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Abstract: Oral diabetes-specific nutritional supplements (ONS-D) induce favourable postprandial
responses in subjects with type 2 diabetes (DM2), but they have not been correlated yet with incretin
release and subjective appetite (SA). This randomised, double-blind, cross-over study compared
postprandial effects of ONS-D with isomaltulose and sucromalt versus standard formula (ET) on
glycaemic index (GI), insulin, glucose-dependent insulinotropic polypeptide (GIP), glucagon-like
peptide 1 (GLP-1) and SA in 16 individuals with DM2. After overnight fasting, subjects consumed
a portion of supplements containing 25 g of carbohydrates or reference food. Blood samples were
collected at baseline and at 30, 60, 90, 120, 150 and 180 min; and SA sensations were assessed
by a visual analogue scale on separate days. Glycaemic index values were low for ONS-D and
intermediate for ET (p < 0.001). The insulin area under the curve (AUC0–180 min) (p < 0.02) and GIP
AUC (p < 0.02) were lower after ONS-D and higher GLP-1 AUC when compared with ET (p < 0.05).
Subjective appetite AUC was greater after ET than ONS-D (p < 0.05). Interactions between hormones,
hunger, fullness and GI were found, but not within the ratings of SA; isomaltulose and sucromalt
may have influenced these factors.

Keywords: glycaemic index; incretins; subjective appetite; isomaltulose; sucromalt; nutritional
supplement
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1. Introduction

Diabetes mellitus (DM) is a complex metabolic disorder associated with long-term complications
as a result of the interplay of genetic, epigenetic, environmental and lifestyle factors [1]. Nowadays,
DM is considered a pandemic health problem and one of the top 10 killers, responsible for 1.6 million
deaths in 2016 [2]. According to International Diabetes Federation projections, by 2045, 629 million
people will be afflicted by DM, exhibiting the fastest rising prevalence of this phenomenon in the
history of humanity, which the highest prevalence rates in North America and the Caribbean [3].
Thus, the epidemiological impact of this disease is translated into higher public health expenditures
worldwide [4,5].

One of the most important strategies for the prevention and treatment of DM has been
correct management of carbohydrate consumption, having been reviewed in dietary guidelines
and recommendations stated by many scientific organisations worldwide [6]. The American Diabetes
Association (ADA) has highlighted this need, considering nutritional therapy as the fundamental
basis of glycaemic control in DM patients [7]. Besides that, the European Association for the Study
of Diabetes (EASD) has also focused its recommendations on the amount and type of carbohydrates
consumed [8], generating considerable interest in low glycaemic index (LGI) food prescription for
management of DM2 [9]. Indeed, a recent international expert consensus debated about the clinical
role of GI and glycaemic load (GL) in DM management [10], concluding that low GI and low GL diets
have been associated with a reduction in the glycaemic response variability [11], and better appetite
control [12,13]. This phenomenon leads us to hypothesise that lower insulin responses exhibited by
these supplements could promote satiety and fullness [10,12–14].

Nutritional approaches to type 2 diabetes usually include novel strategies in dietary advice,
especially in oral nutritional supplements (ONS) prescription as part of the management of some DM
comorbidities or as a complement for daily diet [15,16]. Any ONS designed for people with diabetes
(ONS-D) provides better control in postprandial glucose and glycated haemoglobin (HbA1c) when
compared with standard supplements [17], since they are lower in total carbohydrate content (with
a variety of sugar substitutes) and enriched with fibre and monounsaturated fatty acids [16,18,19].
Dietary fat and carbohydrate modifications modulate postprandial glycaemic responses by a reduction
in glucose absorption rate [20].

The increase in peripheral glucose uptake via entero-insular axis peptides (EIAPs) such as
the glucose-dependent insulinotropic peptide (GIP), glucagon-like peptide 1 (GLP-1), and insulin
are a group of synergistic pathways counteracting undesirable glucose postprandial peaks [21].
Furthermore, a decrease in GIP secretion drives to adipocyte hypertrophy arrest and insulin resistance
amelioration [22]. By contrast, GLP-1 has a direct suppression effect on appetite and protects pancreatic
β-cells from programmed cell death [22,23]. It is well known that beverages have a faster gastric
emptying and intestinal transit speed than solid food, which results in a rapid glycaemic response
and lower perception of satiety [13,23]. For these reasons, the strategies of specific oral supplements
designed for people with diabetes should include adaptation in the overall nutrients content [18,19].
Therefore, variations in both EIAP action and gastric emptying modulation by diet could play
a fundamental role in short-time appetite regulation and energy intake [24,25].

Use of ONS-Ds in malnourished or sarcopenic diabetic patients enhances energy intake and
overall nutritional status, improving glycaemic control, and thus, cause indirect economic benefits [19].
A meta-analysis by Elia et al. [15] on a total of 23 studies and 784 patients receiving oral supplements or
tube feeding showed that when compared with standard supplements, ONS-D significantly reduced
postprandial rise in blood glucose, peak blood glucose concentration and glucose area under the curve
(AUCG) with no significant effects on HDL, total cholesterol, or triglyceride levels. Furthermore,
this study reported a reduced insulin requirement (26–71% lower) and fewer complications in patients
with ONS-D therapy when compared with standard nutritional supplements [15]. Therefore, in order
to tighten glycaemic control, starch modification and sugar substitution [16,26] has become a primary
strategy in the formulation of these supplements [15,16]. However, there is a compelling need to
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conduct more studies in special situations such as hospitalised patients, older people with DM2 or
end-stage kidney disease and patients with cancer [27,28].

Recent evidence suggests a favourable glycaemic response after nutritional supplement intake with
sucromalt (a natural analogue of sucrose with a lower glycaemic response) in diabetic patients [18,29,30].
Isomaltulose, another sucrose replacer, is a disaccharide composed of glucose and fructose linked by
an alpha-1,6-glycosidic bond exhibiting prolonged absorption, LGI (GI = 32), and a 20–25% lower
hydrolyzation rate when compared with sucrose [31]. Interestingly, GIP and GLP-1 secretion are
affected by this disaccharide [32], resulting in a better insulin secretion profile [33] and a possible
reduction in postprandial appetite [34].

Moreover, a study by Pfeiffer et al. [32] gave evidence on the relationship between high-glycaemic
index carbohydrates and a faster GIP release pattern in patients with fatty liver disease, subclinical
inflammation, DM2 and cardiovascular diseases. On the other hand, LGI carbohydrate consumption
would induce a lower GIP release and a higher release of GLP-1 [32], promoting a better metabolic
markers profile in both healthy and type DM2 individuals [18]. Therefore, these authors propose the
GIP release rate as a determining factor in the “metabolic quality” and in consequence, relevant criteria
for the selection of dietary carbohydrates [32].

Several studies in DM-2 subjects have explored incretin release after consumption of oral nutritional
supplements with sucromalt or isomaltulose [18,35]; however, GI and GL have only been studied in
healthy subjects [35,36] and not in diabetic patients. Likewise, the correlation between the glycaemic
response (GI/GL) and SA as well as EIAP behaviour is not sufficiently well described to date, especially
during ONS-D intake, digestion and absorption time.

Based on available literature, we hypothesised that an ONS-D that contains slow-digesting
carbohydrates (isomaltulose or sucromalt) resulting in a significant release of GLP-1 and lower
secretion of both GIP and insulin. As consequence, a reduction in GI/GL index and subjective
postprandial appetite ratings would be found when compared with standard nutritional supplements.
Thus, the aim of this study was to assess sucromalt/isomaltulose ONS-D effects on the glycaemic
response (GI/GL), EIAP release and postprandial SA in type 2 diabetic individuals.

