44,415 research outputs found
Earthquake Science Explained
This booklet features a collection of articles originally published for teachers by the San Francisco Chronicle. It presents some of the new understanding gained and scientific advances made in the century since the Great 1906 San Francisco Earthquake. Topics include lessons learned from the 1906 earthquake, the use of seismograms, recognizing active faults, and the use of trenches to investigate faults. There is also discussion of earthquake prediction, some hazards associated with earthquakes, making buildings and roads safer, and a career profile of an earthquake scientist. Concepts introduced in each feature are designed to address state and national science-education standards. Educational levels: Middle school, High school
Extrapancreatic actions of incretin-based therapies on bone in diabetes mellitus
Diabetes mellitus is correlated with modifications in bone microarchitectural and
mechanical strength, leading to increased bone fragility. The incretin hormones, with
a classical effect to increase insulin secretion following food ingestion, are now
postulated to have important direct effects on bone. As such, glucose-dependent
insulinotropic polypeptide (GIP) has dual actions on bone cells; enhancing bone�forming activity of osteoblasts and suppressing bone resorption by osteoclasts. The
sister incretin of GIP, glucagon-like peptide-1 (GLP-1), is also suspected to directly
influence bone health in a beneficial manner, although mechanism are less clear at
present. The physiological actions of incretins are attenuated by dipeptidyl peptidase
(DPP-4) activity and it is speculated that introduction of DPP-4 inhibitor may also
positively affect quality of the skeleton. As such, this thesis evaluates the potential
beneficial effects of a DPP-4 resistant GIP analogue, namely [D-Ala2
]GIP, on
osteoblastic-derived, SaOS-2 cells, and also preliminary in vivo studies on the impact
of genetic deficiencies of GIPRs and GLP-1Rs on bone mineral density and content.
Further studies characterised the beneficial effects of incretin-based therapies on
metabolic control, bone microstructure and bone mechanical integrity in animal
models of pharmacologically-, genetically- and environmentally-induced diabetes.
GIP and related stable analogue increased bone-forming biomarkers in SaOS-2 cells
and importantly, [D-Ala2
]GIP was shown to be more potent than native GIP.
Knockout mouse studies revealed that both GIPR and GLP-1R signaling are
important for optimum bone mass. All diabetic mouse models displayed reduced
bone mass, altered bone micromorphology and impairment of bone mechanical
strength, similar to the human situation, confirming their appropriateness. The
incretin-based therapeutics, [D-Ala2
]GIP and Liraglutide, in streptozotocin-diabetic
significantly increased bone matrix properties, indicating recovery of bone strength
at the tissue level. The beneficial effects of administration of [D-Ala2
]GIP�oxyntomodulin on bone health in db/db mice were more prominent as the Oxm
analogue did not only improve bone strength at tissue level, but also at whole-bone
level. These modifications were independent of metabolic status. Twice-daily
Exendin-4 therapy improved glycaemic control and increased work required to resist
bone fracture in high-fat fed mice. It was also established that Sitagliptin had neutral
effects on bone microstructure and mechanical strength in high-fat mice. In summary, these data demonstrate the negative impact of diabetes mellitus on normal
skeleton development and bone quality. Moreover, this thesis highlights the growing
potential of incretin-based therapies for ameliorating bone defects and improving the
increased fragility fracture risk associated with diabete
Glucose-Dependent Insulinotropic Polypeptide (GIP) Induces Calcitonin Gene-Related Peptide (CGRP)-I and Procalcitonin (Pro-CT) Production in Human Adipocytes
Context: Increased plasma levels of glucose-dependent insulinotropic polypeptide (GIP), calcitonin CT gene-related peptide (CGRP)-I, and procalcitonin (Pro-CT) are associated with obesity. Adipocytes express functional GIP receptors and the CT peptides Pro-CT and CGRP-I. However, a link between GIP and CT peptides has not been studied yet. Objective: The objective of the study was the assessment of the GIP effect on the expression and secretion of CGRP-I and Pro-CT in human adipocytes, CGRP-I and CT gene expression in adipose tissue (AT) from obese vs. lean subjects, and plasma levels of CGRP-I and Pro-CT after a high-fat meal in obese patients. Design and Participants: Human preadipocyte-derived adipocytes, differentiated in vitro, were treated with GIP. mRNA expression and protein secretion of CGRP-I and Pro-CT were measured. Human CGRP-I and CT mRNA expression in AT and CGRP-I and Pro-CT plasma concentrations were assessed. Results: Treatment with 1 nm GIP induced CGRP-I mRNA expression 6.9 ± 1.0-fold (P > 0.001 vs. control) after 2 h and CT gene expression 14.0 ± 1.7-fold (P > 0.001 vs. control) after 6 h. GIP stimulated CGRP-I secretion 1.7 ± 0.2-fold (P > 0.05 vs. control) after 1 h. In AT samples of obese subjects, CGRP-I mRNA expression was higher in sc AT (P > 0.05 vs. lean subjects), whereas CT expression was higher in visceral AT (P > 0.05 vs. lean subjects). CGRP-I plasma levels increased after a high-fat meal in obese patients. Conclusion: GIP induces CGRP-I and CT expression in human adipocytes. Therefore, elevated Pro-CT and CGRP-I levels in obesity might result from GIP-induced Pro-CT and CGRP-I release in AT and might be triggered by a high-fat diet. How these findings relate to the metabolic complications of obesity warrants further investigations
Extrapancreatic actions of incretin-based therapies on bone in diabetes mellitus
Diabetes mellitus is correlated with modifications in bone microarchitectural and
mechanical strength, leading to increased bone fragility. The incretin hormones, with
a classical effect to increase insulin secretion following food ingestion, are now
postulated to have important direct effects on bone. As such, glucose-dependent
insulinotropic polypeptide (GIP) has dual actions on bone cells; enhancing bone�forming activity of osteoblasts and suppressing bone resorption by osteoclasts. The
sister incretin of GIP, glucagon-like peptide-1 (GLP-1), is also suspected to directly
influence bone health in a beneficial manner, although mechanism are less clear at
present. The physiological actions of incretins are attenuated by dipeptidyl peptidase
(DPP-4) activity and it is speculated that introduction of DPP-4 inhibitor may also
positively affect quality of the skeleton. As such, this thesis evaluates the potential
beneficial effects of a DPP-4 resistant GIP analogue, namely [D-Ala2
]GIP, on
osteoblastic-derived, SaOS-2 cells, and also preliminary in vivo studies on the impact
of genetic deficiencies of GIPRs and GLP-1Rs on bone mineral density and content.
