4 research outputs found

    GPS spoofing based time stamp attack on real time wide area monitoring in smart grid

    No full text
    Many operations in power grids, such as fault detection and event location estimation, depend on precise timing information. In this paper, a novel time stamp attack (TSA)is identified in smart grid. Since many applications in smart grid utilize synchronous measurements and most of the measurement devices are equipped with global positioning system (GPS) for precise timing, it is highly probable to attack the measurement system by spoofing the GPS. The effectiveness of TSA is demonstrated by time synchronized transmission line fault detection, as well as regional disturbing event location. To defend against TSA, we proposed a multi-antenna based quickest GPS spoofing detection algorithm. By exploiting the theory of quickest detection, we apply the probabilistic metric of the carrier signal to noise ratio from two receive antennas to conduct the quickest GPS spoofing detection. Experiment results demonstrate that the proposed defense scheme can effectively detect and prevent GPS spoofing attack.Shuping Gong, Zhenghao Zhang, Matthew Trinkle, Aleksandar D. Dimitrovski and Husheng L

    The Resilience Of Smart Energy Systems Against Adversarial Attacks, Operational Degradation And Variabilities

    Get PDF
    The presented research investigates selected topics concerning resilience of critical energy infrastructures against certain types of operational disturbances and/or failures whether natural or man-made. A system is made resilient through the deployment of physical devices enabling real-time monitoring, strong feedback control system, advanced system security and protection strategies or through prompt and accurate man-made actions or both. Our work seeks to develop well-planned strategies that act as a foundation for such resiliency enabling techniques.The research conducted thus far addresses three attributes of a resilient system, namely security, efficiency, and robustness, for three types of systems associated with current or future energy infrastructures. First (chapter 1), we study the security aspect of cyber-physical systems which integrate physical system dynamics with digital cyberinfrastructure. The smart electricity grid is a common example of this system type. In this work, an abstract theoretical framework is proposed to study data injection/modification attacks on Markov modeled dynamical systems from the perspective of an adversary. The adversary is capable of modifying a temporal sequence of data and the physical controller is equipped with prior statistical knowledge about the data arrival process to detect the presence of an adversary. The goal of the adversary is to modify the arrivals to minimize a utility function of the controller while minimizing the detectability of his presence as measured by the K-L divergence between the prior and posterior distribution of the arriving data. The trade-off between these two metrics– controller utility and the detectability cost is studied analytically for different underlying dynamics.Our second study (chapter 2) reviews the state of the art ocean wave generation technologies along with system level modeling while providing an initial study of the impacts of integration on a typical electrical grid network as compared to the closest related technology, wind energy extraction. In particular, wave power is computed from high resolution measured raw wave data to evaluate the effects of integrating wave generation into a small power network model. The system with no renewable energy sources and the system with comparable wind generation have been used as a reference for evaluation. Simulations show that wave power integration has good prospects in reducing the requirements of capacity and ramp reserves, thus bringing the overall cost of generation down.Our third study(chapter 3) addresses the robustness of resilient ocean wave generation systems. As an early-stage but rapidly developing technology, wave power extraction systems must have strong resilience requirements in harsh, corrosive ocean environments while enabling economic operation throughput their lifetime. Such systems are comprised of Wave Energy Converters (WECs) that are deployed offshore and that derive power from rolling ocean waves. The Levelized Cost of Electricity (LCOE) for WECs is high and one important way to reduce this cost is to employ strategies that minimize the cost of maintenance of WECs in a wave farm. In this work, an optimal maintenance strategy is proposed for a group of WECs, resulting in an adaptive scheduling of the time of repair, based on the state of the entire farm. The state-based maintenance strategy seeks to find an optimal trade-off between the moderate revenue generated from a farm with some devices being in a deteriorated or failed state and the high repair cost that typifies ocean wave farm maintenance practices. The formulation uses a Markov Decision Process (MDP) approach to devise an optimal policy which is based on the count of WECs in different operational states.Our fourth study (chapter 4) focuses on enabling resilient electricity grids with Grid Scale Storage (GSS). GSS offers resilient operations to power grids where the generation, transmission, distribution and consumption of electricity has traditionally been ``just in time . GSS offers the ability to buffer generated energy and dispatch it for consumption later, e.g., during generation outage and shortages. Our research addresses how to operate GSS to generate revenue efficiency in frequency regulation markets. Operation of GSS in frequency regulation markets is desirable due to its fast response capabilities and the corresponding revenues. However, GSS health is strongly dependent on its operation and understanding the trade-offs between revenues and degradation factors is essential. This study answers whether or not operating GSS at high efficiency regularly reduces its long-term performance (and thereby its offered resilience to the power grid).Our fifth study (chapter 5) focuses on the resilience of Wide Area Measurement Systems (WAMS) which is an integral part of modern electrical grid infrastructure. The problem of the global positioning system (GPS) spoofing attacks on smart grid endowed with phasor measurement units (PMUs) is addressed, taking into account the dynamical behavior of the states of the system. It is shown how GPS spoofing introduces a timing synchronization error in the phasor readings recorded by the PMU and alters the measurement matrix of the dynamical model. A generalized likelihood ratio-based hypotheses testing procedure is devised to detect changes in the measurement matrix when the system is subjected to a spoofing attack. Monte Carlo simulations are performed on the 9-bus, 3-machine test grid to demonstrate the implication of the spoofing attack on dynamic state estimation and to analyze the performance of the proposed hypotheses test. Asymptotic performance analysis of the proposed test, which can be used for large-scale smart grid networks, is also presented