2. Materials and Methods

2.1. Study Design

2.1.1. Design and Ethics Issues

A randomised, double-blind, cross-over study was conducted according to Good Clinical Practice
Guidelines, applicable Food and Drug privacy regulations and ethical principles based on the World
Medical Association-Helsinki Declaration [37]. This research was approved by the Human Research
Ethics Committee of the Endocrine and Metabolic Diseases Research Centre (EMDRC), “Dr. Félix
Gómez”, School of Medicine at the University of Zulia, Venezuela, and then registered in Clinical
Trials.gov (https://clinicaltrials.gov/ct2/show/NCT03829800).

2.1.2. Inclusion and Exclusion Criteria

This study included both male and female DM2 subjects over 50 years old who attended
the outpatient diabetes medical clinic at EMDRC [37]. The only antidiabetic therapies allowed
were diet/physical activity and/or metformin monotherapy. Body mass index (BMI) between
18.5 kg/m2–35 kg/m2 was the only compelling anthropometric marker in order to be included in this trial.
Patients with diabetes mellitus type 1 (DM1), diabetic ketoacidosis, hypothyroidism/thyrotoxicosis
congestive heart failure, gastric, kidney or hepatic diseases, myocardial infarction, stroke and subjects
with insulin therapy or sulfonylureas, antibiotic therapy or corticosteroids, end-stage organ failure,
or individuals with organ transplantation, coagulation disorder, bleeding disorders, chronic infectious
disease (such as tuberculosis, hepatitis B or C or HIV) were excluded.

https://clinicaltrials.gov/ct2/show/NCT03829800
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2.1.3. Population, Sample Size, and Patient’s Selection

Taking into account the criteria mentioned above, the whole EMDRC electronic medical record
database was filtered obtaining a population of 57 eligible patients. Literature regarding GI and GL
suggests 8 to 10 subjects for a proper meal/supplement assessment [10,36,38]. Thus, a random selection
of 23 DM2 patients was made with the purpose of obtaining a sample size with a reasonable accuracy
in determining the ONS-D glycaemic impact, GI and GL [36,38]. Since postprandial glycaemia and
glycaemic index was our primary outcome, this study was powered to detect the difference among
the AUCGs after consuming three oral nutritional supplements (effect size = 0.79) [20,24,35,36,38].
Based on our calculation, at least 15 participants were needed to detect this effect size at 80% statistical
power using a cross-over study design [24]. Assuming an attrition rate of 30%, 23 participants were
recruited in this study. Eligible subjects were contacted by phone and invited to attend a medical
screening visit in order to: (1) be invited to participate in the study, (2) verify if the participant met the
inclusion criteria and, (3) asked to give their written consent before beginning the study.

2.1.4. Anthropometric Assessment

Anthropometric data were obtained in fasting state, using light clothing and no shoes. For weight
determination and electric bioimpedance study, an UM-018 Digital Scale (Tanita, Tokyo, Japan) was
used. Height was measured using a SECA 216 stadiometer (Hamburg, Germany). Body mass index
was calculated using the equation: BMI (kg/m2) = mass (Kg)/height (m2).

2.2. Study Protocol

2.2.1. Oral Nutritional Supplements Composition

In this study, three oral nutritional supplements were examined: (1) non-diabetes-specific
standard oral nutritional supplements (ET; Ensure® Abbott Nutrition, Columbus, OH, USA); (2) oral
supplements with a blend of slow-digesting carbohydrates including resistant maltodextrin and
sucromalt (GS; Glucerna SR® Abbott Nutrition, Columbus, OH, USA); and (3) oral supplements
composed of lactose, isomaltulose, and resistant starch (DI; Diasip® Nutricia Advanced, Medical
Nutrition, Dublin, Ireland).

The macronutrient composition of these formulas per 100 mL is shown in Table 1. Considering
that two of the supplements contained a relatively low amount of total carbohydrates, a standardised
portion with 25 g of this nutrient was administered in each patient for all tests. This criterion is
recommended when the carbohydrate load in the food is low, in order not to overestimate portion
size [35,38]. Therefore, all supplements were compared with a glucose load of 25 g (GB), as a reference
food (anhydrous glucose dissolved in 250 mL plain water) (100 Kcal) [35,38]. It is important to mention
that there was no significant difference in the volume of formulations supplied in this study (Table 2).

Table 1. Macronutrient composition of the oral nutritional supplements per 100 mL.

Composition ET DI GS

Calories (kcal) 105 104 93
Protein (g) 3.8 4.9 4.3

Fat (g) 2.5 3.8 3.5
Saturates (g) 0.4 0.5 0.3

Monounsaturates (g) 0.8 2.2 2.1
Polyunsaturates (g) 1.3 1.1 0.9

Total carbohydrate (g) 17.3 11.7 10.9
Sugar (g) 10.0 8.3 1.7

Dietary Fibre (g) 1.0 2.0 1.8
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Table 1. Cont.

Composition ET DI GS

Soluble (g) 0.0 1.6 1.8
Non-soluble (g) 0.0 0.4 0.0
Chromium (µg) 12.7 12.0 5.0

Portion size (mL) 100 100 100

Ensure® (ET): A standard oral nutritional supplement which is non-specific for diabetic patients. Diasip® (DI):
Isomaltulose and resistant starch oral nutritional supplement. Glucerna® (GS): Resistant maltodextrin and sucromalt
oral nutritional supplement.

Table 2. Nutrient composition of oral nutritional supplements based on 25 g available carbohydrate.

Composition ET DI GS

Calories (kcal) 149 223 214
Protein (g) 5.3 10.5 9.9

Fat (g) 3.5 8.1 8.1
Saturates (g) 0.5 1.0 0.6

Monounsaturated (g) 1.1 4.7 4.9
Polyunsaturated (g) 1.8 2.3 2.0

Total carbohydrate (g) 25.0 25.0 25.0
Sugar (g) 14.1 8.3 0.0

Dietary Fibre (g) 0.9 4.3 4.1
Soluble (g) 0.0 3.4 4.1

Non-soluble (g) 0.0 0.8 0.0
Chromium (µg) 12.4 25.8 11.5

Portion size (mL) 141 214 230

Ensure® (ET): A standard oral nutritional supplement not specific for diabetic patients. Diasip® (DI): Isomaltulose
and resistant starch oral nutritional supplement. Glucerna® (GS): Resistant maltodextrin and sucromalt oral
nutritional supplement.

The three oral nutritional supplements delivered energy ranging from 149 to 223 kcal (Table 2).
Both DI and GS contained 208 kcal per 200 mL versus 205 Kcal per 220 mL, respectively (recommended
daily serving size). Supplement DI had a lower percentage of carbohydrate (47 energy%) and protein
(19%) but higher percentage of fat (32 energy%, of which 18.5% was monounsaturated fatty acids
(MUFAs). On the other hand, the composition of GS was more comparable with DI; a lower percentage
of carbohydrate 47.7% and protein 18.42%, and higher percentage of fat 33.81% (MUFA: 20.5%),
while the composition of ET had a higher percentage of carbohydrate: 55.68%; lower percentage of fat:
29.45%; and protein: 14.87%; with 250 Kcal per 237 mL. The GI values were calculated according to the
information reported in the nutritional labelling of each supplement.

