6 research outputs found

    Use of Heading Direction for Recreating the Horizontal Alignment of an Existing Road

    Full text link
    This article proposes a new method for fit- ting the horizontal alignment of a road to a set of (x, y) points. Those points can be obtained from digital im- agery or GPS-data collection. Unlike current methods that represent road alignment through its curvature, the proposed method describes the horizontal alignment as a sequence of headings. An analytic–heuristic approach is introduced. The proposed method produces unique solu- tions even for complex horizontal alignments. Some ex- amples and a case study are presented. This solution may not be accurate enough for road redesign, but it allows researchers and departments of transportation to obtain accurate geometric featuresCamacho Torregrosa, FJ.; Pérez Zuriaga, AM.; Campoy Ungria, JM.; García García, A.; Tarko, A. (2015). Use of Heading Direction for Recreating the Horizontal Alignment of an Existing Road. Computer-Aided Civil and Infrastructure Engineering. 30(4):282-299. doi:10.1111/mice.12094S282299304Awuah-Baffour, R., Sarasua, W., Dixon, K. K., Bachman, W., & Guensler, R. (1997). Global Positioning System with an Attitude: Method for Collecting Roadway Grade and Superelevation Data. Transportation Research Record: Journal of the Transportation Research Board, 1592(1), 144-150. doi:10.3141/1592-17Ben-Arieh, D., Chang, S., Rys, M., & Zhang, G. (2004). Geometric Modeling of Highways Using Global Positioning System Data andB-Spline Approximation. Journal of Transportation Engineering, 130(5), 632-636. doi:10.1061/(asce)0733-947x(2004)130:5(632)Bosurgi, G., & D’Andrea, A. (2012). A Polynomial Parametric Curve (PPC-CURVE) for the Design of Horizontal Geometry of Highways. Computer-Aided Civil and Infrastructure Engineering, 27(4), 304-a312. doi:10.1111/j.1467-8667.2011.00750.xCai, H., & Rasdorf, W. (2008). Modeling Road Centerlines and Predicting Lengths in 3-D Using LIDAR Point Cloud and Planimetric Road Centerline Data. Computer-Aided Civil and Infrastructure Engineering, 23(3), 157-173. doi:10.1111/j.1467-8667.2008.00518.xCastro, M., Iglesias, L., Rodríguez-Solano, R., & Sánchez, J. A. (2006). Geometric modelling of highways using global positioning system (GPS) data and spline approximation. Transportation Research Part C: Emerging Technologies, 14(4), 233-243. doi:10.1016/j.trc.2006.06.004Dong, H., Easa, S. M., & Li, J. (2007). Approximate Extraction of Spiralled Horizontal Curves from Satellite Imagery. Journal of Surveying Engineering, 133(1), 36-40. doi:10.1061/(asce)0733-9453(2007)133:1(36)Easa, S. M., Dong, H., & Li, J. (2007). Use of Satellite Imagery for Establishing Road Horizontal Alignments. Journal of Surveying Engineering, 133(1), 29-35. doi:10.1061/(asce)0733-9453(2007)133:1(29)Hummer , J. E. Rasdorf , W. J. Findley , D. J. Zegeer , C. V. Sundstrom , C. A. 2010 Procedure for Curve Warning Signing, Delineation, and Advisory Speeds for Horizontal Curves http://ntl.bts.gov/lib/38000/38400/38476/2009--07finalreport.pdfImran, M., Hassan, Y., & Patterson, D. (2006). GPS-GIS-Based Procedure for Tracking Vehicle Path on Horizontal Alignments. Computer-Aided Civil and Infrastructure Engineering, 21(5), 383-394. doi:10.1111/j.1467-8667.2006.00444.xLi, Z., Chitturi, M. V., Bill, A. R., & Noyce, D. A. (2012). Automated Identification and Extraction of Horizontal Curve Information from Geographic Information System Roadway Maps. Transportation Research Record: Journal of the Transportation Research Board, 2291(1), 80-92. doi:10.3141/2291-10Othman, S., Thomson, R., & Lannér, G. (2012). Using Naturalistic Field Operational Test Data to Identify Horizontal Curves. Journal of Transportation Engineering, 138(9), 1151-1160. doi:10.1061/(asce)te.1943-5436.0000408Zuriaga, A. M. P., García, A. G., Torregrosa, F. J. C., & D’Attoma, P. (2010). Modeling Operating Speed and Deceleration on Two-Lane Rural Roads with Global Positioning System Data. Transportation Research Record: Journal of the Transportation Research Board, 2171(1), 11-20. doi:10.3141/2171-02Roh, T.-H., Seo, D.-J., & Lee, J.-C. (2003). An accuracy analysis for horizontal alignment of road by the kinematic GPS/GLONASS combination. KSCE Journal of Civil Engineering, 7(1), 73-79. doi:10.1007/bf02841990Shafahi, Y., & Bagherian, M. (2012). A Customized Particle Swarm Method to Solve Highway Alignment Optimization Problem. Computer-Aided Civil and Infrastructure Engineering, 28(1), 52-67. doi:10.1111/j.1467-8667.2012.00769.xTsai, Y. (James), Wu, J., Wang, Z., & Hu, Z. (2010). Horizontal Roadway Curvature Computation Algorithm Using Vision Technology. Computer-Aided Civil and Infrastructure Engineering, 25(2), 78-88. doi:10.1111/j.1467-8667.2009.00622.