    Cyber Physical System Security — DoS Attacks on Synchrophasor Networks in the Smart Grid

    Get PDF
    With the rapid increase of network-enabled sensors, switches, and relays, cyber-physical system security in the smart grid has become important. The smart grid operation demands reliable communication. Existing encryption technologies ensures the authenticity of delivered messages. However, commonly applied technologies are not able to prevent the delay or drop of smart grid communication messages. In this dissertation, the author focuses on the network security vulnerabilities in synchrophasor network and their mitigation methods. Side-channel vulnerabilities of the synchrophasor network are identified. Synchrophasor network is one of the most important technologies in the smart grid transmission system. Experiments presented in this dissertation shows that a DoS attack that exploits the side-channel vulnerability against the synchrophasor network can lead to the power system in stability. Side-channel analysis extracts information by observing implementation artifacts without knowing the actual meaning of the information. Synchrophasor network consist of Phasor Measurement Units (PMUs) use synchrophasor protocol to transmit measurement data. Two side-channels are discovered in the synchrophasor protocol. Side-channel analysis based Denial of Service (DoS) attacks differentiate the source of multiple PMU data streams within an encrypted tunnel and only drop selected PMU data streams. Simulations on a power system shows that, without any countermeasure, a power system can be subverted after an attack. Then, mitigation methods from both the network and power grid perspectives are carried out. From the perspective of network security study, side-channel analysis, and protocol transformation has the potential to assist the PMU communication to evade attacks lead with protocol identifications. From the perspective of power grid control study, to mitigate PMU DoS attacks, Cellular Computational Network (CCN) prediction of PMU data is studied and used to implement a Virtual Synchrophasor Network (VSN), which learns and mimics the behaviors of an objective power grid. The data from VSN is used by the Automatic Generation Controllers (AGCs) when the PMU packets are disrupted by DoS attacks. Real-time experimental results show the CCN based VSN effectively inferred the missing data and mitigated the negative impacts of DoS attacks. In this study, industry-standard hardware PMUs and Real-Time Digital Power System Simulator (RTDS) are used to build experimental environments that are as close to actual production as possible for this research. The above-mentioned attack and mitigation methods are also tested on the Internet. Man-In-The-Middle (MITM) attack of PMU traffic is performed with Border Gateway Protocol (BGP) hijacking. A side-channel analysis based MITM attack detection method is also investigated. A game theory analysis is performed to give a broade