2.2.2. Experimental Protocol

Background Diet, Physical Activities and Other Measurements

Subjects were informed about diet and physical activity restrictions to be followed before each
session, which included: (1) 10–12 h fasting, (2) abstinence from alcohol, caffeine or smoking and not
exercising excessively 24 h before each session; (3) avoiding the metformin morning dose or other
medications allowed on trial days until instructed, and to do so at the health centre. Participants were
evaluated before each treatment by a licenced nutritionist. In this evaluation, patients had to submit
a 3 day food record in order to confirm adherence to the meal plan. The day before the administration
of supplements, the nutritionist recommended a standardised dinner before 21:00 and were asked
not to consume anything before arriving at the laboratory except water, which was allowed until
midnight [14,39]. In order to ensure that participants complied with established protocols, they had to
complete a compliance survey. In case they did not comply with the previous test protocols, the test
sessions were rescheduled.
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During the appetite test sessions, patients engaged in 60 min of sedentary activities (word puzzles,
reading, board games, etc.) [14,39]. The activities were performed in a friendly, non-competitive
manner to avoid emotional excitement or stress. Any food-related topics were avoided for the duration
of the sessions [14]. Research team members evaluated the compliance of the experimental protocol
verifying the correct administration to all patients in each visit. Participants had access to water during
the day of the trial. The leading investigator reviewed these records before performing the food
tolerance test. During each test day subjects were allowed to drink water each hour (maximum 150 mL
each hour) immediately after filling in the appetite questionnaires. Water consumed during the test
session on the first day was recorded and repeated on the other test days [14,39].

Randomisation

All participants were randomly assigned to eight consumption tests: two for the standard
glucose solutions and two for each of the three nutritional supplements. This scheme was carried
out with an interval of 1 week between tests in random sequences. The test supplement selection
was randomised using a computerized randomisation matrix. The order of supplement was further
randomised for each subject. The number of tests in each patient was done according to methodological
considerations for glycaemic index protocols [38]. Appetite was assessed twice for the same subject
before and after supplement intake on two different occasions [14,39].

Previous-evening lunch standardisation: the dinner consumed by all participants the night
before each session day consisted of meat with boiled rice and a fruit cake for dessert ∼505 kcal [14].
The energy content of this meal was 35% of the daily estimated energy needs of each participant [40].
The distribution of energy in the evening meal was 50% from carbohydrate, 37% from fat and 13%
from protein [14,39].

2.3. Measurement of EIAP/GI and Subjective Appetite Evaluation

2.3.1. EIAP and Glycaemic Index

Participants attended the EMDRC following 10–12 h fasting at 07:00. Both duplicated blood
capillary samples (0.5 mL) and venous samples were taken in basal state, and then each patient was
randomly assigned to drink one of both the ONS (ET DI or GS) supplement or the reference food
(glucose 25 g in plain water) during a period not exceeding 15 min [35,36,38]. The reference food (GB)
(glucose solution) was used for glucose and insulin AUC determination only. Subsequently, samples
of capillary and venous blood were obtained at 30, 60, 90, 120 and 180 min for serum glucose, insulin,
GIP and GLP-1 measurement. During this phase, subjects were comfortably seated in a room with
a quiet environment [38]. This process was repeated seven more times, on different days, with one
week interval until all consumption tests were done [36,38].

2.3.2. Subjective Appetite Assessment

The appetite sensations measured in this study were: hunger, desire to eat, prospective food
consumption and fullness assessed on different days from those in which the GI was determined.
The visual analogue scale (VAS) chart was supplied in every session [39] and the subjects were asked
to fill this instrument at baseline (0 min), 30, 60, 90, 120, 150 and 180 min after the ingestion of
each supplement. This instrument contemplates four questions: What is your feeling of fullness?
How hungry are you? How intense is your desire to eat? And how much food do you think you could
eat? [14,39].

The VAS structure consisted of 100 mm lines anchored at each end with opposite statements
with a scale of 0 to 100 mm, in which 0 means absence of perception and 100 maximum perception.
The distance between 0 and the marked point (an “x” placed by the participants on the line to indicate
their assessment at that time) was measured to quantify the perceived sensations. The score was
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calculated by measuring the distance in millimetres from the beginning of the line to the “x” position
(from left to right) [39].

The following equation was used to calculate the ratings of subjective appetite [41]: “Subjective
appetite = (desire to eat + hunger + (100 − fullness) + prospective food consumption)/4”.

2.3.3. Laboratory Determinations

Capillary glycaemia was determined by the glucose oxidase method using a portable glucometer
(Optium Xceed, Abbott Laboratories, Dallas, TX, USA) Both intra-assay and inter-assay coefficients of
variation were 3.2 and 10.8%, respectively. Plasma Insulin (mU/L) was measured by an enzyme-linked
immunosorbent assay (10-1113; Mercodia, Uppsala, Sweden) with a minimum detectable limit of
1.0 mU/L, and an intra- and inter-assay variation coefficients of 3.0% and 8.7%. Glycated haemoglobin
HbA1c was determined using a cationic exchange resin separation method (SIGMA, St. Louis, MO,
USA). Plasma total GIP (pg/mL) and GLP-1 (pmol/L) were measured by radioimmunoassay (RIA)
(SIGMA, St. Louis, MO, USA). The minimum detectable limits were 2 pmol/L and 3 pmol/L with
an intra- and inter-assay coefficient of variation for GIP of 3.9% and 9%, and for GLP-1 6.3% and
10.3%, respectively. Total cholesterol, triacylglycerides, and HDL-C were determined by commercial
enzymatic-colorimetric kits (Human Gesellschaft für Biochemica und Diagnostica MBH, Wiesbaden,
HE, Germany). Serum LDL-C levels were calculated according to Friedewald’s equation.

2.4. Data Processing and Statistical Analyses

Statistical analyses were performed using IBM SPSS Statistics for Windows, version 23.0 (IBM
Corp., 2015, Armonk, NY, USA). Shapiro–Wilk test was used for the normality distribution assessment
of quantitative variables.

Incremental areas under the curves (IAUCs) were determined according to the trapezoidal
method for all variables using NCSS statistical software version 12.0 (NCSS, LLC, 2018, Kaysville, UT,
USA). A 2 h glycaemic response curve was generated for each subject for test foods. Any area below
the baseline fasting value was ignored. The calculated median of AUCG for three test foods from
16 participants was compared with the response to reference food or glucose solution (median of two
measurements), and the GI value of the glucose solution was set as 100.

The GI was calculated using the following equation [36,38]: GI = (AUCG value for the test
food/AUCG value for the reference food) × 100.

Data obtained was classified in low GI (≤55), intermediate (55–69) and high (≥70) [41]. Glycaemic
load (GL) was represented by a derivative measure of the GI of the nutritional supplement tested and
calculated by the following formula: GL = (GI × grams of carbohydrate per food portion)/100 [36,38].

All quantitative variables were presented as mean ± standard error of the mean (SEM). Plasma
glucose, insulin, GIP, GLP-1, perceptions of hunger, desire to eat, prospective food consumption,
fullness and SA had a normal distribution and its arithmetic means were analysed using ANOVA for
repeated measures with the Tukey’s HSD (honestly significant difference) test. Significant statistical
differences between ONS were evaluated through one-way ANOVA. The bivariate relation between
variables such as the AUC, blood glucose, EIAP and SA was analysed by correlation coefficients for
each oral test. Statistical significance was accepted at p < 0.05.

3. Results

At the beginning of the study, the initial sample was 23 individuals (12 women, 11 men), but seven
subjects did not complete the trial for different reasons: (1) two subjects needed both corticosteroid
and antibiotic therapy; (2) two subjects initiated a vigorous physical activity program by medical
prescription; and (3) three voluntarily withdrew from the study. At the end of the study, only 16 subjects
(seven women and nine men) completed all the test protocols. Table 3 shows the general characteristics
of the sample.
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Table 3. General characteristics of the enrolled patients.

