27,231 research outputs found

    Giant magnetoresistance of multiwall carbon nanotubes: modeling the tube/ferromagnetic-electrode burying contact

    Full text link
    We report on the giant magnetoresistance (GMR) of multiwall carbon nanotubes with ultra small diameters. In particular, we consider the effect of the inter-wall interactions and the lead/nanotube coupling. Comparative studies have been performed to show that in the case when all walls are well coupled to the electrodes, the so-called inverse GMR can appear. The tendency towards a negative GMR depends on the inter-wall interaction and on the nanotube le ngth. If, however, the inner nanotubes are out of contact with one of the electrodes, the GMR remains positive even for relatively strong inter-wall interactions regardless of the outer nanotube length. These results shed additional light on recently reported experimental data, where an inverse GMR was found in some multiwall carbon nanotube samples.Comment: 5 pages, 5 figure

    Isotopic dependence of the giant monopole resonance in the even-A ^{112-124}Sn isotopes and the asymmetry term in nuclear incompressibility

    Full text link
    The strength distributions of the giant monopole resonance (GMR) have been measured in the even-A Sn isotopes (A=112--124) with inelastic scattering of 400-MeV α\alpha particles in the angular range 00^\circ--8.58.5^\circ. We find that the experimentally-observed GMR energies of the Sn isotopes are lower than the values predicted by theoretical calculations that reproduce the GMR energies in 208^{208}Pb and 90^{90}Zr very well. From the GMR data, a value of Kτ=550±100K_{\tau} = -550 \pm 100 MeV is obtained for the asymmetry-term in the nuclear incompressibility.Comment: Submitted to Physical Review Letters. 10 pages; 4 figure

    The Giant Monopole Resonance in Pb isotopes

    Full text link
    The extraction of the nuclear incompressibility from the isoscalar giant monopole resonance (GMR) measurements is analysed. Both pairing and mutually enhanced magicity (MEM) effects play a role in the shift of the GMR energy between the doubly closed shell 208^{208}Pb nucleus and other Pb isotopes. Pairing effects are microscopically predicted whereas the MEM effect is phenomenologically evaluated. Accurate measurements of the GMR in open-shell Pb isotopes are called for.Comment: 4 page

    A nonparametric Bayesian approach toward robot learning by demonstration

    No full text
    In the past years, many authors have considered application of machine learning methodologies to effect robot learning by demonstration. Gaussian mixture regression (GMR) is one of the most successful methodologies used for this purpose. A major limitation of GMR models concerns automatic selection of the proper number of model states, i.e., the number of model component densities. Existing methods, including likelihood- or entropy-based criteria, usually tend to yield noisy model size estimates while imposing heavy computational requirements. Recently, Dirichlet process (infinite) mixture models have emerged in the cornerstone of nonparametric Bayesian statistics as promising candidates for clustering applications where the number of clusters is unknown a priori. Under this motivation, to resolve the aforementioned issues of GMR-based methods for robot learning by demonstration, in this paper we introduce a nonparametric Bayesian formulation for the GMR model, the Dirichlet process GMR model. We derive an efficient variational Bayesian inference algorithm for the proposed model, and we experimentally investigate its efficacy as a robot learning by demonstration methodology, considering a number of demanding robot learning by demonstration scenarios

    Ab-initio-calculations of the GMR-effect in Fe/V multilayers

    Full text link
    In a self-consistent semi-empirical numerical approach based on ab-initio-calculations for small samples, we evaluate the GMR effect for disordered (001)-(3--Fe/3--V)_\infty multilayers by means of a Kubo formalism. We consider four different types of disorder arrangements: In case (i) and (ii), the disorder consists in the random interchange of some Fe and V atoms, respectively, at interface layers; in case (iii) in the formation of small groups of three substitutional Fe atoms in a V interface layer and a similar V group in a Fe layer at a different interface; and for case (iv) in the substitution of some V atoms in the innermost V layers by Fe. For cases (i) and (ii), depending on the distribution of the impurities, the GMR effect is enhanced or reduced by increasing disorder, in case (iii) the GMR effect is highest, whereas finally, in case (iv), a negative GMR is obtained (''inverse GMR'').Comment: LaTex, 30 pages, including 16 drawings; to appear in JMM

    Calculation of Giant Magnetoresistance in Laterally Confined Multilayers

    Full text link
    We have studied the Giant Magnetoresistance (GMR) for laterally confined multilayers, e.g., layers of wires, using the classical Boltzmann equation in the current-in-plane (CIP) geometry. For spin-independent specularity factors at the sides of the wires we find that the GMR due to bulk and surface scattering decreases with lateral confinement. The length scale at which this occurs is of order the film thickness and the mean free paths. The precise prefactor depends on the relative importance of surface and bulk scattering anisotropies. For spin-dependent specularity factors at the sides of the wires the GMR can increase in some cases with decreasing width. The origin of the change in the GMR in both cases can be understood in terms of lateral confinement changing the effective mean free paths within the layers.Comment: 18 pages, 7 figure

    Magnetoresistance and structural study of electrodeposited Ni-Cu/Cu multilayers

    Get PDF
    Electrodeposition was used to produce Ni Cu/Cu multilayers by two-pulse plating (galvanostatic/potentiostatic control) from a single sulfate/sulfamate electrolyte at an optimized Cu deposition potential for the first time. Magnetoresistance measurements were carried out at room temperature for the Ni Cu/Cu multilayers as a function of the Ni Cu and Cu layer thicknesses and the electrolyte Cu2+ ion concentration. Multilayers with Cu layer thicknesses above 2 nm exhibited a giant magnetoresistance (GMR) effect with a dominating ferromagnetic contribution and with low saturation fields (below 1 kOe). A significant contribution from superparamagnetic (SPM) regions with high saturation fields occurred only for very small nominal magnetic layer thicknesses (around 1 nm). The presence of SPM regions was concluded from the GMR data also for thick magnetic layers with high Cu contents. This hints at a significant phase-separation in Ni-Cu alloys at low-temperature processing, in agreement with previous theoretical modeling and experiments. Low-temperature measurements performed on a selected multilayer down to 18 K indicated a strong increase of the GMR as compared to the room-temperature GMR. Structural studies of some multilayer deposits exhibiting GMR were performed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns of Ni Cu/Cu multilayers exhibited in most cases clear satellite peaks, indicating a superlattice structure which was confirmed also by cross-sectional TEM. The deterioration of the multilayer structure revealed by XRD for high Cu-contents in the magnetic layer confirmed the phase-separation concluded from the GMR data
    corecore