator learning sets an upper bound to the achievable performance for a given network architecture
and optimization procedure. In this case, simulator learning corresponds to supervised learning
with an amount of labeled data that is only limited by the available computational resources.

In such a scenario, autoencoder learning is unnecessary and even counterproductive for multiple
reasons: Training is much slower because it requires evaluations of the generative model for each
sample from the recognition network (up to 50 in my experiments); this process is also memory
intensive and can quickly exhaust the available resources of even modern GPUs. Furthermore, the
final performance achieved is usually lower, since the gradients on the network weights obtained
by autoencoder learning are generally noisier than those from simulator learning. This effect is
especially severe because we are dealing with discrete latent variables and cannot make use of the
reparametrization trick,33 which facilitates learning in VAEs with continuous latents.

Many methods to reduce gradient variance and bias when training VAEs with discrete vari-
ables have been proposed. However, my own experiments with different VAE variants, specifically
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with reweighted wake sleep (using only the wake updates),9 VIMCO51 and the thermodynamical
variational objective48 have yielded very similar results. Nevertheless, it is possible that future
developments will alleviate this issue.11

Noisy gradients not only lead to reduced performance after convergence, but also make the
training process less stable (which can lead to failed runs) as well as sensitive to hyperparameters
and random seeding. Finally, since real data (even unlabeled) is harder to obtain than simulations,
VAEs can overfit to a specific dataset.

After these deliberations we return to the real world where, as we have noted before, we
will never have access to the true data generating process. As our generative models will always
be a simplifying approximation, a varying amount of model mismatch is always present. It is
therefore important to analyze how autoencoder and simulator learning behave in the presence
of model mismatch. To this end, I devised an experiment using simulated SMLM data, where the
amount of model mismatch could be directly controlled. Specifically, we would train networks
using a generative model with a circular Gaussian PSF and evaluate their performance on datasets
generated with an elliptical PSF and different degrees of ellipticity. All other parts of the generative
model were the same as for the model used to generate the test data.

Let us consider how simulator learning is expected to behave in such a scenario: It is not
obvious how a network that during the training process has only ’seen’ circular PSFs, responds to
data that is made up of elliptical PSFs. In principle, given that neural networks are generally seen
as universal function approximators, one could conceive a network that performs optimally on
circular PSFs and completely fails to recognize elliptical ones. In practice, what we observe instead
is a reduction of performance that scales with the amount of mismatch between training and test
data. It is likely that similar principles apply in this case as in the more common scenario where
networks are trained on limited amounts of labeled observations and tested on data that was not
part of the training set. There is a vast literature on the generalization of neural networks,55 but
questions about why and how well networks generalize have not yet been conclusively answered.87

VAE learning could have several advantages in this scenario. The network would be trained on
data from the true data distribution and we would expect that it would learn to localize elliptical
PSFs even if the PSF shape is mismatched. The reason is that minimizing the reconstruction error
would still require placing the emitters at the center of the PSF. Furthermore, autoencoder learning
also lets us optimize the model parameters θ. Therefore, as long as our generative model is flexible
enough this would enable reducing the model mismatch.

It is also possible to combine simulator and autoencoder learning, for example by alternating
between both objectives during training. We call this combined learning, of which reweighted
wake sleep9,38 is one variant. Such an approach could combine the advantages from both learning
methods, giving us the low variance gradients in the simulator phase, and the ability to train the
generative model in the autoencoder phase.

As shown in Fig. 4.2 our experiments corroborate these intuitions. Here the lateral efficiency,
a performance metric (higher is better) that is calculated from the detection accuracy and the
localization precision 2, is plotted over the ellipticity (or aspect ratio) of the simulated PSF. For
an ellipticity of 1.0( =⇒ circular PSFs) the two models used for model training and to generate
observations are identical. In this case, simulator learning clearly outperforms autoencoder learn-
ing. However, simulator learning is also more sensitive to model mismatch, with the performance
dropping sharply as ellipticity increases. We also observe that combined learning unites the ad-
vantage of both approaches, reaching the high performance of simulator learning for small model

2This measure was devised to compare performance with a single number, see [71] for details
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Figure 4.2: Performance of different training methods for different degrees of model mismatch. Models
using a circular PSF are fit to datasets simulated from PSFs with varying ellipticity. PSF parameters for
autoencoder and combined learning could be either fixed (solid line) or learned (dashed line).

mismatch, while also being more robust to increasing model mismatch. Furthermore, it is evident
from the autoencoder and combined learning performance that learning the model parameters can
further improve performance at high mismatch values.

While these results suggest that combined learning with learned generative model parameters
is the method of choice, the optimal strategy will likely vary for different problem settings. For
example, when testing our SI model, we did not observe the same performance gap between
autoencoder and simulator learning when comparing them on simulated data generated with the
model used for training. This suggest that the inference task is easier and less sensitive to gradient
noise. The fact that the observations are one dimensional might also play a role as this allows us
to employ higher batch and sample sizes. Another consideration is that while attractive in theory,
learning the generative model parameters often introduces considerable difficulties in practice:
mainly, the reconstruction loss can generally be minimized using different constellations of latents
z and generative model parameters θ. For example, let us assume we use the linear observation
model introduced in 3.1 and observe a transient that was caused by a single spike with a spike
amplitude of δ = 10. The same transient could just as well be explained using 10 spikes with an
amplitude of 1. The model might even try to fit the noise using a large number spikes with tiny
amplitudes. While such degeneracy should in theory be prevented by setting appropriate priors on
the spike rate and the model parameters, in practice this is often insufficient and extensive tuning
of hyperparameters might be necessary to stabilize training.

In conclusion, choosing the optimal method for network training will always depend on the
specifics of the task at hand. Critical properties to consider are the expected amount of model
mismatch, whether it is desirable and possible to learn the parameters of the forward model, how
sensitive the network performance is to gradient noise and what the resource constraints are
especially with respect to GPU memory demand.
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Chapter 5

Publications

The two publications that are the basis for this dissertation describe how deep neural networks
can be applied to perform inference of discrete variables to analyze data from two widespread
microscopy methods. In both publications, we develop a training approach that uses a biophysical
generative model to train the network without labeled data. However, the exact optimization
strategy and network design vary considerably. For each publication, I will briefly summarize the
specific adaptations made for the corresponding application, discuss their impact and outline my
personal contribution. The full publications are included in the appendix 6.

5.1 Fast amortized inference of neural activity from calcium imaging
data with variational autoencoders

This paper was presented at the 31st Conference on Neural Information Processing Systems and
published in the conference proceedings.77 It was one of the 697 out of 3240 total submissions to
be accepted. Additionally, it was selected as one of 112 papers for a spotlight presentation.

Spike inference is an important step in the analysis of CI data. It also an extremely difficult
problem, and fundamental questions regarding the right methodology, and how to interpret the
results are hotly debated.17,25 Our goal was to develop a deep learning approach for the analysis
of CI data that could overcome some of the shortcomings of existing methods. Specifically, we
wanted an algorithm that would be fast at test time and produce posteriors over spike trains. To
not be constrained by the availability of labeled data, we optimized the network in an unsupervised
manner using a generative model. At the same time, we wanted the training method to be flexible
with respect to the generative model, i.e. not tuned to a specific generative model. With these goals
in mind, we developed DeepSpike, a deep neural network trained on CI data using autoencoder
learning. When trained on recordings from multiple cells, one common inference network is trained
for all cells, while the generative model parameters are optimized individually for each cell.

We trained and evaluated DeepSpike using three different generative models: the widely used
linear exponential model introduced in 3.1, a simple non-linear model which includes facilitation
and saturation, and a more detailed model from the literature.15 On data simulated with the
linear model, we attained the same performance as deconvolution63 and MCMC62 algorithms.
As expected, when working with real data recorded with the genetically encoded GCaMP6 dyes,
DeepSpike trained with a nonlinear generative model performed much better and achieved state
of the art results when evaluated with common performance metrics. Using a recurrent neural
network approach, we obtained a correlated posterior that enabled us to sample realistic spike

21
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trains. While network training took several hours, inference at test time was very fast. When run
on a GPU, time traces for hundreds of cells could be analyzed in seconds, which allows for the
analysis of large populations of cells and for real-time applications.

We also emphasized that spike inference has many similarities with other analysis problems in
biological imaging, where a sparse signal needs to be inferred from imaging data, and knowledge
about the image-formation process can be used to perform statistical inference. Therefore, we
predicted that the approach could find application in other inference tasks. As a concrete example
of generalization, we proposed an extension of the algorithm to multi-dimensional inference of
inputs from dendritic imaging data, and illustrated it on simulated data.

Given that more than four years have passed since the publication of DeepSpike, we can assess
its impact and contributions. To the best of my knowledge, this work was the first instance of
training a VAE with a parametric biophyiscal generative model, with the purpose to infer latent
variables that correspond to actual underlying events (though in a similar vein, Jiminez et al.28

replace the generative neural network with a 3D renderer). This is a considerable step from the
usual application of VAEs as a means to find arbitrary and condensed latent representations of
data with the primary goal to produce realistic samples. This approach was afterwards applied
to multiple other problems: Kirschbaum et. al34 used it to infer neuronal motifs from CI videos;
Hurwitz et al.26 used it to localize spike sources in extracellular recordings of action potentials;
Prince et al.64 attempted to directly infer latent dynamics from CI videos.

On the downside, our method was not adopted as a tool for the analysis of CI data by the
research community. The main reason is likely a lack of usability. Without a background in ma-
chine learning, the method is hard to use, especially as the training procedure is sensitive to the
initialization of the generative model and hyperparameters. Due to the heterogeneity of the data,
this is a problem that plagues any inference algorithm. However, it is especially acute for DNN
approaches because each attempt to alter the settings requires retraining of the network. Possi-
ble improvements would therefore include heuristic procedures to automatically determine good
initial parameter values.

One relevant and recent development in the application of deep learning to the task of spike
inference is the CASCADE algorithm.69 Instead of relying on unsupervised training methods to
circumvent the lack of labeled data, the authors systematically collected a large data base of
simultaneous calcium and electrophysiological recordings to cover a wide range of experimental
settings and cell types. For unseen data, the ground truth data is resampled to match the respective
sampling rate and noise level. This is a promising approach as it significantly facilitates network
training for the end user. However, it seems that continuous integration of novel datasets would be
necessary to maintain the applicability into the future when novel calcium dyes become available.
Regrettably, the authors of CASCADE and other deep learning approaches89 failed to build on our
method for training end-to-end networks that produce posteriors over spike trains. Instead their
networks output spike-rate estimates that can be transformed into discrete spikes using various
heuristic post-processing methods.

Finally, I want to mention two advances that could directly be used to improve DeepSpike.
Greenberg et al.21 developed an elaborate biophysical model of calcium binding kinetics for the
GCaMP6s indicator, and determined ranges or fixed values for all its parameters. A more precise
generative would obviously benefit DeepSpike. Furthermore, it would be worthwhile to investigate
if this model could be used for simulator learning.

Another exciting deep learning method is DeepCAD.42 Based on the principle of self-supervised
learning, it trains networks that can significantly increase the SNR of arbitrary calcium imaging
recordings. Such preprocessing would benefit any SI method and could be especially advantageous
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for DeepSpike as it would facilitate the training process.

Author contributions

The publication is co-authored with Jinyao Yan, Evan Archer, Lars Buesing, Srinivas C.Turaga and
Jakob H. Macke. The initial idea to apply VAEs to the problem of spike inference came from Lars
Buesing and was further elaborated by Evan Archer, Srinivas Turaga and Jakob Macke. Jinyao Yan
worked on the inference of somatic spikes and synaptic input spikes from dendritic imaging data.
I had the idea for the correlated posterior network, implemented the code for the algorithm, and
carried out all remaining experiments and prepared all figures in the manuscript except figure 4.
Jakob Macke, Srinivas Turaga and I wrote and revised the manuscript. Special thanks goes to David
Greenberg who proposed one of the nonlinear generative models we used.

5.2 Deep learning enables fast and dense single-molecule localiza-
tion with high accuracy

The paper was published in the October 2021 issue of Nature Methods, which is the premier journal
in the category of "Biochemical Research Methods". Two earlier versions of this work were made
available as preprints.76 These describe previous iterations of the algorithm that still made use of
autoencoder learning and and also include the experiments detailed in section 4.4

The starting point for this project was the idea that the methods we developed for spike infer-
ence could also be applied to the problem of SMLM. We realized quickly that deep neural network
(DNN)s are uniquely capable of resolving dense data because, unlike traditional algorithms, they
are able to perform detection and localization simultaneously.

As discussed in section 4.4, we extensively compared different training strategies for this task.
Our final algorithm relies solely on simulator learning because our generative model is able to
simulate images that are very similar to recorded data. That means there is very little model
mismatch and the possible benefits of autoencoder learning are not worth the additional overhead.
Furthermore, 3D SMLM relies on microscopes that distort the PSF as a function of the axial offset
from the focal plane. The exact relationship between the PSF shape and the axial position can not be
learned from unlabeled data. We instead rely on so-called bead stacks: recordings of isolated, very
bright emitters across the valid axial range at fixed and known intervals. Such bead stacks allow
us to fit our PSF models with high fidelity, and therefor eliminate the need for further optimization
during training.

Two other groups developed deep learning algorithms based on simulator learning for SMLM,
concurrently to our work.10,54 However, DECODE has several distinct features that set it apart from
these methods. The major differences lie in the output representation, the loss function and the
generative model.

Developing a network architecture that takes 2D images a input and produces a set of 3D
coordinates for a previously unknown number of emitters is a nontrivial task. We solved this
problem by designing an output representation that uses information from multiple channels to
construct each localization. Specifically, a detection channel indicates the probability that an emitter
is present within a pixel, three offset channels point to the exact continuous position within the
pixel and three additional channels output the individual uncertainties in each dimension. Unlike
DeepLoco10 we maintain the local correspondence between the PSFs in the input image and the
outputs. This facilitates training, since the network does not have to decide for an arbitrary ordering.
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Furthermore, our network is fully convolutional which allows for the straightforward evaluation of
datasets with different image sizes. DeepSTORM3D54 also uses a fully convolutional network, but
their networks predict the emitter density on a super-resolved grid. This fundamentally limits the
achievable resolution. We showed that our architecture allows us to achieve the theoretical optimal
performance on isolated emitters. This is a remarkable result for a network trained on dense data.