    Integración de dispositivos electrónicos inteligentes en Smart Grid

    Get PDF
    El sector eléctrico está experimentando cambios importantes tanto a nivel de gestión como a nivel de mercado. Una de las claves que están acelerando este cambio es la penetración cada vez mayor de los Sistemas de Generación Distribuida (DER), que están dando un mayor protagonismo al usuario a la hora de plantear la gestión del sistema eléctrico. La complejidad del escenario que se prevé en un futuro próximo, exige que los equipos de la red tenga la capacidad de interactuar en un sistema mucho más dinámico que en el presente, donde la interfaz de conexión deberá estar dotada de la inteligencia necesaria y capacidad de comunicación para que todo el sistema pueda ser gestionado en su conjunto de manera eficaz. En la actualidad estamos siendo testigos de la transición desde el modelo de sistema eléctrico tradicional hacia un nuevo sistema, activo e inteligente, que se conoce como Smart Grid. En esta tesis se presenta el estudio de un Dispositivo Electrónico Inteligente (IED) orientado a aportar soluciones para las necesidades que la evolución del sistema eléctrico requiere, que sea capaz de integrase en el equipamiento actual y futuro de la red, aportando funcionalidades y por tanto valor añadido a estos sistemas. Para situar las necesidades de estos IED se ha llevado a cabo un amplio estudio de antecedentes, comenzando por analizar la evolución histórica de estos sistemas, las características de la interconexión eléctrica que han de controlar, las diversas funciones y soluciones que deben aportar, llegando finalmente a una revisión del estado del arte actual. Dentro de estos antecedentes, también se lleva a cabo una revisión normativa, a nivel internacional y nacional, necesaria para situarse desde el punto de vista de los distintos requerimientos que deben cumplir estos dispositivos. A continuación se exponen las especificaciones y consideraciones necesarias para su diseño, así como su arquitectura multifuncional. En este punto del trabajo, se proponen algunos enfoques originales en el diseño, relacionados con la arquitectura del IED y cómo deben sincronizarse los datos, dependiendo de la naturaleza de los eventos y las distintas funcionalidades. El desarrollo del sistema continua con el diseño de los diferentes subsistemas que lo componen, donde se presentan algunos algoritmos novedosos, como el enfoque del sistema anti-islanding con detección múltiple ponderada. Diseñada la arquitectura y funciones del IED, se expone el desarrollo de un prototipo basado en una plataforma hardware. Para ello se analizan los requisitos necesarios que debe tener, y se justifica la elección de una plataforma embebida de altas prestaciones que incluye un procesador y una FPGA. El prototipo desarrollado se somete a un protocolo de pruebas de Clase A, según las normas IEC 61000-4-30 e IEC 62586-2, para comprobar la monitorización de parámetros. También se presentan diversas pruebas en las que se han estimado los retardos implicados en los algoritmos relacionados con las protecciones. Finalmente se comenta un escenario de prueba real, dentro del contexto de un proyecto del Plan Nacional de Investigación, donde este prototipo ha sido integrado en un inversor dotándole de la inteligencia necesaria para un futuro contexto Smart Grid.The electricity sector is undergoing major changes both at management level as at the level of the market. One of the keys that are accelerating this change is the increasing penetration of Distributed Energy Resources (DER), which is giving greater prominence to the distribution areas when considering the management of the electricity system. The complexity of the scenario that is expected in the near future requires that grid equipment will have the ability to interact in a much more dynamic system than in the present, where the connection interface must be equipped with the necessary intelligence and communication capability so that the entire system can be managed as a whole effectively. Today we are witnessing the transition from the traditional model of power system to a new system, active and intelligent, known as Smart Grid. This thesis deals with the study of an Intelligent Electronic Device (IED), which is oriented to providing solutions for the needs that the evolution of the electricity system requires. This IED is able to integrate into the current and future grid equipment, providing functionality and therefore added value to these systems. To locate the needs of these electronics devices, an extensive study of backgrounds has been conducted, beginning with analyzing the historical evolution of these systems, the characteristics of the electrical interconnection that these systems have to control, the various functions and solutions to be provided, finally arriving to a review of the current state of art. Within this background, also it carried out a regulatory review, at international and national level, needed to understand the point of view of the different requirements to be complied by these devices. Then the specifications and considerations for the design of this IED and its multifunctional architecture are discussed. At this point of work some original approaches in design are proposed, these are related to the functional architecture of IED and the way of how the data should be synchronized, depending on the nature of events and different functions. The development of the device follows with the design of the various subsystems. Some novel algorithms are presented here, as the approach of anti-islanding system based on multiple weighted methods detection. Once the architecture and functions of the IED have been designed, the development of a prototype based on a hardware platform is discussed. For this purpose, the needed requirements are analyzed, and the choice of a high-performance embedded platform that includes a processor and an FPGA is justified. A Class A testing protocol applies to the prototype developed to test the monitoring parameters, according to the IEC 61000-4-30 and IEC 62586-2 standards. Also various tests to estimate the delays involved in protection algorithms are presented. Finally a real test scenario is discussed. This was carried out within the context of a project of the National Research Plan, where this prototype has been integrated into an inverter providing it with the necessary intelligence for a future Smart Grid context
    corecore