Sex

Female Male Total

Mean SEM * Mean SEM Mean SEM

Age (years) 54.75 1. 65 57.83 1.35 56.0 1.11
Weight (cm) 87.75 3.73 90.17 1.22 89.0 1.58
Height (m) 1.68 0.04 1.69 0.01 1.68 0.01

BMC (kg/m2) 30.90 0.44 31.04 0.36 30.8 0.26
Waist circumference (cm) 106.00 1.58 111.00 0.89 106 0.77

Base glycaemia
(mmol/L) 7.51 0.40 6.75 0.30 7.05 0.26

Total cholesterol (mg/dL) 209.60 5.71 213.77 8.84 212.10 5.56
High-density lipoprotein (mg/dL) 44.70 4.63 44.30 2.32 44.46 2.16
Low-density lipoprotein (mg/dL) 130.95 4.37 133.28 1.54 132.35 1.87

Triglycerides (mg/dL) 161.70 2.56 158.06 4.45 159.52 2.80
Glycated haemoglobin HbA1c (%) 6.95 0.30 6.98 0.30 6.97 0.20

* Standard error of the mean. There were no significant differences between sexes.

The protocol was well tolerated by all subjects. No individual reported nausea, dizziness or
vomiting after taking the nutritional supplements or the reference product. Basal concentrations of
serum glucose, insulin, GLP-1 and GIP (Table 4 and Figure 1) did not show significant differences
according to sex or among weekly visits. Similarly, hunger perception, fullness, desire to eat, prospective
food consumption in fasting state and SA ratings (Table 5 and Figure 2) did not show significant
differences among gender or study session (p > 0.05).

Table 4. Serum glucose concentration and EIAP according to each treatment.

Supplement Time (min) Serum Glucose
(mmol/L)

Insulin
(mU/L)

GLP-1
(pmol/L)

GIP
(pg/mL)

0 6.52 ± 0.07 6.44 ± 0.32 6.26 ± 0.28 29.64 ± 0.50
30 10.14 ± 0.07 bc 22.84 ± 1.00 bc 12.93 ± 0.21 bc 55.44 ± 0.58 bc

60 10.80 ± 0.12 bd 33.91 ± 0.97 bc 8.35 ± 0.22 bc 62.27 ± 0.89 bc

ET 90 9.39 ± 0.16 b 36.20 ± 0.64 bc 7.78 ± 0.15 b 74.68 ± 0.72 bc

120 8.76 ± 0.17 b 25.90 ± 0.70 bc 7.16 ± 0.27 b 71.23 ± 0.36 bc

150 8.14 ± 0.21 bc 16.80 ± 0.56 bc 6.55 ± 0.12 b 67.77 ± 0.50 bc

180 7.13 ± 0.21 b 9.91 ± 0.81 5.99 ± 0.21 b 62.86 ± 1.26 bc

0 6.64 ± 0.08 6.49 ± 0.11 6.95 ± 0.36 c 29.97 ± 0.40
30 6.68 ± 0.13 ac 17.24 ± 0.31 a 18.16 ± 0.26 ac 45.57 ± 0.42 a

60 9.10 ± 0.06 ac 18.16 ± 0.24 ac 14.75 ± 0.24 ac 50.85 ± 0.15 ac

GS 90 8.53 ± 0.07 ac 19.09 ± 0.20 a 12.73 ± 0.24 ac 54.23 ± 0.21 ac

120 7.92 ± 0.05 ac 14.38 ± 0.16 ac 11.63 ± 0.14 ac 55.99 ± 1.09 ac

150 6.98 ± 0.12 a 12.93 ± 0.19 a 10.86 ± 0.19 ac 57.87 ± 0.31 a

180 6.16±0.10 a 10.87 ± 0.18 8.91 ± 0.21 ac 52.85 ± 1.69 ac

0 6.66 ± 0.10 6.50 ± 0.40 6.20 ± 0.53 28.70 ± 1.07
30 7.47 ± 0.12 ab 19.04 ± 0.27 a 14.51 ± 0.22 ab 46.00 ± 0.71 a

60 10.17 ± 0.05 ab 24.86 ± 0.35 ab 10.26 ± 0.11 ab 56.51 ± 1.12 ab

DI 90 9.10 ± 0.05 b 21.14 ± 0.36 a 8.09 ± 0.17 b 63.78 ± 0.63 ab

120 8.56 ± 0.07 b 17.98 ± 0.30 ab 7.35 ± 0.14 b 61.10 ± 0.51 ab

150 7.33 ± 0.07 a 13.24 ± 0.25 a 6.95 ± 0.09 b 57.52 ± 0.50 a

180 6.61 ± 0.12 11.13 ± 0.21 6.56 ± 0.20 b 45.19 ± 0.96 ab

Treatment groups were defined as a standard nutritional supplement not specific for people with diabetes
(ET); resistant maltodextrin and sucromalt supplement (GS); isomaltulose and resistant starch supplement (DI).
GIP: glucose-dependent insulinotropic polypeptide; GLP-1: glucagon-like peptide 1; SEM: standard error of the
mean. a p < 0.05 versus ET. b p < 0.05 versus GS. c p < 0.05 versus DI.
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Figure 1. Time course and AUC0–180 min of serum glucose, insulin GIP and GPL-1 concentrations
following ingestions of GB, ET, GS and DI. (A) Glucose in relation with time and AUC0–180 min, (B) insulin
in relation with time and AUC0–180 min, (C) GIP in relation with time and AUC0–180 min, and (D) GLP-1
in relation with time and AUC0–180 min for all the different types of treatments. Data are expressed as
means ± SEM; n = 16. The same colour scheme was used for all the graphs. All AUC0–180 min means
significant differences (p < 0.02) in each group. Treatment groups: (GB) Glucose solution or reference
product; (ET) standard nutritional supplement not specific for diabetics; (GS) resistant maltodextrin
and sucromalt supplement; (DI) isomaltulose and resistant starch supplement. GIP: glucose-dependent
insulinotropic polypeptide; GLP-1: glucagon-like peptide 1.
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Table 5. Subjective appetite measurements according to each treatment.

Supplement Time (min) Hunger
(mm)

Fullness
(mm)

Desire to Eat
(mm)

Prospective Food Consumption
(mm) SA (mm)

0 63.80 ± 1.70 34.30 ± 0.88 61.80 ± 1.14 21.40 ± 1.88 53.18 ± 0.40
30 33.60 ± 2.45 62.50 ± 1.60 b 32.10 ± 1.19 28.90 ± 2.04 b 33.03 ± 0.91 bc

60 37.10 ± 1.10 bc 55.70 ± 2.32 b 42.60 ± 1.11 bc 35.50 ± 0.91 bc 40.08 ± 0.56 bc

ET 90 46.00 ± 1.00 bc 38.40 ± 3.14 bc 43.40 ± 0.82 bc 38.00 ± 1.97 b 47.05 ± 1.08 bc

120 47.20 ± 1.58 bc 32.60 ± 2.02 bc 46.00 ± 1.00 bc 41.80 ± 0.95 bc 50.60 ± 0.53 bc

150 56.60 ± 1.41 bc 30.40 ± 2.10 bc 54.30 ± 1.39 bc 46.80 ± 1.44 b 56.83 ± 0.74 bc

180 70.60 ± 1.92 bc 20.50 ± 1.71 bc 73.60 ± 1.06 bc 55.90 ± 1.27 b 69.90 ± 0.91 bc

