1,276 research outputs found

    Message Passing in C-RAN: Joint User Activity and Signal Detection

    Full text link
    In cloud radio access network (C-RAN), remote radio heads (RRHs) and users are uniformly distributed in a large area such that the channel matrix can be considered as sparse. Based on this phenomenon, RRHs only need to detect the relatively strong signals from nearby users and ignore the weak signals from far users, which is helpful to develop low-complexity detection algorithms without causing much performance loss. However, before detection, RRHs require to obtain the realtime user activity information by the dynamic grant procedure, which causes the enormous latency. To address this issue, in this paper, we consider a grant-free C-RAN system and propose a low-complexity Bernoulli-Gaussian message passing (BGMP) algorithm based on the sparsified channel, which jointly detects the user activity and signal. Since active users are assumed to transmit Gaussian signals at any time, the user activity can be regarded as a Bernoulli variable and the signals from all users obey a Bernoulli-Gaussian distribution. In the BGMP, the detection functions for signals are designed with respect to the Bernoulli-Gaussian variable. Numerical results demonstrate the robustness and effectivity of the BGMP. That is, for different sparsified channels, the BGMP can approach the mean-square error (MSE) of the genie-aided sparse minimum mean-square error (GA-SMMSE) which exactly knows the user activity information. Meanwhile, the fast convergence and strong recovery capability for user activity of the BGMP are also verified.Comment: Conference, 6 pages, 7 figures, accepted by IEEE Globecom 201

    Large System Analysis of Power Normalization Techniques in Massive MIMO

    Get PDF
    Linear precoding has been widely studied in the context of Massive multiple-input-multiple-output (MIMO) together with two common power normalization techniques, namely, matrix normalization (MN) and vector normalization (VN). Despite this, their effect on the performance of Massive MIMO systems has not been thoroughly studied yet. The aim of this paper is to fulfill this gap by using large system analysis. Considering a system model that accounts for channel estimation, pilot contamination, arbitrary pathloss, and per-user channel correlation, we compute tight approximations for the signal-to-interference-plus-noise ratio and the rate of each user equipment in the system while employing maximum ratio transmission (MRT), zero forcing (ZF), and regularized ZF precoding under both MN and VN techniques. Such approximations are used to analytically reveal how the choice of power normalization affects the performance of MRT and ZF under uncorrelated fading channels. It turns out that ZF with VN resembles a sum rate maximizer while it provides a notion of fairness under MN. Numerical results are used to validate the accuracy of the asymptotic analysis and to show that in Massive MIMO, non-coherent interference and noise, rather than pilot contamination, are often the major limiting factors of the considered precoding schemes.Comment: 12 pages, 3 figures, Accepted for publication in the IEEE Transactions on Vehicular Technolog

    Securing UAV Communications Via Trajectory Optimization

    Full text link
    Unmanned aerial vehicle (UAV) communications has drawn significant interest recently due to many advantages such as low cost, high mobility, and on-demand deployment. This paper addresses the issue of physical-layer security in a UAV communication system, where a UAV sends confidential information to a legitimate receiver in the presence of a potential eavesdropper which are both on the ground. We aim to maximize the secrecy rate of the system by jointly optimizing the UAV's trajectory and transmit power over a finite horizon. In contrast to the existing literature on wireless security with static nodes, we exploit the mobility of the UAV in this paper to enhance the secrecy rate via a new trajectory design. Although the formulated problem is non-convex and challenging to solve, we propose an iterative algorithm to solve the problem efficiently, based on the block coordinate descent and successive convex optimization methods. Specifically, the UAV's transmit power and trajectory are each optimized with the other fixed in an alternating manner until convergence. Numerical results show that the proposed algorithm significantly improves the secrecy rate of the UAV communication system, as compared to benchmark schemes without transmit power control or trajectory optimization.Comment: Accepted by IEEE GLOBECOM 201
    corecore