Our loss function is based on fitting a Gaussian mixture model to the ground truth locations
and allows for the simultaneous optimization of detection, localization, and uncertainty estimation.
Several experiments show that our uncertainty estimates are well calibrated and can be used to
remove bad localizations or to optimize the rendering procedure.

Activated fluorophores are often visible over multiple adjacent frames. While the potential
payoff for utilizing temporal information was well known,17 most methods did not exploit it. Our
generative model accounts for the temporal dynamics of fluorophore activation. Together with a
network architecture that takes multiple adjacent images as input, this allows us to achieve better
detection accuracy and to reduce localization error by up to a factor of two.

Extensive evaluation on simulated data and a diverse set of experimental data shows that
our approach outperforms previous algorithms substantially and enables much faster imaging.
For example, on a public benchmark challenge that evaluated the performance on sophisticated
simulated datasets,71 DECODE outperforms 39 other algorithms on 12 out of 12 datasets that
covered different microscope setups and emitter densities.

A lot of effort was taken to make the method easily usable by the entire research community. To
this end we created code that is easy to install, and provided detailed documentation and multiple
tutorials. This effort seems to have paid off, as multiple groups have successfully applied DECODE
to their data already.

Author contributions

The publication is co-authored with Lucas-Raphael Müller (who contributed equally), Philipp Hoess,
Ulf Matti, Christopher J. Obara, Wesley R. Legant, Anna Kreshuk, Jakob H. Macke, Jonas Ries and
Srinivas C. Turaga. The idea to adopt our method for spike inference to the problem of SMLM
came from Srinivas Turaga. Philip Hoess and Ulf Matti recorded the data shown in Figure 4. Wesley
Legant and Christopher Obara helped with the analysis of the lattice light-sheet dataset shown in
Figure 5 of the paper. Lucas-Raphael Müller, under the supervision of Jonas Ries and Anna Kreshuk,
implemented the public software package and performed the analysis of the datasets shown in
Figure 4d-h and part of the analysis shown in Figure 2. Jakob Macke and Srinivas Turaga and I
developed the algorithm. I implemented an initial version of the algorithm and carried out the
analysis of the challenge dataset (Figure 3),the lattice light sheet data (Figure 6), the comparison
in Figure 4a and the comparisons in Figure 2. Jakob Macke, Srinivas Turaga, Jonas Ries, Lucas-
Raphael Müller and I wrote and revised the manuscript. Jonas Ries and I prepared all main figures.
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Conclusion

Modern imaging methods generate datasets that give us unprecedented insight into the inner
workings of biological systems. While it is obvious how these advancements are driven by new
developments in microscopy, the impact of novel computational analysis algorithms should not
be underestimated. Such algorithms can not only qualitatively improve the image fidelity and the
inference of latent variables, but facilitate the imaging process itself and open up new avenues.
Deep learning will likely play a dominant role in the field of bio-image analyses. This prediction
is not only supported by the success deep learning had across other disciplines, but also by the
abundance of recent research in the field and the growing attention it receives.37,49 This thesis
showed how DNNs can be trained to infer discrete latent events from imaging data without relying
on labeled data by making use of prior knowledge about the data generating process. We were able
to show that such an approach can have significant advantages over traditional inference methods.
We hope that this will spur further research, since many fundamental issues remain open. Specif-
ically, a principled analysis of how different training methods behave in various conditions and
how autoencoder learning, simulator learning and supervised learning can be optimally combined
remains an avenue open to exploration.

Following the empirical evidence from extensive experimentation, we arrived at two different
training approaches for DeepSpike and DECODE. DeepSpike uses autoencoder learning, simulta-
neously optimizing the parameters of the recognition network and the generative model, whereas
DECODE uses simulator learning with a fixed set of predefined model parameters. While autoen-
coder learning is in principle very promising, it currently suffers from multiple problems in practice,
especially when working with discrete latents. Theoretical and practical advances are needed to
reduce gradient variance and memory demand. Another common issue is the propensity of the
model to degrade towards pathological local optima while ignoring sparsity inducing priors. New
methods are also needed to stabilize training. This will also be critical if we want to ensure that our
algorithms not only perform well on benchmark problems, but are actually used by the scientific
community and specifically non-machine learning experts. The main obstacle for widespread use
is the network training step. While classical methods like deconvolution can be quickly applied to
single observations to get an idea of how well they work and to test different parameter settings,
this is usually not possible with DNN algorithms as they require extended training. It is therefore
critical to develop methods that do not rely on extensive hyperparameter tuning and that allow
for the straightforward tracking of training progress. Applicability could be further increased by
providing pre-trained models whenever possible. This is an especially promising approach for inte-
grated commercial microscope systems,56,57 as these provide fixed and stable configurations. Such
machines could be distributed together with fully optimized networks, therefore providing all the
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advantages of deep learning approaches without any of the drawbacks in usability.
Finally, it should be noted that improvements on this class of problems will not only advance CI

and SI but other bio-imaging fields where similar problems abound: For example, particle tracking
and the analysis of spatially resolved FISH data in its myriad variants.47 In physics, equivalent
problems are the detection and classification of celestial objects in astronomical images66 and the
analysis of data from collider experiments.23

I am therefore hopeful that the methods described in this thesis will be further improved and
more widely applied to different problem settings, ultimately facilitating exciting new discoveries
in the future.
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Abstract

Calcium imaging permits optical measurement of neural activity. Since intracellular
calcium concentration is an indirect measurement of neural activity, computational
tools are necessary to infer the true underlying spiking activity from fluorescence
measurements. Bayesian model inversion can be used to solve this problem, but
typically requires either computationally expensive MCMC sampling, or faster but
approximate maximum-a-posteriori optimization. Here, we introduce a flexible
algorithmic framework for fast, efficient and accurate extraction of neural spikes
from imaging data. Using the framework of variational autoencoders, we propose
to amortize inference by training a deep neural network to perform model inversion
efficiently. The recognition network is trained to produce samples from the posterior
distribution over spike trains. Once trained, performing inference amounts to a fast
single forward pass through the network, without the need for iterative optimization
or sampling. We show that amortization can be applied flexibly to a wide range
of nonlinear generative models and significantly improves upon the state of the
art in computation time, while achieving competitive accuracy. Our framework is
also able to represent posterior distributions over spike-trains. We demonstrate the
generality of our method by proposing the first probabilistic approach for separating
backpropagating action potentials from putative synaptic inputs in calcium imaging
of dendritic spines.

1 Introduction

Spiking activity in neurons leads to changes in intra-cellular calcium concentration which can be
measured by fluorescence microscopy of synthetic calcium indicators such as Oregon Green BAPTA-1
[1] or genetically encoded calcium indictors such as GCaMP6 [2]. Such calcium imaging has become
important since it enables the parallel measurement of large neural populations in a spatially resolved
and minimally invasive manner [3, 4]. Calcium imaging can also be used to study neural activity at
subcellular resolution, e.g. for measuring the tuning of dendritic spines [5, 6]. However, due to the
indirect nature of calcium imaging, spike inference algorithms must be used to infer the underlying
neural spiking activity leading to measured fluorescence dynamics.

∗current affiliation: Cogitai.Inc
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§current primary affiliation: Centre for Cognitive Science, Technical University Darmstadt
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Most commonly-used approaches to spike inference [7, 8, 9, 10, 11, 12, 13, 14] are based on carefully
designed generative models that describe the process by which spiking activity leads to fluorescence
measurements. Spikes are treated as latent variables, and spike-prediction is performed by inferring
both the parameters of the model and the spike latent variables from fluorescence time series, or
“traces” [7, 8, 9, 10]. The advantage of this approach is that it does not require extensive ground
truth data for training, since simultaneous electrophysiological and fluorescence recordings of neural
activity are difficult to acquire, and that prior knowledge can be incorporated in the specification of the
generative model. The accuracy of the predictions depends on the faithfulness of the generative model
of the transformation of spike trains into fluorescence measurements [14, 12]. The disadvantage
of this approach is that spike-inference requires either Markov-Chain Monte Carlo (MCMC) or
Sequential Monte-Carlo techniques to sample from the posterior distribution over spike-trains or
alternatively, iterative optimization to obtain an approximate maximum a-posteriori (MAP) prediction.
Currently used approaches rely on bespoke, model-specific inference algorithms, which can limit
the flexibility in designing suitable generative models. Most commonly used methods are based on
simple phenomenological (and often linear) models [7, 8, 9, 10, 13].

Recently, a small number of cell-attached electrophysiological recordings of neural activity have
become available, with simultaneous fluorescence calcium measurements in the same neurons.
This has made it possible to train powerful and fast classifiers to perform spike-inference in a
discriminative manner, precluding the need for accurate generative models of calcium dynamics
[15]. The disadvantage of this approach is that it can require large labeled data-sets for every new
combination of calcium indicator, cell-type and microscopy method, which can be expensive or
impossible to acquire. Further, these discriminative methods do not easily allow the incorporation
of prior knowledge about the generative process. Finally, current classification approaches yield
only pointwise predictions of spike probability (i.e. firing rates), independent across time, and ignore
temporal correlations in the posterior distribution of spikes.

Sampled spikes

Predicted probability

Forward 
RNN

1D CNN

Backward
RNN

Figure 1: Amortized inference for predicting spikes from imaging data. A) Our goal is to infer a
spike train s from an observed time-series of fluorescence-measurements f . We assume that we have
a generative model of fluorescence given spikes with (unknown) parameters θ, and we simultaneously
learn θ as well as a ‘recognition model’ which approximates the posterior over spikes s given f
and which can be used for decoding a spike train from imaging data. B) We parameterize the
recognition-model by a multi-layer network architecture: Fluorescence-data is first filtered by a deep
1D convolutional network (CNN), providing input to a stochastic forward running recurrent neural
network (RNN) which predicts spike-probabilities and takes previously sampled spikes as additional
input. An additional deterministic RNN runs backward in time and provides further context.

Here, we develop a new spike inference framework called DeepSpike (DS) based on the variational
autoencoder technique which uses stochastic variational inference (SVI) to teach a classifier to predict
spikes in an unsupervised manner using a generative model. This new strategy allows us to combine
the advantages of generative [7] and discriminative approaches [15] into a single fast classifier-based
method for spike inference. In the variational autoencoder framework, the classifier is called a
recognition model and represents an approximate posterior distribution over spike trains from which
samples can be drawn in an efficient manner. Once trained to perform spike inference on one dataset,
the recognition model can be applied to perform inference on statistically similar datasets without any
retraining: The computational cost of variational spike inference is amortized, dramatically speeding
up inference at test-time by exploiting fast, classifier based recognition models.
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We introduce two recognition models: The first is a temporal convolutional network which produces
a posterior distribution which is factorized in time, similar to standard classifier-based methods [15].
The second is a recurrent neural network-based recognition model, similar to [16, 17] which can
represent any correlated posterior distribution in the non-parametric limit. Once trained, both models
perform spike inference with state-of-the-art accuracy, and enable simultaneous spike inference for
populations as large as 104 in real time on a single GPU.

We show the generality of this black-box amortized inference method by demonstrating its accuracy
for inference with a classic linear generative model [7, 8], as well as two nonlinear generative models
[12]. Finally, we show an extension of the spike inference method to simultaneous inference and
demixing of synaptic inputs from backpropagating somatic action potentials from simultaneous
somatic and dendritic calcium imaging.

2 Amortized inference using variational autoencoders

2.1 Approach and training procedure

We observe fluorescence traces f it , t = 1 . . . T i representing noisy measurements of the dynamics
of somatic calcium concentration in neurons i = 1 . . . N . We assume a parametrised, probabilistic,
differentiable generative model pθi(f |s) with (unknown) parameters θi. The generative model
predicts a fluorescence trace given an underlying binary spike train si, where sit = 1 indicates that
the neuron i produced an action potential in the interval indexed by t. Our goal is to infer a latent
spike-train s given only fluorescence observations f . We will solve this problem by training a deep
neural network as a “recognition model” [18, 19, 20] parametrized by weights φ. Use of a recognition
model enables fast computation of an approximate posterior distribution over spike trains from a
fluorescence trace qφ(s|f). We will share one recognition model across multiple cells, i.e. that
qφ(si|f i) ≈ pθi(s

i|f i) for each i. We describe an unsupervised training procedure which jointly
optimizes parameters of the generative model θ and the recognition network φ in order to maximize a
lower bound on the log likelihood of the observed data, log p(f) [19, 18, 20].

We learn the parameters φ and θ simultaneously by jointly maximizing LK(θ, φ), a multi-sample
importance-weighting lower bound on the log likelihood log p(f) given by [21]

LK(θ, φ) = Es1,...,sK∼qφ(s|f)

[
log

1

K

K∑

k=1

pθ(s
k, f)

qφ(sk|f)

]
≤ log p(f), (1)

where sk are spike trains sampled from the recognition model qφ(s|f). This stochastic objective
involves drawing K samples from the recognition model, and evaluating their likelihood by passing
them through the generative model. When K = 1, the bound reduces to the evidence lower bound
(ELBO). Increasing K yields a tighter lower bound (than the ELBO) on the marginal log likelihood,
at the cost of additional training time. We found that increasing the number of samples leads to better
fits of the generative model; in our experiments, we used K = 64.

To train θ and φ by stochastic gradient ascent, we must estimate the gradient ∇φ,θL(θ, φ). As our
recognition model produces an approximate posterior over binary spike trains, the gradients have to be
estimated based on samples. Obtaining functional estimates of the gradients∇φL(θ, φ) with respect
to parameters of the recognition model is challenging and relies on constructing effective control
variates to reduce variance [22]. We use the variational inference for monte carlo objectives (VIMCO)
approach of [23] to produce low-variance unbiased estimates of the gradients ∇φ,θLK(θ, φ). The
generative training procedure could be augmented with a supervised cost term [24, 25], resulting in a
semi-supervised training method.

Gradient optimization: We use ADAM [26], an adaptive gradient update scheme, to perform
online stochastic gradient ascent. The training data is cut into short chunks of several hundred
time-steps and arranged in batches containing samples from a single cell. As we train only one
recognition model but multiple generative models in parallel, we load the respective generative model
and ADAM parameters at each iteration. Finally, we use norm-clipping to scale the gradients acting
on the recognition model: the norm of all gradients is calculated, and if it exceeds a fixed threshold the
gradients are rescaled. While norm-clipping was introduced to prevent exploding gradients in RNNs
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[27], we found it to be critical to achieve high performance both for RNN and CNN architectures in
our learning problem. Very small threshold values (0.02) empirically yielded best results.