0 66.40 ± 1.42 32.50 ± 1.76 63.50 ± 0.93 19.20 ± 0.80 54.15 ± 0.62
30 30.80 ± 1.78 70.10 ± 2.12 a 30.80 ± 1.65 20.60 ± 0.69 a 28.03 ± 0.85 a

60 28.50 ± 1.66 a 65.90 ± 1.57 a 27.80 ± 1.80 ac 22.00 ± 1.09 ac 28.10 ± 0.58 ac

GS 90 27.30 ± 1.95 ac 63.70 ± 1.92 ac 31.00 ± 1.69 a 24.40 ± 1.75 ac 29.75 ± 0.93 ac

120 29.80 ± 1.70 ac 58.60 ± 1.99 ac 35.60 ± 0.83 a 33.30 ± 1.12 a 35.03 ± 0.77 ac

150 34.30 ± 1.16 ac 46.00 ± 1.74 ac 43.90 ± 1.16 a 36.60 ± 0.90 ac 40.20 ± 0.42 ac

180 62.30 ± 1.51 a 34.90 ± 1.47 ac 58.80 ± 1.90 a 45.00 ± 1.32 ac 57.80 ± 0.64 ac

0 63.20 ± 1.30 32.80 ± 1.18 65.20 ± 1.24 21.40 ± 1.27 54.25 ± 0.59
30 32.30 ± 1.50 a 68.40 ± 1.38 29.60 ± 1.97 23.90 ± 1.30 29.35 ± 0.85 a

60 28.60 ± 2.03 ab 60.60 ± 1.35 34.60 ± 1.48 ab 25.50 ± 0.91 ab 32.03 ± 0.68 ab

DI 90 33.90 ± 1.38 ab 54.80 ± 1.17 ab 35.00 ± 1.22 a 35.00 ± 1.02 b 37.28 ± 0.64 ab

120 39.00 ± 1.13 ab 45.90 ± 1.49 ab 36.90 ± 1.17 a 36.70 ± 1.27 a 40.93 ± 0.58 ab

150 44.90 ± 0.99 ab 38.30 ± 2.39 ab 47.40 ± 1.97 a 44.90 ± 1.50 b 49.73 ± 0.63 ab

180 60.60 ± 2.02 a 27.00 ± 1.71 ab 61.90 ± 2.36 a 52.00 ± 1.21 b 61.88 ± 076 ab

Treatment groups were defined as a standard nutritional supplement not specifically for people with diabetes (ET); resistant maltodextrin and sucromalt supplement (GS); isomaltulose
and resistant starch supplement (DI). GIP: glucose-dependent insulinotropic polypeptide; GLP-1: glucagon-like peptide 1; SEM: standard error of the mean. a p < 0.05 versus ET. b p < 0.05
versus GS. c p < 0.05 versus DI. SA: Subjective appetite.
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Figure 2. Time course and formula of postprandial perception of hunger, desire to eat, fullness,
prospective food consumption, subjective appetite and AUC0–180 min values following ingestions of GB,
ET, GS and DI. (A) hunger in relation with time and formula; (B) desire to eat in relation with time and
formula, (C) fullness in relation to time and formula, (D) prospective food consumption in relation with
time and formula and (E) subjective appetite in relation with time and formula. Data are expressed as
means ± SEM, (n = 16). Data comparisons about differences in subjective measurements of appetite
according to consumption tests are described in Table 5. The same colour scheme was used for all
graphs. All means of AUC0–180 min showed significant differences (p < 0.02) in each group. Treatment
groups: (ET) standard nutritional supplement not specifically for people with diabetes. (GS) Resistant
maltodextrin and sucromalt supplement. (DI) Isomaltulose and resistant starch supplement.
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3.1. Glycaemic Response and EIAP Concentrations

Glycaemic curves, as well as the mean and SEM of the glucose AUC0–180 min after ingestion of
both the reference product (glucose) and the nutritional supplements, are shown in Figure 1. Glucose
maximum peak was observed at 60 min (Table 4) for all products but significantly higher for GB
15.03 ± 0.20 when compared with ET 10.80 ± 0.12mmol/L (p < 0.001), DI 10.17 ± 0.05 (p < 0.001) and
GS 9.10 ± 0.06 mmol/L (p < 0.001). Glucose at 180 min was significantly higher in comparison with
both, fasting level for GB (p < 0.001) and for ET (p < 0.024). The AUC0–180 min of ET (p < 0.001) was
significantly higher than DI (p < 0.001) and GS (p < 0.01) (Figure 1).

3.1.1. Insulin

Plasma insulin concentrations increased after the consumption of all supplements and the reference
product, reaching significant differences at 90 min for GB (serum peak) in comparison to ET (p < 0.05),
GS (p < 0.001) and DI (p < 0.001), respectively (Figure 1). At 150 min, ET presented a higher glucose
concentration than DSF (p < 0.001), but no significant differences were found in insulin concentration
between DI and GS (p = 0.976), see Table 4. The AUC0–180 min in insulin response was significantly
lower in GS when compared with the other supplements (p < 0.001) (Figure 1).

3.1.2. GLP-1

Maximum GLP-1 concentration was observed at 30 min after the intake of the three supplements,
significantly higher for GS in comparison to ET (p < 0.05) and DI (p < 0.05). At 150 min, concentrations of
GLP-1 in ET and DI supplements were similar (p = 0.841), but the value of this incretin was significantly
higher for GS when compared with both, ET (p < 0.001) and DI (p < 0.001), (Table 4). The AUC0−180 min

of the GLP-1 response was significantly higher in GS in contrast to the ET (p < 0.001) and DI (p < 0.001),
(Figure 1).

3.1.3. GIP

The GIP plasma concentration increased after consumption of all supplements. The maximum
peak of this incretin was observed at 90 min with ET and DI, which was higher when compared
to GS levels (p < 0.05). At 150 min, ET presented higher GIP concentrations when compared to GS
(p < 0.001) and DI (p < 0.001), however, DSF levels did not show significant differences (p = 0.844),
Table 4. The AUC0–180 min of the GIP response for GS was lower when compared to DI (p < 0.001) and
ET (p < 0.001, (Figure 1).

3.2. Subjective Appetite Measurements

Hunger sensation, fullness, desire to eat, prospective food consumption and SA from baseline
to 180 min are shown in Figure 2. Consumption of the different treatments promoted an immediate
decrease in hunger and desire to eat accompanied by an increase in the perception of fullness, reversing
these sensations over the curve as time passed.

The arithmetic mean of hunger perception decreased after the consumption of all supplements,
registering the lowest level at 30 min for E, while the minimum value for GS was evidenced at 90 min,
significantly lower when compared to ET (p < 0.05) and DI (p < 0.05), (Table 5). The AUC0–180 min of
hunger sensation for GS was significantly lower when compared to ET (p < 0.001) and DI (p < 0.001),
(Figure 2).

Regarding fullness sensation, the maximum level was found at 30 min in the three groups, without
significant differences between DI and GS, while the peak of fullness sensation was significantly
lower with ET (p < 0.05), (Table 5). The AUC0–180 min of this sensation was significantly higher in
GS when compared to DI (p < 0.001) and ET (p < 0.05), (Figure 2). On the other hand, the desire to
eat AUC0–180 min was significantly lower for GS when compared to DI (p = 0.035) and ET (p < 0.001),
(Figure 2).
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This same pattern was evidenced in the prospective food consumption, in which the AUC0–180 min

was significantly lower in GS when compared with ET (p < 0.001) and DI (p < 0.001), (Figure 2).
Subjective appetite SA decreased to a minimum value at 30 min and then increased 60 min after the
three treatments for all subjects; this score was higher with ET when compared to GS (p < 0.01) and DI
(p < 0.01), (Table 5). The AUC0–180 min of SA was significantly lower with GS than with DI (p < 0.01)
and ET (p < 0.001), (Figure 2).