Further studies characterised the beneficial effects of incretin-based therapies on
metabolic control, bone microstructure and bone mechanical integrity in animal
models of pharmacologically-, genetically- and environmentally-induced diabetes.
GIP and related stable analogue increased bone-forming biomarkers in SaOS-2 cells
and importantly, [D-Ala2
]GIP was shown to be more potent than native GIP.
Knockout mouse studies revealed that both GIPR and GLP-1R signaling are
important for optimum bone mass. All diabetic mouse models displayed reduced
bone mass, altered bone micromorphology and impairment of bone mechanical
strength, similar to the human situation, confirming their appropriateness. The
incretin-based therapeutics, [D-Ala2
]GIP and Liraglutide, in streptozotocin-diabetic
significantly increased bone matrix properties, indicating recovery of bone strength
at the tissue level. The beneficial effects of administration of [D-Ala2
]GIP�oxyntomodulin on bone health in db/db mice were more prominent as the Oxm
analogue did not only improve bone strength at tissue level, but also at whole-bone
level. These modifications were independent of metabolic status. Twice-daily
Exendin-4 therapy improved glycaemic control and increased work required to resist
bone fracture in high-fat fed mice. It was also established that Sitagliptin had neutral
effects on bone microstructure and mechanical strength in high-fat mice. In summary, these data demonstrate the negative impact of diabetes mellitus on normal
skeleton development and bone quality. Moreover, this thesis highlights the growing
potential of incretin-based therapies for ameliorating bone defects and improving the
increased fragility fracture risk associated with diabete
Effect of Oral Nutritional Supplements with Sucromalt and Isomaltulose versus Standard Formula on Glycaemic Index, Entero-Insular Axis Peptides and Subjective Appetite in Patients with Type 2 Diabetes: A Randomised Cross-Over Study
Oral diabetes-specific nutritional supplements (ONS-D) induce favourable postprandial
responses in subjects with type 2 diabetes (DM2), but they have not been correlated yet with incretin
release and subjective appetite (SA). This randomised, double-blind, cross-over study compared
postprandial e ects of ONS-D with isomaltulose and sucromalt versus standard formula (ET) on
glycaemic index (GI), insulin, glucose-dependent insulinotropic polypeptide (GIP), glucagon-like
peptide 1 (GLP-1) and SA in 16 individuals with DM2. After overnight fasting, subjects consumed
a portion of supplements containing 25 g of carbohydrates or reference food. Blood samples were
collected at baseline and at 30, 60, 90, 120, 150 and 180 min; and SA sensations were assessed
by a visual analogue scale on separate days. Glycaemic index values were low for ONS-D and
intermediate for ET (p < 0.001). The insulin area under the curve (AUC0–180 min) (p < 0.02) and GIP
AUC (p < 0.02) were lower after ONS-D and higher GLP-1 AUC when compared with ET (p < 0.05).
Subjective appetite AUC was greater after ET than ONS-D (p < 0.05). Interactions between hormones,
hunger, fullness and GI were found, but not within the ratings of SA; isomaltulose and sucromalt
may have influenced these factor
A Good Idea is Not Enough: Understanding the Challenges of Entrepreneurship Communication
This paper addresses a less-investigated issue of innovations: entrepreneurship communication. Business and marketing studies demonstrate that new product development processes do not succeed on good technical invention alone. To succeed, the invention must be appropriately communicated to a market and iterated through dialogue with potential stakeholders.
We explore this issue by examining communication-related challenges, abilities and barriers from the perspectives of innovators trying to enter an unfamiliar, foreign market. Specifically, we summarize results of a set of studies conducted in the Gyeonggi Innovation Program (GIP), an entrepreneurship program formed by a partnership between the University of Texas at Austin and Gyeonggi-Do Province in South Korea. Through the GIP, Korean entrepreneurs attempt to expand domestically successful product ideas to the American market. The study results demonstrate that these innovators must deal with a broad range of challenges, particularly (1) developing deeper understanding of market needs, values, and cultural expectations, and (2) producing pitches with the structure, claims and evidence, and engagement strategies expected by American stakeholders. These studies confirm that a deeper understanding of successful new product development (NPD) projects requires not only a culturally authentic NPD process model, but also communication-oriented research.
The GIP approach offers insights into good programmatic concept and effective methods for training engineers to become entrepreneurs. Yet we also identify potential improvements for such programs. Finally, we draw implications for studying entrepreneurship communication.IC2 Institut
Identification of a mitochondrial receptor complex required for recognition and membrane insertion of precursor proteins
Explicit Decomposition Theorem for special Schubert varieties
We give a short and self-contained proof of the Decomposition Theorem for the
non-small resolution of a Special Schubert variety. We also provide an explicit
description of the perverse cohomology sheaves. As a by-product of our
approach, we obtain a simple proof of the Relative Hard Lefschetz Theorem.Comment: This is an extensively revised version of my previous paper, taking
care of the referee's comment
- …