2.2 Generative models pθ(f |s)

To demonstrate that our computational strategy can be applied to a wide range of differentiable
models in a black-box manner, we consider four generative models: a simple, but commonly used
linear model of calcium dynamics [7, 8, 9, 10], two more sophisticated nonlinear models which
additionally incorporate saturation and facilitation resulting from the dynamics of calcium binding to
the calcium sensor, and finally a multi-dimensional model for dendritic imaging data.

Linear auto-regressive generative model (SCF): We use the name SCF for the classic linear
convolutional generative model used in [7, 8, 9, 10], since this generative process is described by the
Spikes st, which linearly impact Calcium concentration ct, which in turn determines the observed
Fluorescence intensity ft,

ct =

p∑

t′=1

γt′ct−t′ + δst, ft = αct + β + et, (2)

with linear auto-regressive dynamics of order p for the calcium concentration with parameters
γ, spike-amplitude δ, gain α, constant fluorescence baseline β, and additive measurement noise
et ∼ N (0, σ2).

Nonlinear auto-regressive and sensor dynamics generative models (SCDF & MLphys): As
examples of nonlinear generative models [28], we consider two simple models of the discrete-time
dynamics of the calcium sensor or dye. In the first (SCDF), the concentration of fluorescent dye
molecules dt is a function of the somatic Calcium concentration ct, and has Dynamics

dt − dt−1 = κonc
η
t ([D]− dt−1)− κoffdt−1, ft = αdt + β + et, (3)

where κon and κoff are the rates at which the calcium sensor binds and unbinds calcium ions, and η is
a Hill coefficient. We constrained these parameters to be non-negative. [D] is the total concentration
of the dye molecule in the soma, which sets the maximum possible value of dt. The richer dynamics
of the SCDF model allow for facilitation of fluorescence at low firing rates, and saturation at high
rates. The parameters of the SCDF model are θ = {α, β, γ, κon, κoff , η, [D], σ2}.
The second nonlinear model (MLphys) is a discrete-time version of the MLspike generative model
[12], simplified by not including a model of the time-varying baseline. The dynamics for ft and ct
are as above, with δ = 1. We replace the dynamics for dt by

dt − dt−1 =
1

τon
(1 + ω((c0 + ct)

η − cη0))(
((c0 + ct)

η − cη0)

(1 + ω((c0 + ct)η − cη0))
− dt−1). (4)

Multi-dimensional soma + dendrite generative model (DS-F-DEN): The dendritic generative
model is a multi-dimensional SCDF model that incorporates back-propagating action potentials
(bAPs). The calcium concentration at the cell body (superscript c) is generated as for SCDF, whereas
for the spine (superscript s), there are two components: synaptic inputs and bAPs from the soma,

cct =

p∑

t′=1

γct′c
c
t−t′ + δcsct , cst =

p∑

t′=1

γst′c
s
t−t′ + δssst + δbssct , (5)

where δbs are the amplitude coefficients of bAPs for different spine locations, and c ∈ {1, ..., Nc},
s ∈ {1, ..., Ns}. The spines and soma share the same dye dynamics as in (3). The parameters of the
dendritic integration model are θ = {αs,c, βs,c, γs,c, κon, κoff , η, [D], σ2

s,c}. We note that this simple
generative model does not attempt to capture the full complexity of nonlinear processing in dendrites
(e.g. it does not incorporate nonlinear phenomena such as dendritic plateau potentials). Its goal is
to separate local influences (synaptic inputs) from global events (bAPs, or potentially regenerative
dendritic events).
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2.3 Recognition models: parametrization of the approximate posterior qφ(s|f)

The goal of the recognition model is to provide a fast and efficient approximation qφ(s|f) to the
true posterior p(s|f) over discrete latent spike trains s. We will use both a factorized, localized
approximation (parameterized as a convolutional neural network), and a more flexible, non-factorized
and non-localized approximation (parameterized using additional recurrent neural networks).

Convolutional neural network: Factorized posterior approximation (DS-F) In [15], it was
reported that good spike-prediction performance can be achieved by making the spike probability
qφ(st|ft−τ...t+τ ) depend on a local window of the fluorescence trace of length 2τ + 1 centered at t
when training such a model fully supervised. We implement a scaled up version of this idea, using a
deep neural network which is convolutional in time as the recognition model. We use architectures
with up to five hidden layers and ≈ 20 filters per layer with Leaky ReLUs units [29]. The output
layer uses a sigmoid nonlinearity to compute the Bernoulli spike probabilities qφ(st|f).

Recurrent neural network: Capturing temporal correlations in the posterior (DS-NF) The
fully-factorized posterior approximation (DS-F) above ignores temporal correlations in the posterior
over spike trains. Such correlations can be useful in modeling uncertainty in the precise timing of a
spike, which induces negative correlations between nearby time bins. To model temporal correlations,
we developed a RNN-based non-factorizing distribution which can approach the true posterior in the
non-parametric limit (see figure 1B). Similar to [16], we use the temporal ordering over spikes and
factorize the joint distribution over spikes as qφ(s|f) =

∏
t qφ(st|f, s0, ..., st−1), by conditioning

spikes at t on all previously sampled spikes. Our RNN uses a CNN as described above to extract
features from the input trace. Additional input is provided by a a backwards RNN which also receives
input from the CNN features. The outputs of the forward RNN and CNN are transformed into
Bernoulli spike probabilities qφ(st|f) through a dense sigmoid layer. This probability and the sample
drawn from it are relayed to the forward RNN in the next time step. Forward and backward RNN
have a single layer with 64 gated recurrent units each [30].

2.4 Details of synthetic and real data and evaluation methodology

We evaluated our method on simulated and experimental data. From our SCF and SCDF generative
models for spike-inference, we simulated traces of length T = 104 assuming a recording frequency
of 60 Hz. Initial parameters where obtained by fitting the models to real data (see below), and
heterogeneity across neurons was achieved by randomly perturbing parameters. We used 50 neurons
each for training and validation and 100 neurons in the test set. For each cell, we generated three
traces with firing rates of 0.6, 0.9 and 1.1 Hz, assuming i.i.d. spikes.

Finally, we compared methods on two-photon imaging data from 9 + 11 cells from [2], which is
available at www.crcns.org. Layer 2/3 pyramidal neurons in mouse visual cortex were imaged at 60 Hz
using the genetically encoded calcium-indicators GCaMP6s and GCaMP6f, while action-potentials
were measured electrophysiologically using cell-attached recordings. Data was pre-processed by
removing a slow moving baseline using the 5th percentile in a window of 6000 time steps. Furthermore
we used this baseline estimate to calculate ∆F/F . Cross-validated results where obtained using 4
folds, where we trained and validated on 3/4 of the cells in each dataset and tested on the remaining
cells to highlight the potential for amortized inference. Early stopping was performed based on the
the correlation achieved on the train/validation set, which was evaluated every 100 update steps.

We report results using the cross-correlation between true and predicted spike-rates, at the sampling
discretization of 16.6 ms for simulated data and 40 ms for real data. As the predictions of our DS-NF
model are not deterministic, we sample 30 times from the model and average over the resulting
probability distributions to obtain an estimate of the marginal probability before we calculate cross-
correlations.

We used multiple generative models to show that our inference algorithm is not tied to a particular
model: SCDF for the experiments depicted in Fig. 2, SCF for a comparison with established methods
based on this linear model (Table 1, column 1), and MLphys on real data as it is used by the current
state-of-the-art inference algorithm (Table 1, columns 2 & 3, Fig. 3).
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Figure 2: Model-inversion with variational autoencoders, simulated data A) Illustration of
factorized (CNN, DS-F) and non-factorized posterior approximation (RNN, DS-NF) on simulated
data (SCDF generative model). DS-NF yields more accurate reconstructions, but both methods lead
to similar marginal predictions (i.e. predicted firing rates, bottom). B) Number of spikes sampled for
every true spike for the factorized (red) and non-factorized (red) posterior. The correlated posterior
consistently samples the correct number of spikes while still accounting for the uncertainty in the
spike timing. C) Performance of amortized vs non-amortized inference on simulated data. D) Scatter
plots of achieved log-likelihood of the true spike train under the posterior model (top) and achieved
correlation coefficients between the marginalized spiking probabilities and true spike trains (bottom).

3 Results

3.1 Stochastic variational spike inference of factorized and correlated posteriors

We first illustrate our approach on synthetic data, and compare our two different architectures for
recognition models. We simulated data from the SCDF nonlinear generative model and trained
DeepSpike unsupervised using the same SCDF model. While only the more expressive recognition
model (DS-NF) is able to achieve a close-to-perfect reconstructions of the fluorescence traces (Fig. 2
A, top row), both approaches yield similar marginal firing rate predictions (second row). However,
as the factorized model does not model correlations in the posterior, it yields higher variance in the
number of spikes reconstructed for each true spike (Fig. 2 B). This is because the factorized model
can not capture that a fluorescence increase might be ‘explained away’ by a spike that has just been
sampled, i.e. it can not capture the difference between uncertainty in spike-timing and uncertainty in
(local) spike-counts. Therefore, while both approaches predict firing rates similarly well on simulated
data (as quantified using correlation, Fig. 2 D), the DS-NF model assigns higher posterior probability
to the true spike trains.

3.2 Amortizing inference leads to fast and accurate test-time inference

In principle, our unsupervised learning procedure could be re-trained on every data-set of interest.
However, it also allows for amortizing inference by sharing one recognition model across multiple
cells, and applying the recognition model directly on new data without additional training for fast
test-time performance. Amortized inference allows for the recognition model to be used for inference
in the same way as a network that was trained fully supervised. Since there is no variational
optimization at test time, inference with this network is just as fast as inference with a supervised
network. Similarly to supervised learning, there will be limitations on the ability of this network to
generalize to different imaging conditions or indicators that where not included in the training set.

To test if our recognition model generalizes well enough for amortized inference to work across
multiple cells, as well as on cells it did not see during training, we trained one DS-NF model on 50
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cells (simulated data, SCDF) and evaluated its performance on a non-overlapping set of 30 cells. For
comparison, we also trained 30 DS-NF models separately, on each of those cells– this amounts to
standard variational inference using a neural network to parametrize the posterior approximation,
but without amortizing inference. We found that amortizing inference only causes a small drop
in performance (Fig. 2 C). However, this drop in performance is offset by the the large gain in
computational efficiency as training a neural network takes several orders of magnitude more time
then applying it at test time.

Inference using the DS-F model only requires a single forward pass through a convolutional network
to predict firing rates, and DS-NF requires running a stochastic RNN for each sampled spike train.
While the exact running-time of each of these applications will depend on both implementation
and hardware, we give rough indications of computational speed number estimated on an Intel(R)
Xeon(R) CPU E5-2697 v3. On the CPU, our DS-F approach takes 0.05 s to process a single trace of
10K time steps, when using a network appropriate for 60 Hz data. This is on the same order as the
0.07 s (Intel Core i5 2.7 GHz CPU) reported by [31] for their OASIS algorithm, which is currently
the fastest available implementation for constrained deconvolution (CDEC) of SCF, but restricted to
this linear generative model. The DS-NF algorithm requires 4.6 s which still compares favourably
to MLspike which takes 9.2 s (evaluated on the same CPU). As our algorithm is implemented in
Theano [32] it can be easily accelerated and allows for massive parallelization on a single GPU. On a
GTX Titan X, DS-F and DS-NF take 0.001 s and 1.5 s, respectively. When processing 500 traces in
parallel, DS-NF becomes only 2.5 times slower. Extrapolating from these results, this implies that
even when using the DS-NF algorithm, we would be able to perform spike-inference on 1 hour of
recordings at 60 Hz for 500 cells in less then 90 s.

Table 1: Performance comparison. Values are correlations between predicted marginal probabilities
and ground truth spikes.

Dataset Dendritic dataset
Algorithm SCF-Sim. GCaMP6s GCaMP6f Soma Spine
DS-F 0.88 ± 0.01 0.74 ± 0.02 0.74 ± 0.02
DS-NF 0.89 ± 0.01 0.72 ± 0.02 0.73 ± 0.02
CDEC [10] 0.86 ± 0.01 0.39 ± 0.03 * 0.58 ± 0.02 *
MCMC [9] 0.87 ± 0.01 0.47 ± 0.03 * 0.53 ± 0.03 *
MLSpike [12] 0.60 ± 0.02 * 0.67 ± 0.01 *
DS-F-DEN 0.84 ± 0.01 0.78 ± 0.01
Foopsi-RR [2] 0.66 ± 0.02 0.60 ± 0.01

3.3 DS achieves competitive results on simulated and publicly available imaging data

The advantages of our framework (black-box inference for different generative models, fast test-
time performance through amortization, correlated posteriors through RNNs) are only useful if the
approach can also achieve competitive performance. To demonstrate that this is the case, we compare
our approach to alternative generative-model based spike prediction methods on data sampled from
the SCF model– as this is the generative model underlying commonly used methods [10, 9], it is
difficult to beat their performance on this data. We find that both DS-F and DS-NF achieve competitive
performance, as measured by correlation between predicted firing rates and true (simulated) spike
trains (Table 1, left column. Values are means and standard error of the mean calculated over cells).

To evaluate our performance on real data we compare to the current state-of-the-art method for spike
inference based on generative models[12]. For these experiments we trained separate models on each
of the GCaMP variants using the MLspike generative model. We achieve competitive accuracy to
the results in [12] (see Table 1, values marked with an asterisk are taken from [12], Fig. 6d) and
clearly outperform methods that are based on the linear SCF model. We note that, while our method
performs inference in an unsupervised fashion and is trained using an un-supervised objective, we
initialized our generative model with the mean values given in [12] (Fig. S6a), which were obtained
using ground truth data. An example of inference and reconstruction using the DS-NF model is
shown in Fig. 3. The reconstruction based on the true spikes (purple line) was obtained using the
generative model parameters which had been acquired from unsupervised learning. This explains why
the reconstruction using the inferred spikes is more accurate and suggests that there is a mismatch
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Figure 3: Inference and reconstruction using the DS-NF algorithm on GECI data. The recon-
struction based on the inferred spike trains (blue) shows that the algorithm converges to a good joint
model while the reconstruction based on the true spikes (purple) shows a mismatch of the generative
model for high activity which results in an overestimate of the overall firing rate.

between the MLphys model and the true data-generating generating process. Developing more
accurate generative models would therefore likely further increase the performance of the algorithm.