3.3. Correlation Analysis Between EIAP, Serum Glucose and Subjective Appetite

After ET intake, insulin concentration AUC0–180 min and subjective sensation of fullness were
directly related (r = 0.713, p = 0.021), while an inverse relationship between fullness perception and
GLP-1 concentration AUC0–180 min (r = −0.756, p = 0.011) and serum glucose (r= − 0.687; p = 0.028) was
observed. The value SA was directly correlated with serum glucose (r = 0.659, p = 0.038), see Table 6.
No statistically significant correlations were found for AUC0–180 min concentrations of these peptides
with DI and GS.

Table 6. Coefficient correlations between AUC values of glycaemia, EIAP and subjective measurements
of appetite according to consumption tests.

Hunger Fullness Desire to Eat Prospective Food
Consumption

Subjective
Appetite

ET r p r p r p r p r p

Glycaemia 0.060 0.868 −0.687 0.028 0.217 0.547 −0.025 0.945 0.659 0.038
Insulin −0.215 0.552 0.713 0.021 −0.046 0.900 0.362 0.304 −0.437 0.321
GLP-1 −0.133 0.714 −0.756 0.011 0.392 0.262 −0.543 0.105 0.321 0.540
GIP 0.219 0.544 −0.082 0.821 0.486 0.155 0.399 0.253 0.540 0.107

DI r p r p r p r p r p

Glycaemia 0.004 0.992 −0.226 0.530 −0.069 0.849 0.173 0.633 0.357 0.311
Insulin 0.190 0.599 −0.163 0.652 −0.455 0.187 −0.196 0.587 −0.254 0.479
GLP-1 0.483 0.158 0.140 0.700 0.158 0.662 −0.407 0.243 0.098 0.787
GIP 0.294 0.410 0.099 0.785 −0.615 0.058 0.069 0.850 −0.540 0.107

GS r p r p r p r p r p

Glycaemia −0.192 0.595 0.019 0.958 −0.152 0.674 0.128 0.726 −0.154 0.672
Insulin 0.466 0.175 −0.020 0.957 0.217 0.548 −0.175 0.628 0.344 0.330
GLP-1 0.308 0.386 0.072 0.843 0.436 0.208 −0.421 0.226 0.191 0.596
GIP 0.231 0.521 −0.046 0.900 −0.135 0.710 −0.076 0.834 0.086 0.813

Treatment groups: (ET) standard nutritional supplement not specifically for diabetes patients; (DI) isomaltulose
and resistant starch supplement; (GS) resistant maltodextrin and sucromalt supplement. GIP: glucose-dependent
insulinotropic polypeptide; GLP-1: glucagon-like peptide 1; SEM: standard error of the mean. The values presented
correspond to r coefficients and p-value for all subject correlations between subjective perceptions of appetite and
concentrations hormones according to the treatment group. p-values were significant when p < 0.05.

Correlations between baseline and postprandial concentrations at 30, 90 and 120 min of glucose,
EIAP and SA measures were accomplished in all treatments. Insulin at 30 min for ET was inversely
related to hunger sensation (r = −0.745, p = 0.012) and SA (r = −0.849, p = 0.002) (Supplementary
Materials Table S1). DI intake was correlated with glycaemia and prospective food consumption at
30 min (r = 0.775, p = 0.008) and, GLP-1 with the desire to eat at 120 min (r = 0.667 p = 0.035); whereas,
SA was inversely correlated at 30 min with GIP (r = −0.688, p = 0.028) (Supplementary Materials
Table S2).

GS evidenced a direct relationship between glycaemia at 90 min with sensation of fullness
(r = 0.698, p = 0.025) and levels of GIP with sensation of hunger (r = 0.825, p = 0.003). GLP-1 at 30 min
and prospective food consumption were inversely related (r = −0.722, p = 0.018). SA was directly
correlated with blood glucose levels at 30 min (r = 0.711, p = 0.021) (Supplementary Materials Table S3).
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3.4. Glycaemic Index and Glycaemic Load

ET presented a GI mean higher than that calculated for DI (p < 0.001) and GS (p < 0.001),
respectively. Comparing both specific supplements for diabetics, the lowest value for this indicator
was evidenced in GS (p < 0.001). Concerning GL, ET showed the highest mean compared to the rest of
treatments (p < 0.001), and the lowest mean value for DI (11.28 ± 0.14, p < 0.001), (Table 7).

Table 7. Glycaemic index and glycaemic load according to consumption tests.

Treatment Groups Mean ± SEM

Glycaemic Index (GI)

ET 56.40 ± 0.43 bc

DI 51.44 ± 0.60 ab

GS 47.59 ± 0.49 ac

Glycaemic Load (GL)

ET 23.69 ± 0.18 bc

DI 12.04 ± 0.14 ac

GS 11.42 ± 0.12 ab

Treatment groups: (ET) standard nutritional supplement not specifically for people with diabetes; (DI) isomaltulose
and resistant starch supplement; (GS) resistant maltodextrin and sucromalt supplement. SEM: Standard error of
the mean. There were no significant differences between sexes. ANOVA and post-hoc Tukey HSD for intragroup
comparisons; p-value was significant when p < 0.05. a p < 0.001 versus ET. b p < 0.001 versus GS. c p < 0.001 versus DI.

3.5. EIAP and SA Relation with GI and GL

In relation to each supplement, it was found that hunger sensation AUC0–180 min was directly
correlated with GI (r = 0.777, p = 0.008) and GL (r = 0.777, p = 0.008) for ET; while DI, both GI and
GL were inversely related to GIP (r = −0.867, p = 0.001). GS, GI and GL were inversely related with
fullness sensation (r = −0.698, p = 0.025). SA ratings did not correlate significantly with any of these
indexes (p > 0.05), (Supplementary Materials Table S4).

4. Discussion

This study assessed ONS-D with isomaltulose and sucromalt versus a standard oral supplement
on GI/GL, insulin response, incretin release and SA in DM2 patients. In this regard, the main finding
of this study confirmed that ONS-D intake in diabetic subjects stimulated GLP-1 release, reducing
GIP levels with a subsequent decrease in insulin secretion. This particular EIAP pattern promotes
a lower IG/CG index when compared with a standard supplement. In spite of the former, there was
a reduction of SA and AUC0–180 min after ONS-D intake; only correlation between hunger perception,
fullness and some metabolic variables were found after GS intake.

These findings confirm that ONS-D consumption promotes a better metabolic profile in diabetic
subjects than standard supplements, allowing greater control in postprandial appetite. Specifically,
this investigation demonstrates that plasma glucose levels and glucose AUC0–180 min were significantly
lower after the ingestion of ONS-D than ET. Our observations are consistent with previous research
carried out with slow-digesting carbohydrates supplements [18,29,42,43]. In this study, after the
consumption of GS, the mean glycaemic peak was consistent with ADA recommendations for glucose
level < 180 mg/dL (9.99 mmol/L), with elevated HbA1c in DM patients [7] and IDF of 160 mg/dL goal,
both in the postprandial period [6]. Similar to observations by Mottalib et al. [42] this study shows that
serum glucose level after ONS-D ingestion returned to baseline in a shorter period (150 min) when
compared with ET (180 min) [42], see Figure 1 and Table 4 [18,29,42]. These differences in glycaemic
profile can be attributed, at least in part, to the low GI of ONS-D [18,29,35,42], a point of paramount
importance to avoid cardiovascular complications [44] because of pro-inflammatory cytokines and
oxygen free radical overproduction [44,45]. In this trial, the consumption of GS produced lower values
of GI/GL, a lower increment of GIP/insulin and more significant release of GLP-1.
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Among the different factors that influence the GI of a food, the source and carbohydrate type are
very relevant aspects. High GI carbohydrates differ from those with LGI, not only in postprandial
glycaemic and insulinemic response but also in GIP release [45–47]. In this regard, Pfeiffer et al. [32],
suggest a novel concept that encompasses the intake of LGI CHO with a lower release of GIP and
a greater GLP-1 secretion results in improvements of metabolic markers in healthy [45], type 2 and
insulin-resistant individuals [46].