    Systemic highway safety assessment: A general analysis of funding allocation and a specific study of the horizontal curve crash problem

    Get PDF
    It is well documented that motor vehicle crashes are a public safety concern. However, traditional approaches do not always lend themselves to addressing the complete extent of this safety problem . Identifying the extent of the safety problem is an important step in optimizing safety fund allocation and analyzing horizontal curve safety. This study investigates the allocation of safety expenditures in Iowa, relative to crash data. The matching of crash data with safety expenditures suggests the shift of funds from the high crash density, state system to facilities on the low density, local system. However, the redistribution of funding should also consider factors such as crash density and benefit cost. Furthermore, because some crashes are too widely distributed to be identified using traditional high crash location methodology; a balance of systematic and high crash location methods should be considered. Ultimately, the optimum balance of safety resources should reduce the most possible fatal and serious injury crashes. This study also investigated a systematic method for identifying and estimating geometric parameters on horizontal curves. A validation of this method showed that as horizontal curve radius decrease, sensitivity to errors in the estimated curve radius increase. Although some large errors associated with the estimated curve radius were found, predicted crash frequency for all curves was found to be no more than twenty percent different than the actual predicted crash frequency. Lastly, safety performance functions created for the horizontal curve database did not yield a concrete correlation between curve radius and crash frequency. Because of the random nature of fatal and major injury crashes, care is advised when creating crash models for these crashes

    Application of GIS to labour market planning in construction

    Get PDF
    The fluctuations in the demand for construction work have often resulted in skills shortages. This has led to the need for effective construction labour market planning strategies, which enable the construction industry to meet its skills requirements, particularly in periods of peak demand. Existing approaches to construction labour market planning have several limitations. They do not shed light on the socio-economic and spatially influenced issues within which the industry’s skills shortages are rooted. There is, therefore, a need for more appropriate decision-support mechanisms that can take account of spatial problems in terms of skills demand and supply influences. Through industry involvement, this research has explored how GIS can enhance the labour market planning process in construction. The research briefly reviews the nature of labour market planning in construction, introduces geographic information systems, and highlights the opportunities they offer for overcoming the limitations of existing approaches. The implementation of the GIS-based system and its application to a specific labour market planning initiative is then presented. The evaluation of the system by prospective end-users reveals the enablers, barriers and benefits of the system implementation. Organisational issues that had a bearing on the implementation are also examined and recommendations made for further research

    DEVELOPMENT AND CALIBRATION OF A GLOBAL GEOMETRIC DESIGN CONSISTENCY MODEL FOR TWO-LANE RURAL HIGHWAYS, BASED ON THE USE OF CONTINUOUS OPERATING SPEED PROFILES