True soma spikes
Soma trace

0.0

0.5

1.0

M
a
rg

in
a
l p

ro
b
a
b
ili

ty

Inferred: DS-F-DEN
Inferred: FOOPSI-RR

True synaptic inputs
Spine trace

0 2 4 6 8 10 12
Time in seconds

0.0

0.5

1.0

M
a
rg

in
a
l p

ro
b
a
b
ili

ty

Cell cartoon

Figure 4: Inference of somatic spikes and synaptic input spikes from simulated dendritic
imaging data. We simulated imaging data from our generative model, and compared our approach
(DS-F-DEN) to an analysis inspired by [2] (Foopsi-RR), and found that our method can extract
synaptic inputs more accurately. Traces at the soma and spines are used to infer somatic spikes and
synaptic inputs at spines. Top: somatic trace and predictions. DS-F-DEN produces better predictions
at the soma since it uses all traces to infer global events. Bottom: spine trace and predictions.
DS-F-DEN performs better in terms of extracting synaptic inputs.

3.4 Extracting putative synaptic inputs from calcium imaging in dendritic spines

We generalized the DeepSpike variational-inference approach to perform simultaneous inference of
backpropagating APs and synaptic inputs, imaged jointly across the entire neuronal dendritic arbor.
We illustrate this idea on synthetic data based on the DS-F-DEN generative model (5). We simulated
15 cells each with 10 dendritic spines with a range of firing rates and noise levels. We then used a
multi-input multi-output convolutional neural network (CNN, DS-F) in the non-amortized setting to
infer a fully-factorized Bernoulli posterior distribution over global action potentials and local synaptic
events.

We compared our results to an analysis technique inspired by [2] which we call Foopsi-RR. We first
apply constrained deconvolution [33] to somatic and dendritic calcium traces, and then use robust
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linear regression to identify and subtract deconvolved components of the spine signal that correlated
with global back-propagated action potential. Compared to the method suggested by [2], our model
is significantly more accurate. The average correlation of our model is 0.84 for soma and 0.78 for
spines, whereas for Foopsi-RR the average correlation is 0.66 for soma and 0.60 for spines (Table 1).

4 Discussion

Spike inference is an important step in the analysis of fluorescence imaging. We here propose a
strategy based on variational autoencoders that combines the advantages of generative [7] and dis-
criminative approaches [15]. The generative model makes it possible to incorporate knowledge about
underlying mechanisms and thus learn from unlabeled data. A simultaneously-learned recognition
network allows fast test-time performance, without the need for expensive optimization or MCMC
sampling. This opens up the possibility of scaling up spike inference to very large neural populations
[34], and to real-time and closed-loop applications. Furthermore, our approach is able to estimate full
posteriors rather than just marginal firing rates.

It is likely that improvements in performance and interpretability will result from the design of
better, biophysically accurate and possibly dye-, cell-type- and modality-specific models of the
fluorescence measurement process, the dynamics of neurons [28] and indicators, as well as from
taking spatial information into account. Our goal here is not to design such models or to improve
accuracy per se, but rather to develop an inference strategy which can be applied to a large class
of such potential generative models without model-specific modifications: A trained recognition
model that can invert, and provide fast test-time performance, for any such model while preserving
performance in spike-detection.

Our recognition model is designed to serve as the common approximate posterior for multiple,
possibly heterogeneous populations of cells, requiring an expressive model. These assumptions are
supported by prior work [15] and our results on simulated and publicly available data, but might be
suboptimal or not appropriate in other contexts, or for other performance measures. In particular, we
emphasize that our comparisons are based on a specific data-set and performance measure which
is commonly used for comparing spike-inference algorithms, but which can in itself not provide
conclusive evidence for performance in other settings and measures. Our approach includes rich
posterior approximations [35] based on RNNs to make predictions using longer context-windows and
modelling posterior correlations. Possible extensions include causal recurrent recognition models for
real-time spike inference, which would require combining them with fast algorithms for detecting
regions of interest from imaging-movies [10, 36]. Another promising avenue is extending our
variational inference approach so it can also learn from available labeled data to obtain a semi-
supervised algorithm [37].

As a statistical problem, spike inference has many similarities with other analysis problems in
biological imaging– an underlying, sparse signal needs to be reconstructed from spatio-temporal
imaging observations, and one has substantial prior knowledge about the image-formation process
which can be encapsulated in generative models. As a concrete example of generalization, we
proposed an extension to multi-dimensional inference of inputs from dendritic imaging data, and
illustrated it on simulated data. We expect the approach pursued here to also be applicable in other
inference tasks, such as the localization of particles from fluorescence microscopy [38].
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Single-molecule localization microscopy (SMLM) (for exam-
ple, PALM1 and (d)STORM2,3) has become an invaluable 
super-resolution method for biology, as it can resolve cellular 

structures with nanometer precision. It is based on acquiring a large 
number of camera frames, in each of which only a tiny fraction of the 
emitters are stochastically activated into a bright ‘on’ state, so that their 
images do not overlap. This allows precise localization of the emitter 
coordinates by fitting a model of the point spread function (PSF). A 
super-resolution image is then reconstructed from these coordinates. 
This principle of SMLM is at the same time one of its main limita-
tions: the need for sparse activation leads to long acquisition times. 
This results in low throughput, poor time resolution when imaging 
dynamic processes, low labeling densities and a reduced choice of flu-
orophores. Additionally, long acquisition times in combination with 
high excitation laser intensities needed for single-molecule imaging 
can cause strong phototoxicity in live-cell SMLM.

All of these limitations can be mitigated by activating emitters at 
a higher density. In this ‘multi-emitter’ setting, PSFs are no longer 
well-separated but may overlap, making both the detection of multi-
ple nearby emitters and their accurate localization computationally 
challenging. This is not adequately addressed by existing algorithms: 
current ‘multi-emitter’ fitting algorithms4–6 work reasonably well on 
two-dimensional (2D) samples where all emitters have the same 
z coordinate and thus produce identical PSFs. These algorithms, 
however, have had limited success for realistic three-dimensional 
(3D) biological structures. In a software competition that bench-
marked SMLM algorithms using realistic computer-generated data, 
simple single-emitter fitters outperformed dedicated high-density 
fitters on 3D samples even in the high-density regime7.

Deep learning is revolutionizing biological image analysis8–10. 
For SMLM, deep learning holds promise to extract emitter coor-
dinates and additional parameters under conditions and densities 
too complex for traditional fitters. With enough training data, deep 
networks are flexible function approximators that can be trained 
to recognize patterns in the image and thus transform images 
directly into predicted emitter configurations, even for challeng-
ing high densities of emitters. While ground-truth data to train 
the neural network are typically not available, synthetic training 
data can be generated by numerically simulating the imaging pro-
cess11,12. Convolutional neural networks (CNNs, a class of deep net-
works suitable for image data) have recently been used to extract 
parameters describing single isolated emitters such as color, emit-
ter orientation, z coordinate, background or aberrations13–16 and to 
design optimized PSFs17. Two recent studies (DeepSTORM3D17 and 
DeepLoco18) used CNNs for extracting emitter coordinates, and 
outperformed traditional single-emitter fitting algorithms at densi-
ties higher than the single-molecule regime. These studies illustrate 
the potential of deep learning for SMLM, however, they have only 
been demonstrated either for exotic engineered PSFs or on simu-
lated data.

Here we present the DECODE (deep context dependent) method 
for deep learning-based single-molecule localization that achieves 
high accuracy across a wide range of emitter densities and bright-
ness levels. DECODE uses a deep network output representation, 
architecture, and cost function, which are optimized for simultane-
ous detection and subpixel localization of single emitters. Uniquely, 
DECODE is able to predict both the probability of detection and the 
uncertainty of localization for each emitter. As the timing and duration  
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Single-molecule localization microscopy (SMLM) has had remarkable success in imaging cellular structures with nanometer 
resolution, but standard analysis algorithms require sparse emitters, which limits imaging speed and labeling density. Here, we 
overcome this major limitation using deep learning. We developed DECODE (deep context dependent), a computational tool 
that can localize single emitters at high density in three dimensions with highest accuracy for a large range of imaging modali-
ties and conditions. In a public software benchmark competition, it outperformed all other fitters on 12 out of 12 datasets when 
comparing both detection accuracy and localization error, often by a substantial margin. DECODE allowed us to acquire fast 
dynamic live-cell SMLM data with reduced light exposure and to image microtubules at ultra-high labeling density. Packaged 
for simple installation and use, DECODE will enable many laboratories to reduce imaging times and increase localization  
density in SMLM.
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of emitter activations are stochastic, they regularly persist over 
several imaging frames. The DECODE architecture can integrate 
information across neighboring frames (‘temporal context’), which 
improves emitter detection and localization.

In the public SMLM challenge7, DECODE outperformed all 
existing methods on 12 out of 12 datasets. Compared to previous 
deep learning-based high-density fitters17, DECODE is ten times 
faster and up to twice as accurate, and can be applied to a wide range 
of PSFs. We demonstrate on biological structures that DECODE 
allows for fivefold higher labeling densities or tenfold faster imaging 
compared to imaging in the single-emitter regime, and thus enables 
fast live-cell SMLM with reduced light exposure and visualization of 
dynamic processes. We show the versatility of DECODE by reana-
lyzing a published lattice light sheet (LLS) point accumulation for 
imaging of nanoscale topography labeling (PAINT) dataset19 for 
which we could substantially improve fluorophore detection and 
localization accuracy. DECODE is packaged for simple use and can 
be easily trained and used by nonexpert users, without having to 
design new network architectures. Thus, it will enable the entire 
community to overcome the need of sparse activation as one of the 
main bottlenecks in SMLM.

Results
DECODE network. DECODE introduces a new output rep-
resentation and architecture for detecting and localizing emit-
ters. For each image frame, it predicts multiple channels with 
the same dimensions as the input image (Fig. 1a). The first two 
channels indicate the probability p that an emitter exists near that 
pixel, as well as its brightness N (number of photons emitted by 
the emitter in the frame). The next three channels describe the 
coordinates of the emitter with respect to the center of the pixel, 

Δxyz = (Δx, Δy, Δz). An additional channel predicts the back-
ground intensity B in each pixel.

This architecture overcomes limitations of current deep learn-
ing17,18 and non-deep learning–based high-density approaches in 
three ways. First, DECODE predictions scale only with the number 
of imaged pixels (not super-resolution voxels as in DeepSTORM3D), 
resulting in over 20-fold improvement in prediction speeds and 
the use of continuous subpixel coordinates eliminates a voxel size 
dependent limit on precision. The local output representation used 
by DECODE also avoids the potentially challenging nonlocal map-
ping of pixels to global coordinates used in DeepLoco.

Second, DECODE has four additional output channels that 
estimate the uncertainty of the localization along each coordinate 
given by σxyz = (σx, σy, σz) and of the brightness σN. These predicted 
localization uncertainties can be used to filter out poorly localized 
detections to improve the rendering of super-resolution images. 
In addition, training the network to additionally predict the local-
ization uncertainty corresponding to each detection also helps to 
improve the quality of the detection probabilities p by implicitly 
grouping all the detections corresponding to the same emitter. In 
contrast, standard output representations that only indicate the 
probability of detecting an emitter on a per-voxel basis make it 
more challenging to correctly group detection probability voxels 
corresponding to the same emitter in high emitter-density and high 
localization-uncertainty scenarios.

Third, the DECODE network integrates information across mul-
tiple frames with a two-stage design. The first stage (frame analysis 
module) analyses single imaging frames using a 2D multi-resolution 
convolutional network based on the ‘U-Net’ architecture20 to com-
pute a feature representation of the single frame (Extended Data 
Fig. 1). The second stage (temporal context module) integrates the 
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Fig. 1 | DeCODe for high-density single-molecule localization. a, DECODE architecture. The DECODE network uses information from multiple frames 
to predict output maps representing for each pixel the probability of detecting an emitter and the emitter’s subpixel spatial coordinates (Δx, Δy, Δz), 
brightness (N), the uncertainty related to those predictions (σx, σy, σz), and an optional background map (B). b, Training DECODE. The DECODE network is 
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feature representations of the frame with those of the previous and 
next imaging frame using a second 2D U-Net to produce the final 
predictions. As emitters persist over several frames, this improves 
detection and localization accuracy.

Training the DECODE network using simulator learning. We 
train DECODE to simultaneously detect and localize emitters in 
SMLM measurements. Ground-truth data for supervised learning 
are not easily available for SMLM. However, it is possible to simulate 
realistic images of activated emitters as the physics of imaging single 
molecules is well understood12. We train the DECODE network by 
generating a large amount of simulated data. To avoid structural 
bias8, we place emitters at random coordinates, and calculate simu-
lated images with a realistic image formation model that includes 
dye photophysics, a measured PSF and camera noise (Methods).

We trained the DECODE network to predict the probability 
of detection, along with the subpixel localization and localization 
uncertainty of each detected emitter. Our loss function has three 
terms: (1) a count loss that compares the true and detected num-
ber of emitters in the image; (2) a localization loss that trains the 
network to correctly localize the detected emitters and estimate the 
localization uncertainty and emitter brightness and (3) an optional 
background loss. The count and localization loss functions were 
derived together as an approximation to a spatial point process 
probability distribution. They work together to correctly train the 
DECODE network to predict one detection per emitter, and to 
correctly assign the localization uncertainty of each emitter to the 
corresponding detection. Together, they constitute a new loss for 
counting, detecting and localizing sets of discrete point-like objects.

The count loss first constructs a Gaussian approximation to the 
predicted number of emitters by summing the mean and the vari-
ance of the Bernoulli detection probability map, and then maximizes 
the probability of the true number of emitters under this distribu-
tion. Uncertain detections will lead to large predicted count vari-
ance, while confident detections will result in low variance. Thus, 
the count loss encourages a detection probability map with sparse 
but confident predictions. The localization loss models the distri-
bution of subpixel localizations Δxyz with a coordinate-wise inde-
pendent Gaussian probability distribution21 with standard deviation 
σxyz. For imprecise localizations, this probability is maximized for 
large σxyz, for precise localizations for small σxyz. The distribution of 
all localizations over the entire image is approximated as a weighted 
average of individual localization distributions, where the weights 
correspond to the probability of detection. By optimizing both the 
probability of detection, the subpixel localization Δxyz and σxyz 
simultaneously, the network learns not only the best predictions for 
the coordinates of the emitters, but also the best estimate for their 
localization uncertainties. The emitter brightness predictions N and 
their uncertainties σN are optimized similarly. Finally, the optional 
background loss computes the mean squared error between the true 
and predicted background images B. While the network only uses 
camera images to make predictions, the network training procedure 
does require PSF calibration measurements.