This concept relates to GI of each food to different secretory responses of GIP and GLP -1, which are
released in different segments of the small intestine [21,45–47]. These authors propose that both a fast
and pronounced GIP release in the proximal small intestine by high GI carbohydrates programming
the intermediary metabolism towards useful energy storage but adversely promoting fatty liver
disease [46], insulin resistance [48], obesity [49], subclinical inflammation and hypertriglyceridemia [46].
This program could represent an evolutionary advantage in times that rapid energy storage was
required [32,46]. Complete understanding of the pathophysiological mechanisms of foods with a high
GI provides a basis for the development of nutritional and therapeutic solutions [10,11,41,46].

Nonetheless, it is essential to differentiate the digestion (di, oligo and polysaccharides) and
absorption rate (monosaccharide), from the particular metabolism of each monosaccharide. This is
because certain simple sugars, such as fructose, with a relatively low GI (=23) [36], could induce
insulin-independent additional metabolic effects [50] on uric acid levels, blood pressure, liver cell
triacylglycerides content and hepatic insulin sensitivity when consumed in high amounts [51]. On the
other hand, tagatose is a low GI (=3) monosaccharide [36], that promoting a GLP-1 release in a similar
extent to fructose without any significant GIP secretion response [52] and exhibiting an interesting
glucose-lowering effect [53]. In this study, we assessed two of the most employed slow-digesting
carbohydrates in ONS-D: isomaltulose and sucromalt.

Beneficial metabolic effects have been reported when low GI disaccharides = 32, such as
isomaltulose [31,36], are added to oral supplements in people with DM2 [29]. This disaccharide
has an α-1,6-glycosidic bond replacing the original sucrose´s 1,2-glycosidic linkage by enzymatic
isomerisation rearrangement obtained from beet sugar [33]. This molecular reorganisation leads to
slower digestion and, in consequence, delayed intestinal uptake of glucose and fructose [33,54]. Unlike
sucrose, isomaltulose administration prevents proximal K cells stimulation, secreting less GIP and
promoting a smaller insulin release [32,33]. For its part, the low glycaemic response to sucromalt
showed a sustained increase in GLP-1 secretion at 4 h post intake, suggesting an almost complete
uptake by the small intestine [30]. Thus, it is important to distinguish the effects in GI from those
caused by changes in gut microbiota that occur when sugar reaches the colon and alter microbiome
composition, affecting long-term carbohydrate metabolism and insulin response [55–57].

In this study, ONS-D insulinemic behaviour interestingly showed a lower AUC0–180 min level in ET,
especially after GS at 90 min, the time when the maximum peak of this hormone occurs. Meanwhile,
the maximum insulin concentration after DI intake occurred at the 60 min (Figure 1). The maximum
increase in GIP levels after GS occurred after the rest of the treatments (150 min), but it was only
statistically different from ET (Table 4). Likewise, the AUC0–180 min for GIP was lower for ONS-D
compared with the ET, and lowest for GS versus DI, (Figure 1). This finding could confirm the
theory mentioned above about the effect of slow digestion carbohydrates on the release of insulin
and GIP, although insulinemic peak after ET also occurred in 90 min, but with a much higher incretin
concentration than that produced by ONS (p < 0.05 for both).

It has been proposed that slow-digestion carbohydrates can reach the more distal segments of
the small intestine before being absorbed, hence, stimulating a late-plasma increase of GLP-1 [30,52].
In this trial, the AUC0–180 min of GLP-1 was higher after ONS-D consumption when compared
to ET, and higher for GS when compared with DI, (Figure 1). Our results were similar to those
reported by Devitt et al. [29] regarding metabolic differences after specific supplement ingestion
composed of a variety of carbohydrates like tapioca dextrins, isomaltulose, tapioca starch/fructose and
sucromalt in DM2 patients. In this study, patients showed an increase in AUC0–240 min for GLP-1 after
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sucromalt-based supplement intake, but it was only significantly higher after supplements made with
tapioca dextrin in comparison with the standard ET [29].

Some benefits of increased GLP-1 secretion in DM2 patients are an improvement in
insulin–glucagon ratio, suppression of endogenous glucose production and the increase in first-pass
splanchnic glucose uptake [47,58]. It is currently unclear whether inhibition of L-cell secretion or GLP-1
enhanced degradation entails to the characteristic blunted-effect of this incretin in DM2. Also, the exact
mechanism of GLP-1 effects on glucose control has not yet been elucidated [18,21]. Although there are
studies about this incretin for isomaltulose and sucromalt in healthy subjects [46], other studies have
reported benefits in individuals with metabolic syndrome, obesity and DM2 after isomaltulose versus
sucrose consumption [31,58–60], but few have compared the effects of cross-consumption of pre-loads
elaborated with these types of carbohydrates in DM2. To date, only one study has determined a higher
release of GLP-1 after the consumption of isomaltulose in individuals with diabetes [58]. Our results
showed an AUC0–180 min of GLP-1 higher after the consumption of GS versus DI, (Figure 1) exhibiting
a synergistic effect of these carbohydrates.

In this sense, it is well-known that GLP-1 secretion is directly related to macronutrients composition,
in particular to both carbohydrates and monounsaturated fatty acids (MUFAs) [61,62] without
any significant effect on insulin levels [61,63,64]. This is consistent with our results and with the
Mottalib et al. work regarding GLP-1 secretion and MUFA content in ONS-D when compared to
ET [42]. In a study by Printz [65], adequate glycaemic and insulinemic responses were found after the
intake of three enteral supplements for diabetics in subjects with DM2, but no significant differences
in the release of GIP and GLP-1 were found [65]. In fact, carbohydrates used in Printz’s [65] study,
such as glucose, fructose, lactose and maltose [65], probably resulted in both changes in the final place
of the intraluminal digestion and the speed of absorption, which could explain these results, especially
when comparing the forenamed carbohydrates with those administered in our study. Even though DI
also contains disaccharides such as lactose, its metabolic profile could be sufficient to produce a more
significant GLP-1 release of and less GIP than ET, but not enough to produce a better effect on incretins
and insulin than GS. This observation confirms previous findings that both the amount and type of
carbohydrates and fats influence incretin release 18,24,29,45], as well as in the GI and GL.

Our study could be one of the first demonstrating ONS-D effects on GI in DM2 subjects. In fact,
when compared with glucose solution, the evaluated supplements turned out to have an intermediate
GI value in people with diabetes for ET = 56. Meanwhile for GS = 47 and DI = 51, the result was a low
GI. Whereas, GL was high for ET = 23 and intermediate for GS = 11 and DI = 12, (Table 7). The mean of
these values is higher than the reported in the international GI and GL tables for healthy subjects [36]:
GI for ET = 48, GS = 23, DI = 12; with an intermediate GL: ET = 16, GS = 6 DI = 3. In a randomised
cross-over study conducted by Hofman et al. [35], in which the GI of 12 supplements was evaluated
in healthy subjects, the mean GI value in the ONS-D was 19.4 ± 1.8, and from 42.1 ± 5.9 in standard
supplements [35].