    Full text link
    Road safety is one of the most important problems in our society. It causes hundreds of fatalities every year worldwide. A road accident may be caused by several concurrent factors. The most common are human and infrastructure. Their interaction is important too, which has been studied in-depth for years. Therefore, there is a better knowledge about the driving task. In several cases, these advances are still not included in road guidelines. Some of these advances are centered on explaining the underlying cognitive processes of the driving task. Some others are related to the analysis of drivers’ response or a better estimation of road crashes. The concept of design consistency is related to all of them. Road design consistency is the way how road alignment fits drivers’ expectancies. Hence, drivers are surprised at inconsistent roads, presenting a higher crash risk potential. This PhD presents a new, operating speed-based global consistency model. It is based on the analysis of more than 150 two-lane rural homogeneous road segments of the Valencian Region (Spain). The final consistency parameter was selected as the combination of operational parameters that best estimated the number of crashes. Several innovative auxiliary tools were developed for this process. One example is a new tool for recreating the horizontal alignment of two-lane rural roads by means of an analytic-heuristic process. A new procedure for determining road homogeneous segments was also developed, as well as some expressions to accurately determine the most adequate design speed. The consistency model can be integrated into safety performance functions in order to estimate the amount of road crashes. Finally, all innovations are combined into a new road design methodology. This methodology aims to complement the existing guidelines, providing to road safety a continuum approach and giving the engineers tools to estimate how safe are their road designs.Camacho Torregrosa, FJ. (2015). DEVELOPMENT AND CALIBRATION OF A GLOBAL GEOMETRIC DESIGN CONSISTENCY MODEL FOR TWO-LANE RURAL HIGHWAYS, BASED ON THE USE OF CONTINUOUS OPERATING SPEED PROFILES [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/48543TESI

    CARACTERIZACIÓN Y MODELIZACIÓN DE LA VELOCIDAD DE OPERACIÓN EN CARRETERAS CONVENCIONALES A PARTIR DE LA OBSERVACIÓN NATURALÍSTICA DE LA EVOLUCIÓN DE VEHÍCULOS LIGEROS

    Full text link
    Los tres principales factores concurrentes de la siniestralidad son: el conductor, el vehículo y la infraestructura. Este último es el causante, en mayor o menor medida, del 30 % de los accidentes en carretera. Una de las principales razones relacionadas con la infraestructura es la baja consistencia del diseño geométrico, que produce que la geometría de la vía no se ajuste a las expectativas de los conductores y, por tanto, que estos puedan verse sorprendidos ante ciertas configuraciones de la misma, dando como resultado un incremento en el número de accidentes. Los criterios más utilizados para la determinación de la consistencia están basados en la evaluación del perfil de velocidad de operación, identificada como el percentil 85 de la distribución de velocidades de vehículos circulando en condiciones de flujo libre en un tramo de carretera. Esta variable puede obtenerse a partir de mediciones durante la fase de explotación de una carretera. Sin embargo, tanto en la fase de planeamiento como en la de proyecto, únicamente puede estimarse. Para ello, se utilizan los modelos de estimación de la velocidad de operación a partir de las características geométricas del trazado de la carretera. En el presente trabajo de investigación, se han calibrado diferentes modelos que, mediante una serie de reglas de construcción, permiten la estimación del perfil continuo de velocidad de operación en un tramo de carretera convencional, a partir de sus características geométricas. Para ello, se ha desarrollado una nueva metodología de toma de datos. Esta metodología se basa en los datos registrados mediante dispositivos GPS instalados en vehículos de conductores ajenos a la investigación. Los resultados de la toma de datos consisten en los perfiles continuos de velocidad de operación individuales de cada conductor y en su trayectoria. Su tratamiento permite la restitución de la geometría del trazado de la carretera y la obtención del perfil continuo de velocidad de operación .......Pérez Zuriaga, AM. (2012). CARACTERIZACIÓN Y MODELIZACIÓN DE LA VELOCIDAD DE OPERACIÓN EN CARRETERAS CONVENCIONALES A PARTIR DE LA OBSERVACIÓN NATURALÍSTICA DE LA EVOLUCIÓN DE VEHÍCULOS LIGEROS [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/16701Palanci
    corecore