DECODE achieves high accuracy for a wide range of simulated 
data. Performance metrics. The quality of SMLM data analysis is 
commonly quantified by two factors: first, the detection accuracy 
quantifies the fraction of emitters that are detected. The metric we 
use here is the Jaccard Index (JI)7, that sets the true positives (TP) in 
relation to the false positives (FP) and false negatives (FN), JI = TP/
(TP + FN + FP). The second factor is the localization error, that is 
how close the measured coordinates are to the true coordinates, 
measured here as the root mean squared error (r.m.s.e.) averaged 
over the dimensions (Methods). We matched the detected emit-
ters to the ground-truth emitters in three dimensions with a lateral 
threshold of 250 nm and an axial threshold of 500 nm.

There is a natural trade-off between JI and localization error: dis-
carding all but the brightest and best separated emitters will result 
in a good (low) localization error but a bad (low) JI. Conversely, 
including also poorly localized emitters might improve JI, but dete-
riorates the localization error. The optimal operating point between 
these two extremes will depend on the experimental conditions and 
the scientific question. Because DECODE also provides uncertain-
ties for each localization, it offers a straightforward way to filter 
localizations and thus set the desired balance between the number 
of detected emitters and the localization error that can be tolerated.

The Cramér–Rao lower bound (CRLB) gives the minimum 
achievable localization error for an optimal fitter given a known 
PSF, background and noise model22. Most commonly, it is calculated 
under idealized conditions (that is, nonoverlapping PSFs, homoge-
neous background, assuming the chosen PSF model to be the true 
model) and we use it here for comparison as a best-case limit for 
localization error.

DECODE approaches the CRLB for low densities. We simulated 
100,000 frames with exactly one emitter per frame at random coor-
dinates with a constant brightness and background, and trained 
DECODE without temporal context. On these data with sparse 
activations, DECODE approaches the single-emitter CRLB, that is 
the theoretical limit of precision (Fig. 2a). It thus performs as well 
as maximum likelihood estimation (MLE) based fitters, which have 
also been shown to reach the CRLB23 in this regime.

DECODE’s uncertainty estimates are well calibrated. In the 
high-density regime, DECODE’s σ predictions correlate closely 
to the measured localization error (Fig. 2b), much better than the 
single-emitter CRLB estimate that assumes isolated emitters (cor-
relation coefficient 0.86 for σ versus 0.07 for single-emitter CRLB). 
For the low-density regime, the uncertainty estimates are in line 
with the measured error and the single-emitter CRLB (Fig. 2a).

Temporal context improves localization error and detection. 
DECODE’s temporal context module pools information across 
multiple (we used three) frames, to model the fact that emitters can 
persist in multiple subsequent frames. Use of this context module 
improves both the detection accuracy (JI) and the localization error 
(Fig. 2c). The increase in JI is apparent for all densities and signal 
to noise ratios (SNRs). In addition, the r.m.s.e. is reduced by up 
to 20 nm. Overall, the temporal context has a large impact across 
imaging conditions, and is also more powerful than ‘grouping’ 
approaches that are often applied to localizations in a postprocess-
ing step (Extended Data Fig. 2).

DECODE architecture outperforms a voxel-based network architec-
ture and a multi-emitter fitter. To assess how the DECODE net-
work architecture performs against other deep learning-based and 
iterative methods, we directly compared to DeepSTORM3D17 and 
CSpline4, a matching pursuit style multi-emitter fitter based on 
MLE, using the code provided by the authors. To minimize the risk 
of suboptimal training, we trained DeepSTORM3D on data sampled 
from our generative model using the same parameters we used for 
the training of DECODE. For both DeepSTORM3D and CSpline we 
performed a parameter grid search over user-defined parameters 
to maximize their performance (measured as efficiency score7). To 
facilitate the comparison of localization precision, we filtered out 
DECODE localizations with the highest inferred uncertainties such 
that the remaining number match DeepSTORM3D. DECODE out-
performs the other methods across all densities and SNRs (Fig. 2e 
and Extended Data Fig. 3) even without temporal context. When 
we use temporal context, DECODE reduces the localization error 
up to twofold compared to DeepSTORM3D. Although both meth-
ods are based on deep learning, this performance improvement is 
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based on the differences in output representation and loss function 
between DECODE and DeepSTORM3D. The localization error 
of DeepSTORM3D is limited by the super-resolution voxel size17 

(Extended Data Fig. 4), which prevents the method from achieving 
the single-emitter CRLB, unlike DECODE that has no such limita-
tion. Because DECODE has multiple output maps it is also able to 
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provide accurate estimates of the signal photon counts and back-
ground values (Extended Data Fig. 9).

Notably, DECODE performs favorably in fitting time (Extended 
Data Fig. 6), taking less than 1.5 s to analyze 1,000 frames of 
64 × 64 pixels, while DeepSTORM3D requires between 34 and 
54 s and CSpline requires between 14 and 2,680 s, which is up to 
1,900-fold slower than DECODE. Training the DECODE network 
to convergence on a NVIDIA RTX2080Ti graphical processing 
unit (GPU) requires around 10 h while DeepSTORM3D takes 
around 50 h.

DECODE outperforms all fitters on a public SMLM benchmark. The 
2016 SMLM challenge is an on-going and continuously updated 
second generation comprehensive benchmark evaluation developed 
for the objective, quantitative evaluations of the plethora of available 
localization algorithms7,24. It offers synthetic datasets for training, 
created to emulate various experimental conditions. To avoid overfit-
ting, evaluations are carried out on data not shared with contestants. 
It calculates various quality metrics, among them r.m.s.e. lateral or 
volume localization error, as applicable for 2D and 3D data, respec-
tively, the JI quantifying detection accuracy and a single ‘efficiency’ 
score that combines r.m.s.e. and JI. The performance of DECODE 
in the SMLM 2016 challenge, including extensive evaluations and  
side by side comparisons, is available online (http://bigwww.epfl.ch/
smlm/challenge2016/leaderboard.html). DECODE outperformed  

all 39 algorithms on 12 out of 12 datasets, often by a substantial 
margin (Fig. 3, data from challenge website, current as of 1 October, 
2020). The datasets included high (N1) and low (N2, N3) SNRs, 
with low or high emitter densities, with 2D, astigmatism and 
double-helix PSF-based imaging modalities.

DECODE achieves an average efficiency score of 66.6% out of the 
best possible score of 100% (achievable only by a hypothetical algo-
rithm that accurately detects 100% emitters with 0 nm localization 
error). This is compared to an average score of 48.3 and 45.6% for 
all second and third place algorithms, respectively. The difference 
is particularly large under difficult imaging conditions, when high 
emitter densities and low SNR can conspire to make detection and 
localization challenging, particularly so for the double-helix PSF. 
For example, compared to the second-best algorithm (SMAP2018) 
in the low-SNR/high-density/double-helix condition, DECODE 
improves the localization error from 75.2 to 48.4 nm and the JI from 
30.0 to 67.5%.

DECODE enhances super-resolution reconstructions by 
improving both the detection and the localization of single mol-
ecules. An example of this can be seen in Fig. 3c, where we com-
pare the reconstruction obtained with DECODE and CSpline4 on 
a high-density 3D double-helix dataset (using settings provided by 
the authors, github.com/ZhuangLab/storm-analysis). Other deep 
learning-based approaches have not yet submitted their results. 
However, we performed comparisons to DeepSTORM3D on 
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low-SNR high-density training datasets and again achieved supe-
rior results (efficiency score of 51 against 32% on double helix and 
45 against 31% on astigmatism data, Supplementary Figs. 5 and 6). 
Thus, DECODE is setting new quantitative standards for localiza-
tion algorithms, across both low and high SNRs and densities.

Considerations. As with any fitter, DECODE relies on an accurate 
PSF model and proper parameters, otherwise artifacts will domi-
nate the predictions. When the localization uncertainty is large, for 
very dim and dense localizations far from the focal plane, DECODE 
has a bias toward predicting localizations close to the pixel center. 
This effect can be overcome by filtering out localizations with large 
predicted uncertainty, or by rendering every localization with a 
Gaussian the size of the localization uncertainty, effectively dispers-
ing these large uncertainty localizations over the pixel (Extended 
Data Fig. 8 and Methods).

DECODE reduces imaging times by one order of magnitude. 
By enabling accurate emitter localization at high densities of more 
than 2.5 μm−2 per frame (Fig. 2c), DECODE can yield high-quality 
super-resolution reconstructions with much shorter imaging times. 
We demonstrate this by imaging and reconstructing the same 
sample of labeled microtubules at four different activation laser  

powers using STORM (stochastic optical reconstruction micros-
copy)2,3. This results in different emitter densities per frame between 
0.08 and 0.86 μm−2. The imaging time was chosen to result in the 
same number of total localizations and decreased from 1,120 to 460 
and 250 and 93 s for stronger activation.

We trained and applied one common DECODE model to all 
four datasets (Fig. 4a). Whereas CSpline reconstructions quickly 
degrade with high emitter densities, DECODE consistently yields 
reconstructions with high accuracy even for the densest sample. 
We quantified the lateral resolution using Fourier Ring Correlation 
(FRC)25, which estimates resolution by measuring the correlation 
of two different reconstructions of the same image across spatial 
frequencies. DECODE consistently improves the x,y resolution by 
20–30 nm over CSpline across all imaging densities (Fig. 4b,c) while 
detecting around 30% more localizations.

DECODE enables fast live-cell SMLM with reduced light expo-
sure. Fast imaging is especially relevant for live-cell SMLM where 
the dynamics of the biological system under investigation dictate 
the necessary time resolution. At the same time, fast imaging usu-
ally requires high laser powers, deteriorates resolution26 and leads to 
substantial phototoxicity27. As DECODE allows activating emitters 
to high density, it enables faster imaging with decreased light dose 
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for a given number of localizations. We were able to image dynamic 
changes of the Golgi apparatus (Fig. 4d) and the endoplasmic retic-
ulum (Fig. 4e) with 7.5 s temporal resolution. We imaged nuclear 
pore complexes in living cells28 within only 3 s (Fig. 4f), seven times 
faster than our previous speed-optimized live-cell SMLM26 and with 
a 70% reduced light dose.

DECODE enables ultra-high labeling densities. Labeling densities 
in SMLM are fundamentally limited by the fraction of emitters that 
are in the bright state. For the best performing fluorophore Alexa 
Fluor 647, even without ultraviolet activation about 0.05% of the 
emitters are in the bright state29 due to activation by the red imaging 
laser and spontaneous activation. For the single-emitter blinking 
regime (activated emitter density <0.1 μm−2), this limits the number 
of total emitters to about 200 μm−2. For higher labeling, prebleach-
ing can be used to reduce the number of emitters to this regime, 
but the resulting low labeling limits the resolution19 and in the 
super-resolution reconstructions sparse individual emitters become 
dominant (Fig. 4g). With DECODE, we can now image densely 
labeled samples that previously were inaccessible. We demonstrated 
this on immunolabeled microtubules that were labeled about five-
fold higher than compatible with single-emitter fitting, resulting  
in much smoother and denser decoration of the microtubules  
(Fig. 4g). In 50-nm-thick orthogonal reconstructions, only the densely  
labeled microtubules were resolved as hollow cylinders, whereas 
after prebleaching to single-emitter blinking, these reconstructions 
only showed individual emitters (Fig. 4g(iii)(iv)). Additional com-
parisons with DeepSTORM3D highlight that the superior output 
representation and loss function of DECODE are critical to reach 
the optimal resolution for this dataset (Extended Data Fig. 5).

DECODE enables high fidelity reconstructions of 3D LLS PAINT. 
To illustrate the general applicability of DECODE, we applied it 
to 3D LLS microscopy combined with the PAINT technique19. In 
PAINT microscopy, the fluorophore labeling a sample stochastically 
binds and unbinds from the sample, providing dense labeling. In 
LLS microscopy, thick volumes are imaged at high resolution by 
scanning a thin (1.1 μm) light sheet, with axial localization within 
the sheet enabled by astigmatism.

Single-molecule localization in LLS PAINT is usually performed 
frame-wise using MLE fitting30. However, an emitter is visible in 
several adjacent z planes in the volumetric dataset. Thus, similar to 
exploiting the temporal context, we now use the same spatio-temporal 
context by analyzing three adjacent frames in the z stack at the same 
time to improve detection accuracy and localization error.

We reconstructed a previously reported dataset of a chemi-
cally fixed COS-7 cell with intracellular membranes labeled by 
azepanyl-rhodamine (AzepRh)19,30 consisting of 70,000 3D volumes 
comprising more than 10 million 2D images acquired in 270-nm 
steps. DECODE detected 500 million emitters, compared to 200 
million emitters detected by the original algorithm. Thus, for a 
comparable quality of the reconstruction, only half of the frames are 
needed, reducing imaging times by over a day from 2.7 to 1.35 days 
(Extended Data Fig. 7). At the same time, improved accuracy of 
DECODE results in sharper reconstructions (Fig. 5).

Discussion
We presented DECODE, a new deep learning-based method for 
single-molecule localization that performs exceptionally well on 
dense 3D data. DECODE differs from traditional localization algo-
rithms by simultaneously performing detection and localization of 
emitters. It can be used in a flexible and general manner for a wide 
range of imaging parameters (including arbitrary PSFs and noise 
models) and imaging modalities such as 3D LLS PAINT imaging. In 
a publicly available benchmark challenge, it is the best performing 
algorithm in every condition, and often improves both localization 

and detection accuracy by a large margin. By making use of the tem-
poral context, DECODE improves detection accuracy and localiza-
tion error of emitters that are active across multiple imaging frames. 
Temporal context is also used by postprocessing steps in SMLM 
relying on ‘merging’ or ‘grouping’ of localizations, in which localiza-
tions occurring in consecutive images that are closer to each other 
than a fixed threshold are assumed to belong to the same emitter 
and their coordinates are averaged, weighted by the uncertainty of 
each localization. However, grouping does not improve detection of 
emitters, and it fails for dense or dim emitters whose localizations 
cannot be linked unambiguously across frames.

DECODE not only predicts coordinates of emitters, but also 
their uncertainty. This is highly useful for filtering out imprecise 
localizations, for reconstruction of super-resolution images in 
which every localization is rendered as a Gaussian with a size pro-
portional to the coordinate uncertainty and as weights for quantita-
tive coordinate-based analysis of SMLM data.

