3 research outputs found

    A Reduced-Order Generalized Proportional Integral Observer-Based Resonant Super-Twisting Sliding Mode Control for Grid-Connected Power Converters

    Get PDF
    This article presents a reduced-order generalized proportional-integral observer based resonant super-twisting sliding mode controller (RST-SMC) for the three-phase ac-dc converters. On the contrary to utilizing the proportional-integral controller in regulating the dc-link voltage, which may cause large undershoot/overshoot under the disturbance, the proposed voltage control strategy for the dc-link has high disturbance rejection ability and the settling time has been greatly reduced. In addition, the proposed RST-SMC in the current control loop not only preserve the merits of the sliding mode controller but also achieve the current tracking without steady-state error in the stationary \alpha - \beta frame. The effectiveness of the proposed method has been verified by a lab-constructed experimental prototype.This work was supported by Shenzhen Overseas High Level Talent Program. The work of Josep M. Guerrerork was supported by VILLUM FONDEN under the VILLUM Investigator Grant (no. 25920): Center for Research on Microgrids (CROM); www.crom.et.aau.dk

    GPIO-based robust control of nonlinear uncertain systems under time-varying disturbance with application to DC-DC converter

    No full text
    This brief considers the robust output-feedback control problem of a class of nonlinear uncertain systems subject to time-varying disturbances. For this purpose, a generalized proportional-integral observer (GPIO) together with a feedback domination approach is utilized for disturbance compensation and nonlinear uncertainty suppression. It is shown that the proposed control method can dominate the nonlinear uncertainties, by properly assigning a tunable scaling gain, and also remove the undesirable influences caused by a general class of time-varying disturbances through compensation design. An application design example of a dc-dc buck converter is presented to demonstrate the feasibility and efficacy of the proposed control approach

    System identification and adaptive current balancing ON/OFF control of DC-DC switch mode power converter

    Get PDF
    PhD ThesisReliability becomes more and more important in industrial application of Switch Mode Power Converters (SMPCs). A poorly performing power supply in a power system can influence its operation and potentially compromise the entire system performance in terms of efficiency. To maintain a high reliability, high performance SMPC effective control is necessary for regulating the output of the SMPC system. However, an uncertainty is a key factor in SMPC operation. For example, parameter variations can be caused by environmental effects such as temperature, pressure and humidity. Usually, fixed controllers cannot respond optimally and generate an effective signal to compensate the output error caused by time varying parameter changes. Therefore, the stability is potentially compromised in this case. To resolve this problem, increasing interest has been shown in employing online system identification techniques to estimate the parameter values in real time. Moreover, the control scheme applied after system identification is often called “adaptive control” due to the control signal selfadapting to the parameter variation by receiving the information from the system identification process. In system identification, the Recursive Least Square (RLS) algorithm has been widely used because it is well understood and easy to implement. However, despite the popularity of RLS, the high computational cost and slow convergence speed are the main restrictions for use in SMPC applications. For this reason, this research presents an alternative algorithm to RLS; Fast Affline Projection (FAP). Detailed mathematical analysis proves the superior computational efficiency of this algorithm. Moreover, simulation and experiment result verify this unique adaptive algorithm has improved performance in terms of computational cost and convergence speed compared with the conventional RLS methods. Finally, a novel adaptive control scheme is designed for optimal control of a DC-DC buck converter during transient periods. By applying the proposed adaptive algorithm, the control signal can be successfully employed to change the ON/OFF state of the power transistor in the DC-DC buck converter to improve the dynamic behaviour. Simulation and experiment result show the proposed adaptive control scheme significantly improves the transient response of the buck converter, particularly during an abrupt load change conditio
    corecore