We demonstrated the performance of DECODE on various 
experimental SMLM datasets. We could show that the excellent 
performance on high-density data can increase the achievable local-
ization density or decrease imaging times by one order of magni-
tude. This allowed us to perform live-cell measurements on nuclear 
pore complexes with high temporal resolution and reduced light 
exposure, and to achieve ultra-high labeling on microtubules. LLS 
PAINT data analyzed with DECODE showed markedly improved 
resolution due to substantial improvements in emitter detection and 
localization error.

Prediction of coordinates with DECODE can be as fast as 
GPU-based MLE fitters for sparse activation, but greatly outper-
forms those for high densities, as the computational complexity of 
DECODE depends only on the size of the image and not the num-
ber of emitters in each imaging frame. However, it requires the 
training of a new neural network whenever the optical properties 
of the microscope change. This training can currently take over 
10 h on a single GPU, but after just 2 h of training time, the local-
ization error is within 1 nm and the JI within 2% of the final value 
(Extended Data Fig. 10). To reduce training times further, one can 
likely take an existing network and fine-tune its parameters using a 
smaller number of simulations, rather than training it from scratch. 
Ultimately, it may be possible to train a single network across mul-
tiple parameter settings or even PSFs, so that the same network 
can ‘amortize’ inference across multiple experimental settings. To 
make DECODE easily usable by the entire community, we distrib-
ute it as a Python-based open-source software package based on 
the PyTorch31 deep learning library. We provide precompiled, easily 
installable code, along with detailed tutorials and integration into 
the SMAP SMLM analysis software32. To enable anyone to directly 
use DECODE for training and prediction without relying on pre-
vious programming knowledge and dedicated local hardware, we 
deploy these Jupyter notebooks in Google Colab, complement-
ing a recent initiative to make deep learning-based image analysis 
tools accessible to nonexperts at minimal cost33. Thus, DECODE 
will enable a large community to directly perform SMLM in a new 
high-density regime with greatly increased imaging speeds or local-
ization densities and excellent localization and detection accuracy.
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Methods
DECODE network architecture for probabilistic single-molecule detection and 
localization. Our architecture consists of two stacked U-nets20 (Extended Data 
Fig. 1), each with two up- and downsampling stages and 48 filters in the first stage. 
Each stage consists of three fully convolutional layers with 3 × 3 filters. In each 
downsampling stage, the resolution is halved, and the number of filters is doubled, 
vice versa in each upsampling stage. Upsampling is performed using nearest 
neighbor interpolation to avoid checkerboard artifacts34. For multiframe DECODE, 
three consecutive frames are processed by the first frame analysis U-net (with 
parameters shared for every frame), and the outputs are concatenated and passed 
to the second temporal context U-net. The entire DECODE network is always 
trained end-to-end by gradient descent.

For each camera pixel k, the DECODE network predicts (1) a Bernoulli 
probability map pk that an emitter was detected near that pixel, (2) the coordinates 
of the detected emitter Δxk, Δyk, Δzk relative to the center of the pixel xk, yk, zk,  
(3) a nonnegative emitter brightness (‘photon count’) Nk and (4) the uncertainties 
associated with each of these predictions, σx,k, σy,k, σz,k, σN,k. For each of these 
outputs, we use two additional convolutional layers that follow the second U-net. 
We used the exponential linear unit activation function35 for all hidden units, 
and the logistic sigmoid nonlinearity for the nonnegative detection probability 
p, brightness N and the uncertainty outputs σx, σy, σz, σN (scaled by a prefactor 
of three). For the coordinate outputs Δx, Δy, Δz we use the hyperbolic tangent 
nonlinearity, which limits their range to [−1,1] (that is, to twice the size of a pixel). 
This way, even though the network can at most predict one emitter per pixel, 
when necessary, the neighboring pixels can each contribute to place multiple 
localizations within a single pixel.

New loss function for simultaneous detection, localization and uncertainty 
estimation. Given a set of E simulated emitters active in each imaging frame with 
locations for each emitter e given by xe, ye, ze and brightness Ne, and a background 
image map Bk simulated as described below, we developed a loss function that 
trains the DECODE network to detect the correct number of emitters, to predict 
the subpixel localization and brightness for each detection (along with the 
uncertainty), and to predict the image background. Our loss function is a sum of 
three terms: a count loss Lcount, a localization loss Lloc and a background loss Lbg,

L = Lcount + Lloc + Lbg. (1)

The count loss Lcount is a function of the detection probability map pk 
with K total pixels and the total number of true emitters E. Interpreting pk as a 
Bernoulli detection probability for a single-emitter, we can compute the mean 
and variance of the predicted total number of emitters detected, if we were to 
independently sample binary detections from each pk. While the predicted count 
distribution P(E∣{pk}) over the number of emitters detected by this Bernoulli 
sampling procedure follows an intractable Poisson binomial distribution, we can 
approximate this predicted distribution as a Gaussian distribution,

P(E|{pk}) ≈ P(E|μcount, σ
2
count) =

1√
2πσcount

exp
(
− 1
2
(E − μcount)

2

σ2
count

)
. (2)

The mean of a sum of Bernoulli random variables is the sum of the means 
μcount =

∑K
k=1 pk, and the variance is the sum of the variances of each 

independent Bernoulli random variable σ2
count =

∑K
k=1 pk(1 − pk). This count 

loss maximizes the log probability of the true number of emitters E under the 
Gaussian approximation of the predicted count probability distribution. This loss 
is minimized when μcount correctly matches E, sparsely predicting only one nonzero 
pk per detected emitter, and when σ2

count is small, which happens when pk are 
confident and so nearly binary,

Lcount = −log P(E|μcount, σ
2
count) =

1
2
(E − μcount)

2

σ2
count

+ log
(√

2πσcount
)

. (3)

The localization loss Lloc is a function of the true emitter locations, and the 
predicted detection probability map, and the subpixel localizations Δxk, Δyk, Δzk, 
brightness Nk, along with the associated uncertainties σx,k, σy,k, σz,k, σN,k for each 
detected emitter. For each pixel k, we predict a four-dimensional Gaussian 
distribution P(uk|μk, Σk) over the absolute position and brightness of an emitter 
u = [x, y, z, N] detected in pixel k corresponding to the mean and uncertainty 
in the subpixel localization and brightness of the emitter detected in pixel k, 
with mean μk = [xk + Δx, yk + Δyk,Δzk, Nk] and diagonal covariance matrix 
Σk = diag(σ2

x,k, σ2
y,k, σ2

z,k, σ2
N,k),

P(u|μk, Σk) =
1

√

(2π)4 det(Σk)
exp

(

− 1
2
(μk − u)⊤Σ−1

k (μk − u)
)

. (4)

Here, the xk, yk and zk are the absolute coordinates for the center of pixel k, 
so xk + Δxk corresponds to the absolute coordinates of the emitter to subpixel 
precision. We note that the localization loss defined below ignores the predicted 
localization and brightness for pixels where no emitter is detected, that is pk is zero.

At any given point in training, the true number of emitters will not necessarily 
match the detected number of emitters perfectly, and we will not have a perfect 
correspondence between predicted emitters and true emitters. A full probabilistic 
loss function would sum over all possible assignments of true emitters to detected 
emitters to correctly evaluate P(u|μk, Σk). And since pk will not necessarily be 
sparse, the correct cost function would include an intractably large sum over 
( K
E
)

 terms. We approximate this by constructing a Gaussian mixture model over 
the predicted per pixel distributions P(uk|μk, Σk) with mixture weights equal to 
pk/

∑K
j=1 pj where the denominator is a sum of the detection probability over all 

pixels in the image.
The resulting approximation leads to the following localization loss function, 

which maximizes the probability of the true absolute coordinates and brightness 
of each ground-truth emitter uGTe  under the weighted mixture of per pixel 
probabilities,

Lloc = − 1
E

E
∑

e=1
log

K
∑

k=1

pk
∑

jpj
P(uGTe |μk, Σk). (5)

The background loss Lbg computes the simple squared error between the 
predicted and true background maps,

Lbg =

∑

k
(BGT

k − Bpred
k )

2. (6)

Obtaining localizations and postprocessing. The DECODE network predicts the 
probabilities pk of an emitter being located at a specific pixel k. To get deterministic, 
fast and precise final localizations we use a variant of spatial integration. A 
detection is considered at pixel k if one of two conditions is met. (1) pk > 0.6. 
(2) pk > 0.3 and it is a local maximum of a four-connected neighborhood. These 
candidates are then registered as detections if the cumulative probability of pk and 
its four nearest neighbor pixels is >0.7. Therefore, if the network predicts high 
confidence detection probability (>0.6) in two adjacent pixels, two emitters will 
be considered to be detected. However, if a cluster of pixels has low predicted 
probability, their probabilities will be clustered toward the local maximum, if the 
local maximum has probability >0.3, and an emitter will be considered to have 
been detected if the integrated probabilities of the cluster are >0.7. The algorithm 
can be expressed purely in the form of pooling and convolution operations and 
therefore runs efficiently on a GPU.

For difficult imaging conditions when the predicted localization uncertainties 
are large, that is high densities, low-SNR values, and large offsets from the focal 
plane, the subpixel coordinates Δx, Δy and Δz can be biased toward the center of 
the pixels (Extended Data Fig. 8). This is because with large predicted localization 
uncertainty, the predicted mean location is poorly constrained. This bias toward 
zero (pixel center) scales with the uncertainty of the predictions and can produce 
artifacts in the reconstructed image depending on how the reconstruction is 
performed. If a reconstruction uses only the coordinates while ignoring the 
uncertainty, poorly localized emitters will cluster toward the pixel centers. A more 
expensive rendering procedure that renders a Gaussian localization distribution 
with variance proportional to the estimated uncertainty corresponding to each 
emitter will reduce the impact of this artifact since the bias is usually small 
relative to the localization uncertainty. Also, filtering out localizations with high 
uncertainty removes this artifact (Extended Data Fig. 8).

Simulating training data. Training samples are continuously generated in an 
asynchronous fashion and each frame is only used once as a target. For this reason, 
the network cannot overfit to specific frames. The performance of our approach 
will depend on an accurate generative model and could show reduced performance 
when there is a mismatch between the simulated and experimental data. Thus, we 
developed a realistic model for the image formation process that incorporates dye 
blinking behavior, a realistic PSF model and realistic camera read noise.

Structural prior. While incorporating prior structural information has shown to be 
beneficial36,37, there are concerns that these priors could potentially bias the model 
to the training data, which could result in the presence of misleading structures 
after the fitting procedure. We therefore sample the coordinates of the emitters 
from a 3D homogeneous spatial Poisson point process distribution with density as 
specified in the text, limits corresponding to the size of the image and the z range 
for which the PSF was calibrated.

Photophysical prior. In contrast to previous work, DECODE can directly 
incorporate temporal context into the detection and localization of emitters, rather 
than as a postprocessing step. We simulate the temporal dynamics of emitters, 
at least over the short time scale of three imaging frames corresponding to the 
temporal context of the DECODE network.

For each emitter, the time of initial appearance t0 is sampled from a continuous 
random distribution. The on-time of the emitter follows an exponential 
distribution parametrized by λ. For each emitter, we draw a photon flux from a 
Gaussian distribution N(μflux, σflux). Together with the amount of time the emitter 
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is active in each frame, this determines the total number of photons emitted in a 
frame. Since the input to our model is only a window of three frames, we argue 
that it is not necessary to model long range temporal correlations that are part of 
a more detailed photoactivation model38, such as an emitter in the dark state that 
reappears many frames later. The aforementioned parameters are estimated by a 
prefit procedure as described in Estimating simulation parameters.

Point spread function. The PSF is a fundamental characteristic of a microscope, 
specifying the image formed by a single point emitter, and we approximate it to 
be spatially invariant across the field of view. Given the object O(r) in the object 
plane, and PSF(r), the image I(r) results in

I(r) = O(r) ⊛ PSF(r), (7)

where ⊛ denotes the convolution operator. While Gaussian approximations of 
the PSF are frequently used for both 2D and 3D5,6 data, (cubic) spline functions 
have been shown to achieve more accurate results and can mimic almost arbitrary 
PSFs4,23. Following Li et al.23 and Babcock et al.4 a 3D PSF can be modeled as

fi,j,k(x, y, z) =

3
∑

m=0

3
∑

n=0

3
∑

p=0
ai,j,k,m,n,p

( x − xi
dx

)m( y − yj
dy

)n( z − zk
dz

)p
, (8)

where i, j, k are the voxel indices, dx, dy are the pixel sizes; dz is the step size in 
the axial dimension; xi, yj, zk are the corner coordinates of the voxel (i, j, k) in the 
respective directions and ai,j,k,m,n,p are the respective spline coefficients, which 
amounts to 64 coefficients per pixel and per z slice. In a bead calibration routine, 
the coefficients ai,j,k,m,n,p are estimated and account for varying experimental 
conditions. Because of the simple form of equation (8), the CRLB with respect to 
the fitting parameters x, y, z can be calculated easily as the diagonal elements of the 
inverse of the Fisher information matrix22.

Camera model. All real datasets presented in this work were recorded with an 
electron multiplying charge-coupled device (EMCCD) camera, with the exception 
of the LLS data that were recorded with an sCMOS camera. The measured camera 
signal is subject to various noise sources, which we will discuss in the following:

Shot noise originates from the stochastic nature of photons when interacting 
with the camera chip. The expected number of detected electrons is

λk = λ0,k · QE + cs. (9)

Here, λ0,k is the expected number of photons that are collected in pixel k, QE 
is the quantum efficiency, and cs the spurious charge, measured in electrons. 
The probability pshot(sk) of observing the signal sk in pixel k follows a Poisson 
distribution,

pshot(sk) =
λ
sk
k e

−λk

sk!
. (10)

EMCCD amplification noise stems from the amplification of photo electrons 
that pass through the gain register and stochastically generate additional electrons. 
For our EMCCD camera noise model, we follow Huang et al.39. EMCCD 
amplification noise can be described approximately by a Gamma distribution,

ρEM(x|sk, θ) =
1

Γ(sk)θsk x
sk−1e−

x
θ . (11)

ρEM(x∣sk, θ) denotes the probability that sk input photo electrons in pixel k with 
an electron multiplying gain of θ create x output electrons after the gain register.

Read noise stems from the process of converting electrons into a digital signal. 
In this process, the signal is usually multiplied by a gain factor g and an offset o is 
added to avoid negative signal. In this work, we convert the input camera image 
to photon units before inference by subtracting o and dividing by g. In addition, 
when using EMCCD cameras we divide by the electron multiplying gain θ, thus the 
units of the read noise are photo electrons. We approximate the read noise (both 
for sCMOS and EMCCD cameras) by a zero mean additive Gaussian distribution 
with variance σ2,

ρread

(

x|0, σ2
)

=
1√
2πσ2

e−
x2

2σ2 . (12)

Training details. Training was performed on 40 × 40 pixel-sized regions that are 
directly simulated or randomly selected from larger simulated images at each 
iteration. We used the AdamW optimizer40 with a group learning rate of 6 × 10−4 
for the network parameters. We reduce the learning rate by a factor of 0.9 after 
every 1,500 iterations with a batch size of 64. To stabilize training, we use gradient 
norm clipping with a maximum norm of 0.03.

Very dim emitters with less than 50 photons are excluded from the 
ground-truth targets (but still rendered) so that the network is discouraged to 
make predictions for practically invisible emitters.

Estimating simulation parameters. For training DECODE, a proper parametrization 
of the simulation is needed to match the real data distribution. In a prefitting 
step, the main parameters, that is the emitter on-time, emitter brightness 
and background, can be determined. The prefitting can be performed with a 
single-emitter MLE fitter after filtering the log-likelihood value to exclude data 
from overlapping PSFs. This step is incorporated in the SMAP software for the sake 
of ease of use32. We observed that the precise values of the simulation parameters 
of the emitters’ photophysics (that is, lifetime and brightness) and density are not 
crucial, as the stochastic nature of the emitters’ positions, brightness levels and 
appearance times presents the network with data that match the real experiments 
under different conditions and effectively covers a broad range of these parameters.

The camera parameters are usually given by the manufacturer.
The given network architecture and training parameters are effective across 

different real and simulated datasets and in our experience do not have to be 
optimized by the end user.

Evaluating localization error and reconstruction resolution. To evaluate 
performance on the challenge datasets, as well as our own simulations, we use two 
metrics.

First, instead of the Euclidean distance, we use the localization error, measured 
in nm, which is the r.m.s.e. averaged over the dimensions:

r.m.s.e.d =

(

1
TP

TP
∑

i=1

d
∑

k=1

(xi,k − xGTi,k )
2/d

)1/2

(13)

TP is the number of localizations that are matched to ground-truth (GT) 
coordinates, d is the dimension (two for 2D data, three for 3D data), xk = x, y, z are 
the predicted coordinates and xGTk = x, y, z the ground-truth coordinates.

Second, the detection accuracy or JI, which quantifies how well an algorithm 
does at detecting all the emitters while avoiding false positives:

JI = TP/(FN + FP + TP) (14)

TP are the true positives, FN the false negatives and FP the false positives.
Localizations are matched to ground-truth coordinates when they are within a 

circle of 250 nm radius and the distance in z is less than 500 nm. As a single metric 
that evaluates the ability to reliably infer emitters with high precision, we use the 
efficiency metric as defined in ref. 7:

E = 1 −
√

(1 − JI)2 + α2d · r.m.s.e.2d (15)

Lateral and axial efficiency are calculated based on r.m.s.e.2 and r.m.s.e.1 with 
alpha values of α = 1 × 10−2 and α = 0.5 × 10−2 nm−1, respectively and then averaged 
to obtain the overall efficiency. Detection accuracy is expressed in units of 0 to 1 
(or 0–100%), the efficiency ranges up to 1 (or 100%) for a perfect fitting algorithm.

The Fourier ring correlation25,41 (FRC) in Fig. 4a was calculated by dividing the 
data in ten blocks of equal number of frames and constructing super-resolution 
images from even and odd blocks (pixel size 5 nm).

Simulating data for performance evaluation. To simulate data for performance 
evaluation and comparison shown in Fig. 2, we assumed an ideal camera without 
EMCCD or read noise and an image size of 64 × 64 pixels. We used the PSF model 
that was acquired for the dataset in Fig. 4a. Data used to test the effect of the SNR 
and density were simulated using the structural and photophysical prior previously 
described with an average on-time of two frames. Precise simulation parameters 
can be found in Supplementary Table 1.

The CRLB is evaluated as the diagonal elements of the inverse of the Fisher 
information matrix22 with the simulated parameters and spline interpolated 
experimental PSF model and was calculated with the SMAP software32. A bootstrap 
estimate (N = 10,000) of the r.m.s.e. was used to estimate the s.e.m. on the 
localization error.

Sample preparation and localization microscopy. See Supplementary Note for 
details on sample preparation and localization microscopy.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data can be downloaded from https://doi.org/10.25378/janelia.14674659. Raw 
data and bead frames are available for Figs. 2a–e and 4a–h and Extended Data 
Figs. 2, 3, 4a, 5 and 8. Localizations and performance metrics (for DECODE and 
CSpline/DeepSTORM3D when applicable) are available for Figs. 2a–e, 4a–h and 5 
and Extended Data Figs. 2, 3, 4a, 7 and 8. The parametrization of the simulation for 
Fig. 2a–e is available and can be used to generate data. Raw data and bead frames, 
as well as performance metrics for Fig. 3. are publicly available at http://bigwww.
epfl.ch/smlm/challenge2016/. Raw data and bead frames for Fig. 5 and Extended 
Data Fig. 7 are available on request from the authors of ref. 30. All other data 

NATURe MeTHODS | www.nature.com/naturemethods



ArticlesNaturE MEtHODS

supporting the findings of this study are available from the corresponding authors 
upon reasonable request. Source data are provided with this paper.

Code availability
DECODE is available as Supplementary Software. Updated versions can be found 
at https://github.com/TuragaLab/DECODE.
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Extended Data Fig. 1 | Architecture. The DECODE network consists of two stacked U-Nets20 with identical layouts (the three networks depicted on the left 
share parameters). The frame analysis module extracts informative features from three consecutive frames. These features are integrated by the temporal 
context module. Both U-Nets have two up- and downsampling stages and 48 filters in the first stage. Each stage consists of three fully convolutional 
layers with 3 × 3 filters. In each downsampling stage, the resolution is halved, and the number of filters is doubled, vice versa in each upsampling stage. 
Blue arrows show skip connections. Following the temporal context module three output heads with two convolutional layers each produce the output 
maps which have the same spatial dimensions as the input frames. The first head predicts the Bernoulli probability map p, the second head the spatial 
coordinates of the detected emitter Δx, Δy, Δz and its intensity N and the third head the associated uncertainties σx, σy, σz, σN. An optional fourth output 
head can be used for background prediction.
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Extended Data Fig. 2 | Impact of grouping across grouping radius for different averaging weights. Predictions in consecutive frames are grouped when 
they are closer to each other than the given grouping radius. A grouping radius of 0 nm corresponds to not performing any grouping. Predictions within 
a group are assigned a common set of emitter coordinates which is calculated as weighted average of their individual coordinates. We compare three 
different options for the weighted average: Uniform weighting (‘None’, solid lines); Weighting by the inferred number of photons for CSpline and DECODE 
or the inferred confidence for DeepSTORM3D (‘photons’, dotted line); Weighting by the predicted DECODE σ values, where the x,y and z values are 
individually weighted by σ−2

x,y,z. a, b): 3D efficiencies across grouping radii. Grouping is especially useful in the low density setting (a) where DECODE 
without temporal context (DECODE single) with a correctly set grouping radius can match the performance of DECODE with temporal context (DECODE 
multi) without grouping. This is, however, only the case when weighting by the uncertainty estimates that DECODE provides. Using grouping on top of 
DECODE multi offers little additional benefit. c, d): Number of groups divided by the number of localizations. Detecting all emitters and correctly grouping 
them would result in a ratio of 1:3 as on average each emitter is visible in three consecutive frames. See methods and Supplementary Table 1 for additional 
details on training and evaluation.
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Extended Data Fig. 3 | Comparison of performance metrics across densities and SNRs. DECODE outperforms DeepSTORM3D and CSpline across 
densities and SNRs. See methods and Supplementary Table 1 for additional details on training and evaluation.
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Extended Data Fig. 4 | Comparison of localization error and CRLB for single-emitter fitting. The r.m.s.e. achieved by DECODE and its predicted σ values 
closely match the single emitter CRLB in every dimension. CSpline is also able to achieve the CRLB, which has been shown for iterative MLE fitters before. 
In contrast the resolution that DeepSTORM3D can achieve is limited by its output representation and the size of the super-resolution voxels. a): Data 
simulated with high SNR (20,000 photons) and random z. r.m.s.e. and DECODE σ averaged over 10 nm bins. b): Data simulated with fixed z (0 nm) and 
varying SNR levels. See methods and Supplementary Table 1 for additional details on training and evaluation.
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Extended Data Fig. 5 | Comparison of reconstruction quality on experimental STORM data. Reconstructions by DECODE and the DeepSTORM3D on a 
subset of data shown in Fig. 4g. Histograms show within pixel distribution of localizations in x and y as well as the z coordinate in nm. DeepSTORM3D has 
4 significant peaks in the subpixel distribution, corresponding to the fourfold upsampling it uses for its network output. These are visible as grid artifacts in 
the reconstructions. In contrast the DECODE localizations are evenly distributed and no artifacts are visible. Scale bars 0.5 μm.
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Extended Data Fig. 6 | Comparison of computation times. a) Measured as the time it takes to analyze a 64 × 64 pixel frame with varying emitter 
densities. Trained DECODE and DeepSTORM3D models were evaluated using a NVIDIA RTX2080Ti GPU. Computation time includes the network 
forward pass and postprocessing and does not include training time. CSpline was evaluated on an Intel(R)Xeon(R) CPU E5-2697 v3. b) Computation time 
per simulated emitter. The computation time of CSpline scales with the number emitters while the two deep learning based approaches scale with the 
number (and size) of the analyzed frames. GPU-based DECODE is about 20 times faster than GPU-based DeepSTORM3D and outperforms CPU-based 
CSpline even at low densities.
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Extended Data Fig. 7 | DeCODe reduces acquisition times in LLS-PAINT. DECODE reconstruction of 35,000 frames (a) results in the same number of 
localizations as the Standard reconstruction of 70,000 frames (b). As DECODE detects twice as many localizations as the traditional analysis, it needs 
only approx. half of the frames for a high-quality reconstruction.
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Extended Data Fig. 8 | Removing Pixelation artifacts. Dim, dense out-of-focus localizations have a bias towards the pixel center (a,c). This is apparent as 
a non-uniform distribution of the sub-pixel positions in x and y (bottom row). This bias is not visible if every localization is rendered as a Gaussian with a 
standard deviation equal to the predicted uncertainty s (b,g). Filtering according to the detection probability reduces the artifact (d). Filtering according to 
the predicted uncertainty σ (f) or the fluorophore z-position (e) also removes the pixelation artifact. Scale bars 10 μm (a,b) and 1 μm (c-g). The overview 
images (a,b) are rendered with a pixel size of 10 nm, the zoom-ins (c-g) with a with a pixel size of 4 nm. The camera used to record the data has a pixel size 
of 117 × 127 nm.
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Extended Data Fig. 9 | Performance as a function of deep network training time. Convergence of the accuracy of DECODE for several performance 
metrics. Runtimes are measured on a single nVidia RTX 2080 Ti GPU. The estimated training achievable with the maximum of 12 hours possible on the 
free tier of Google Colab is shown in green range (assuming that a Google Colab GPU is 2 × − 4 × slower than the nVidia RTX 2080 Ti GPU). This suggests 
that acceptable performance is achievable using DECODE and Google Colab at minimal cost, no GPU needed. Metrics evaluated for prediction > 0.5 
detection probability estimate without sigma filtering. Training data was simulated at high SNR (as described in Fig. 2c) at an average density of 1 μm−2.
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Extended Data Fig. 10 | DeCODe provides accurate background and signal predictions. Shown on simulated data with inhomogeneous background of 
various length scales. First row: sample frames. Second row: background values simulated using Perlin noise42. Third row: background values inferred by 
a DECODE network that was trained on 40 × 40 pixel sized simulations with uniform background. Fourth row: Scatter plot of inferred photon counts over 
simulated photon counts. Scale bars are 10 μm.
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1 Comparison with DeepSTORM3D and CSpline
For both methods we used the software provided by the authors. For the DeepSTORM3D comparison instead of using their
PSF fitting procedure and generative model we sampled ground truth coordinates and training images using our model so that it
exactly matches the simulated test data. To minimize possible effects of overfitting we generated 22,500 images with a size of
121×121 pixels (22k for training and 500 for validation). DeepSTORM3D uses a fourfold super-resolved grid in the x− y
dimensions and we chose discretization of 15nm in z. As the camera we emulate in these experiments has a pixel size of 120nm,
each voxel of the output representation has a size of 30×30×15nm. For DECODE (with and without temporal context), and
DeepSTORM3D we trained six networks each on training data generated with average emitter densities of 0.65 and 2.17µm−2

as well as low, medium and high SNRs (1000, 5000 and 20,000 average photons). We used the low density network for
the CRLB evaluation (Fig. 2a, Extended Data Fig. 4) and the simulated data with densities between 0.04 and 2.4µm−2 (Fig
2c,d, Extended Data Fig. 3) and the high density networks for densities between 2.4 and 5.6µm−2. DeepSTORM3D has
two hyperparameters that control the post-processing and determine the balance between recall and localization error. We
performed a sweep over combinations of radius = [5,6,7,8,10] and threshold = [5,8,12,20,30,40] and picked the values that
maximized the efficiency score on the validation data for each of the six networks. We discovered and fixed a bug in the
DeepSTORM3D post-processing software which led to poor localizations. All DeepSTORM3D results were reported with the
fixed post-processing algorithm.

For the CSpline comparison we created a bright artificial bead with 500k photons using our PSF model, which we used to
generate the CSpline PSF model. The most critical settings are the find-max-radius and threshold, which we again optimized by
sweeping over values find-max-radius = [2,3,4,5], threshold = [6,7,8,9,10] to maximize efficiency for each of the three SNRs on
data generated with an average emitter density of 0.9 µm−2.

2 DECODE for LLS-PAINT microscopy

A DECODE model for lattice light sheet point accumulation for imaging of nanoscale topography (LLS-PAINT) microscopy1

was trained by simulating the imaging of an angled light sheet being swept through a volume. This leads to the same emitter
appearing with fixed shift in the x and z coordinates relative to the imaged plane between consecutive camera frames. The
offset in emitter coordinates from frame to frame are given by the microscope geometry as described in2. We simulated data
with a high emitter density of 1µm−2 to match the densities seen in LLS-PAINT.

We analyzed a large dataset corresponding to a fixed COS-7 cell with intracellular membranes labeled with azepanyl-rhodamine
(AzepRh) described in Legant et al.2. Over a period of 2.7 days (64.8 hours), LLS-PAINT imaging yielded 70,000 3D volumes
comprising more than 10 million 2D images. Significant non-uniform swelling of the sample was observed over the course of
the imaging, which was approximately corrected by non-rigid registration in Legant et al.2. We applied the same correction
transformation estimated by Legant et al.2 to DECODE localizations.

We introduced an additional simulation-free training step and loss function to the training of the LLS-PAINT DECODE network
based on the Re-weighted Wake Sleep algorithm3 for training variational autoencoders (VAE)4, 5. This form of auto-encoder
learning allowed us to further optimize the parameters of the PSF and improve the background predictions based on the real
data, as opposed to the simulation.

3 Sample preparation
Sample seeding
Before seeding of cells, high-precision 24mm round glass coverslips (No. 1.5H, catalog no. 117640, Marienfeld) were cleaned
by placing them overnight in a methanol:hydrochloric acid (50:50) mixture while stirring. After that, the coverslips were
repeatedly rinsed with water until they reached a neutral pH. They were then placed overnight into a laminar flow cell culture
hood to dry them before finally irradiating the coverslips by ultraviolet light for 30min. Cells were seeded on clean glass
coverslips 2 days before fixation to reach a confluency of about 50 to 70 % on the day of fixation. They were grown in growth
medium (DMEM; catalog no. 11880-02, Gibco) containing 1× MEM NEAA (catalog no. 11140-035, Gibco), 1× GlutaMAX
(catalog no. 35050-038, Gibco) and 10% (v/v) fetal bovine serum (catalog no. 10270-106, Gibco) for approximately 2 days at
37 ◦C and 5% CO2.

Transfection
The plasmids encoding calnexin (Addgene plasmid #57445; http://n2t.net/addgene:57445; RRID:Addgene 57445) and α-
mannosidase II (Addgene plasmid #57467; http://n2t.net/addgene:57467; RRID:Addgene 57467) tagged on their C-termini
with mEos3.2 were gifts from Michael Davidson. The plasmids were isolated by midi-prep (catalog no. 12143; QIAGEN,
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Hilden, Germany) and transfected into U-2 OS cells using Lipofectamine™ 2000 (catalog no. 11668019; Thermo Fisher,
Waltham, MA, USA) according to the manufacturer’s instructions. Briefly, cells were seeded on coverslips as described in
the previous section, after 2 days the medium was replaced with OptiMEM™ (catalog no. 51985026, Thermo Fisher) and the
transfection solution was added dropwise. To prepare the transfection solution for 1 well (2mL of medium), in a first step
1µg of plasmid was added to 50µL of OptiMEM™ medium and 3µL of Lipofectamine™ were added to 50µL of OptiMEM™

medium, respectively. The two solutions were mixed individually by pipetting, incubated for 3min, and mixed together by
pipetting to constitute the transfection solution after further incubation for 5 to 10 min. After 24 h, the OptiMEM™ medium
was replaced by normal growth medium and the cells were grown for another 24 h before imaging.

Preparation of microtubule samples.
For microtubule staining, wild-type U-2 OS cells (ATCC HTB-96) were prefixed for 2min with 0.3% (v/v) glutaraldehyde in
cytoskeleton buffer (CB, 10mM MES pH 6.1, 150mM NaCl, 5mM EGTA, 5mM glucose, 5mM MgCl2) + 0.25% (v/v) Triton
X-100 and fixed with 2% (v/v) glutaraldehyde in CB for 10min. Fluorescent background was reduced by incubation with 0.1%
(w/v) NaBH4 in PBS for 7min. After the samples had been washed three times with PBS, microtubules were stained with
anti-α-tubulin (MS581; NeoMarkers, Fremont, CA, USA), and for ultra-high labeling (Fig. 4g) additionally with anti-β -tubulin
(T5293; Sigma-Aldrich), each diluted 1:50 in PBS with 2% (w/v) BSA, overnight. After being washed three times with PBS,
samples were incubated with anti-mouse Alexa Fluor 647 (A21236; Invitrogen, Carlsbad, CA, USA) 1:50 in PBS + 2% (w/v)
BSA for 6h. After being washed three times with PBS, samples were imaged in blinking buffer as described below. The holder
was sealed with parafilm.

4 Localization microscopy
Microscope setup
SMLM data were acquired on a custom built widefield setup described previously6, 7. Briefly, the free output of a commercial
laser box (LightHub, Omicron-Laserage Laserprodukte) equipped with Luxx 405, 488 and 638 and Cobolt 561 lasers and an
additional 640nm booster laser (iBeam Smart, Toptica) were coupled into a square multi-mode fiber (catalog no. M103L05).
The fiber was agitated as described in Ref. 8. The output of the fiber was magnified by an achromatic lens and focused
into the sample to homogeneously illuminate an area of about 700µm2. The laser was guided through a laser cleanup filter
(390/482/563/640 HC Quad, AHF) to remove fluorescence generated by the fiber. The emitted fluorescence was collected
through a high numerical aperture (NA) oil immersion objective (HCX PL APO 160×/1.43 NA, Leica), filtered with a 676/37
(catalog no. FF01-676/37-25, Semrock) bandpass filter (for imaging of Alexa Fluor 647) or with a 600/60 (catalog no.
NC458462, Chroma) bandpass filter (for live-cell imaging of mMaple and mEos3.2) on an EMCCD camera (Evolve 512,
Photometrics). Astigmatism was introduced by a cylindrical lens (f = 1.00m; catalog no. LJ1516L1-A, Thorlabs) to determine
the z coordinates of fluorophores. The z focus was stabilized by an infrared laser that was totally internally reflected off the
coverslip onto a quadrant photodiode, which was coupled into closed-loop feedback with the piezo objective positioner (Physik
Instrumente). Laser control, focus stabilization and movement of filters was performed using a field-programmable gate array
(Mojo, Embedded Micro). The custom microscope was controlled by Micro-Manager9 using the EMU plugin10. The pulse
length of the 405nm laser could be controlled by a feedback algorithm to sustain a predefined number of localizations per
frame.

Imaging conditions
Coverslips containing prepared samples were placed into a custom-built sample holder and 500µL of blinking buffer (50mM
Tris/HCl pH 8, 10mM NaCl, 10% (w/v) d-glucose, 500µgmL−1 glucose oxidase, 40µgmL−1 catalase, 35mM MEA) was
added for imaging of Alexa Fluor 647 samples.

For imaging of microtubules at different activation densities (Fig. 4a), we used an exposure time of 15ms and an excitation
intensity at 640nm of 15.5kWcm−2. We adjusted the UV pulse length to result in the desired density of activated fluorophores.
As we started with the highest density, by the time we imaged the lowest density a large fraction of the fluorophores was
bleached so that we could operate in the single-emitter regime.

For imaging microtubules with ultra-high labeling, we used an exposure time of 15ms and an excitation intensity at 640nm of
13.4kWcm−2 and no UV activation.

For live-cell imaging of Calnexin-mEos3.2 and MannII-mEos3.2 (Fig. 4d and e), the coverslips were washed briefly in PBS and
subsequently mounted in 50mM Tris/HCl pH 8 in 95% (v/v) D2O. The data were acquired with an exposure time of 15ms,
an excitation intensity of 22.6kWcm−2 for the 561nm laser, and a maximum intensity of 42 to 127 W cm−2 for the 405nm
laser. The pulse length of the 405nm laser was adjusted manually to maintain a high emitter density and to allow imaging of all
fluorophores in the field of view in about 1min.
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For the acquisition of live-cell data of Nup96-mMaple (Fig. 4f), coverslips containing Nup96-mMaple cells11 (catalog no.
300461; CLS Cell Line Service, Eppelheim, Germany) were rinsed twice with warm PBS before they were mounted in 1mL
growth medium containing 20mM HEPES buffer and imaged directly. During imaging, we used an excitation intensity at
561nm of 16.7kWcm−2 and a UV laser power of 80Wcm−2. The exposure time was 12ms and the pulse length of the UV
laser was automatically adjusted from 1 to 12 ms to keep the density of localizations constant.
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5 Supplementary figures
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Supplementary Figure 1. Comparison of inferred uncertainty and single emitter CRLB in each dimension for dense data.
DECODE’s σ predictions correlate closely to the measured localization error in each dimension, i.e. much better than the single emitter
CRLB estimate which assumes isolated emitters. We simulated the same dense emitter configuration 100 times and calculated the measured
localization error as the RMSE of the predictions of the coordinates. See Methods and Supplementary Table 1 for additional details on
training and evaluation.
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Supplementary Figure 2. Impact of filtering on localization error and detection efficiency. Each line corresponds to the two
performance metrics evaluated for DECODE multi predictions for a given density with 0% - 40% of the worst predictions removed (ordered
by the predicted DECODE σ ). As the DECODE σ are well calibrated they allow to effectively trade off detection accuracy for a lower
localization error. See methods and Supplementary Table 1 for additional details on training and evaluation.

6/11



a

Calnexin-mEos3.2

1

1

2

2
18

0 
fra

m
es

43
40

 fr
am

es

0 s 7.5 s 15 s 22.5 s 30 s 37.5 s

0 s 7.5 s 15 s 22.5 s 30 s 37.5 s
c

b

Supplementary Figure 3. Fast live-cell SMLM on the endoplasmic reticulum. a) Calnexin-mEos3.2 was imaged in U-2 OS cells and the
individual localizations were color-coded by the frame they were observed in. On the right, 2 regions (dashed boxes in the overview image)
are shown where dynamic changes could be observed during the time course of imaging. b) and c) Galleries of the two regions where in each
reconstruction, localizations from 500 frames are shown. Arrows indicate regions with dynamic changes. See Supplementary Movie 3 and
Supplementary Movie 4. Scale bars are 10 µm (overview image) and 1 µm (zoom-ins and galleries).
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Supplementary Figure 4. Background prediction. Scale bar 100 pixels. Depicted are raw input frame from the data set corresponding to
Fig. 4g (converted into photon units) and respective background prediction output of the model (rescaled into photon units).
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Supplementary Figure 5. Performance evaluation of DeepSTORM3D and DECODE on the SMLM 2016 high density, low SNR
training datasets with different modalities using the detection accuracy (Jaccard Index, JI, higher is better), localization error (lower is better)
and efficiency (higher is better) as metrics. Both algorithms were evaluated with and without grouping. For DECODE we trained one model
with (multi-frame, DECODE MF), and one without temporal context (single frame, DECODE SF). Even without temporal context, DECODE
SF is superior to DS3D in the accuracy of both detection and localization, highlighting the importance of our network architecture, output
representation, and loss function. Further improvements in DECODE performance come from temporal context.
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Supplementary Figure 6. Comparison of reconstruction quality on SMLM 2016 challenge data. Reconstructions by DECODE and the
DeepSTORM3D algorithm on the high density, low signal astigmatism (first two columns) and double helix (last two columns) challenge
training data. For each setting x-y view, color coded by z coordinate, and x-z reconstructions are shown. The cut-outs show how the
quantitative improvements given by the higher Jaccard and lower RMSE values of DECODE are reflected in better resolved details and less
spurious localizations. Scale bars are 1 µm.
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6 Supplementary tables

Figure Data density [µm−2] Train Density [µm−2] SNR DECODE filtering

Fig. 2a 1 emitter / frame 0.65 High None

Fig. 2b 3.00 2.17 Medium None

Fig. 2c 0.04 - 5.57 0.65, 2.17 Low, Medium, High None

Fig. 2d 0.19 - 5.57 0.65, 2.17 Medium None

Fig. 2e 0.04 - 5.57 0.65, 2.17 Medium NDECODE
emitter = NDeepSTORM3D

emitter

Ext. Fig. 2 0.08, 2.40 0.65, 2.17 Medium NDECODE
emitter = NDeepSTORM3D

emitter

Ext. Fig. 3 0.04 - 5.57 0.65, 2.17 Low, Medium, High NDECODE
emitter = NDeepSTORM3D

emitter

Ext. Fig. 4 1 emitter / frame 0.65 High None

Ext. Fig. 6 0.04 - 5.57 0.65, 2.17 Medium None

Ext. Fig. 10 1.04 0.65 Medium NDECODE
emitter = NDeepSTORM3D

emitter

Ext. Fig. 9 2.17 2.17 Inhomogeneous None

Supp. Fig. S1 3.00 2.17 Medium None

Supp. Fig. S2 0.04 - 5.57 0.65, 2.17 Low, Medium, High 0% - 40%

Table 1. Simulation and evaluation parameters for experiments based on our own simulations. Data density refers to the set of frames used for
evaluation, while train density is the density of the simulated frames used for training the DECODE and DeepSTORM3D networks. For each
emitter, we draw a photon flux from a Gaussian distribution N(µflux,σflux). Low, medium and high SNR refer to mean photon counts of 1000,
5000 and 20,000 with background levels of 10, 50 and 200 photons per pixel respectively. To test predictions of inhomogenous backgrounds
(Extended Data Fig. 9) we used a mean photon count of 7000 and background levels varying between 20 and 200 photons. The standard
deviation of the intensity is calculated as σflux = µflux/20. We used a mean on-time of 2 frames. For the CRLB comparisons in Fig. 2a and
Extended Data Fig. 4 all emitters were instead simulated with exactly 20,000 photons and 200 background photons and did not persist across
frames. To compare the DECODE’s σ predictions with the measured localization uncertainty (Fig. 2b and Supp. Fig. S1) we simulated 100
frames and sampled the noise 100 times. For the CRLB comparisons (Fig. 2a and Ext. Fig. 4) we simulated 100k frames. For the remaining
figures we simulated frames for each combination of data density and SNR until we acquired at least 20k emitters and 1k frames.
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8. Schröder, D., Deschamps, J., Dasgupta, A., Matti, U. & Ries, J. Cost-efficient open source laser engine for microscopy.
Biomed. Opt. Express 11, 609–623 (2020).

9. Edelstein, A., Amodaj, N., Hoover, K., Vale, R. & Stuurman, N. Computer control of microscopes using µManager. Curr.
protocols molecular biology Chapter 14, Unit14.20 (2010).

10. Deschamps, J. & Ries, J. EMU: Reconfigurable graphical user interfaces for Micro-Manager. BMC Bioinforma. 21, 456
(2020).

11. Thevathasan, J. V. et al. Nuclear pores as versatile reference standards for quantitative superresolution microscopy. Nat.
Methods 16, 1045–1053 (2019).

11/11