Significant differences have been reported in the GI value of different foods and/or typical foods
between healthy subjects and DM2 [66]. It is well known that the subject’s characteristics does not
have a significant effect on mean IG values [38], but the variation of the values can differ in different
groups, being higher in people suffering from type 1 diabetes (29%) than in healthy subjects (22%)
or in DM2 patients (15%) [38]. Our results are comparable with a previous study in which the GI for
a DM oral specific supplement was assessed in healthy subjects (IG = 27) and DM2 (IG = 54), finding
a significant difference between groups [67].

This situation can be explained by a greater relative increase in the glycaemic response after
consumption of the reference food (GB) in people with diabetes compared to healthy subjects [38,68].
One possible explanation in that a defective insulin secretion is unable to counteract greater glycaemic
excursions in DM2 patients. At the same time [68], healthy people preserve their insulin secretory
machinery, preventing a greater glycaemic increase especially for the lowest digestion rates [38,68].
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As mentioned above, we found a higher GI for DI, even though a lower GI value has been
reported in healthy subjects when compared to the rest of the treatments [35,36]. However, in the
study conducted by Hofman et al. [35], both supplements GS and DI contained fructose 1.9 g/100 mL,
and a higher amount of MUFAs, DI = 3.6 g/100 mL versus GS = 3.8 g/100 mL than the supplements
evaluated in this study, therefore, it is not possible to make an exact comparison [35].

The GI value for DI in DM2 patients could be explained in part by the quantitative sugar content
(which has an 8.3 g versus 0.0 g to GS per portion given in this study) (Table 2). The rest of the
components like both the amount and type of fibre can also influence these results. Moreover, soluble
fibre can decrease the GI by many factors such as postprandial glucose fluctuation cushioning, and,
by its action on intestinal motility, on peptide action and gastrointestinal enzymes [29,69,70].

In this study, total fibre concentration in DI was 2 g/100 mL, whose proportion corresponds to the
80:20 ratio of soluble/insoluble fibre compared to GS, whose total amount corresponds to 1.8 g/100 mL
soluble (Table 1). In this regard, identical fibre concentrations generated different GI, such is the case of
supplements with 1.5 g/100 mL of fibre and with GI = 26 and 17, respectively, in healthy subjects [35,36],
constituted by different fibre mixtures based on fructooligosaccharides, inulin, oligofructose, Arabic
gum, soybean polysaccharides and cellulose. Furthermore, it has been reported that soluble fibre can
stimulate appetite-regulating peptides such as GLP-1 and pancreatic peptide YY (PYY) in rodents as
well as in human [69–71]. It is important to note that DI has resistant starch, whereas GS contains
a modified and resistant maltodextrin linked to soluble fibre [69]. In a study in healthy subjects,
an increase in peptide YY concentrations and GLP-1 was observed alongside a corresponding decrease
in the sensation of hunger and an increased satiety perception after the consumption of tea with 10 g of
this component [69].

Few investigations about OSF-D intake have correlated SA with incretin concentrations as it has
been evaluated in this study. This indicator was quantified through a score that included variables
such as perception of hunger, desire to eat, prospective consumption of food and fullness [14]. It was
observed in this investigation that plasma insulin, GIP and GLP-1 were related to some of these
parameters but observing a lower SA ratings AUC0–180 min in the ET (Supplementary Materials
Table S4). It is known that appetite regulation is a complex process stimulated by several central and
peripheral signals in response to energy and, mainly, to food composition, where emotional, sensory
and environmental factors can influence the overall response [71,72].

There is a lack of consensus regarding GI/GL usefulness in predicting appetite and food
intake [12,73,74]. Although GI is not synonymous with glycaemic response, the debate is anchored to
the controversy toward the effect of postprandial glycaemic level and its effects on SA reduction [14,75].
Some authors state that the evidence about these affirmations are not conclusive [73,76], postulating
that postprandial glycaemic and appetite are not related and considering that insulin response [74],
but not the glycaemic response is the real mediator of the short-term appetite reduction, as shown by
Flint et al. [14,76]. Specifically, Flint et al. has reported that the maximum insulinemic peak after meal
ingestion was related to a decrease in hunger sensation and a satiety increase.

Likewise, in our study, precisely at 30 min and not at the maximum peak, insulin values were
inversely related to the sensation of hunger and the overall of SA rating after ET intake, but not the
perception of fullness (Supplementary Materials Table S1). However, the same behaviour for these
variables was not evident after the consumption of ONS-D. Possibly, this was due to the higher and
faster insulin increase produced by ET at this point of the curve, based on the type and amount of
non-extended release carbohydrates of this ONS, and more than half corresponded to free sugars
(14.1 g/per portion given in this study) (Table 2). Despite this premise, a relationship between glycaemia
concentration and prospective food consumption 30 min after DI intake was found, (Supplementary
Materials Table S2) and a direct relationship between glycaemic levels in 90 min with the sensation
of fullness after the consumption of GS (Supplementary Materials Table S3). The observed feeling of
fullness could be related to another mechanism produced via carbohydrate type and fibre content in GS,
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a supplement that besides sucromalt also has amylase-resistant maltodextrin, in which fibre-viscosity
addition could increase the fullness sensation [69].

It is important to note there was an inverse correlation between GLP-1 levels and prospective
consumption of food 30 min after GS ingestion (Supplementary Materials Table S3). In other
studies [24,77], a relationship between GLP-1 and delayed gastric emptying has been evidenced.
This gastrointestinal response would influence the feeling of fullness after GS intake at this curve
time. Niwano [12] showed that high GI foods consumption are associated with increased hunger and
short-term satiety reduction in humans, but not over the long-term [74].

It is relevant to highlight the inverse correlation between GIP and GI/GL after ONS-D
ingestion (Supplementary Materials Table S4). This finding could confirm the theory proposed
by Pfeiffer et al. [32] regarding the role of this incretin as an indicator of “carbohydrate metabolic
quality” [32]. On the other hand, we confirmed our hypothesis that ONS-D with slow-digesting
carbohydrates strongly stimulates GLP-1 release with a subsequent decrease in GIP and insulin secretion,
promoting a lower IG/CG index in DM2 subjects when compared with a standard supplement. Although
ONS-D reduced the AUC0–180 min of subjective appetite, only GS exhibited both a hunger sensation
decreasing effect and an increased fullness perception in some points of the postprandial response.
Finally, these results were also consistent with Peters et al. [78], who evaluated the digestibility of three
carbohydrates on appetite and its relation to blood glucose levels and postprandial insulin, reporting
that glycaemic response had minimal effects on appetite when the products only differed in the rate
and extension of carbohydrate digestibility [78].

The limitations of our research comprised the lack of evaluation of some variables such as gastric
emptying. Although the number of subjects who completed this study was sufficient to assess GI/GL
accurately, a higher number of patients is recommended for SA evaluation. On the other hand, one of
the strengths of this study is that the results of these indicators, especially GI/GL, could be the first
of their kind in the literature done in diabetic individuals from Latin America. It is also one of the
first to combine these variables with subjective appetite and incretin levels. It would be a matter of
interest to extend the curve’s time after consumption in order to evaluate the intake suppression force
to the following meal, along with intervention protocols regarding intestinal microbiota in this type
of individual.

5. Conclusions

The results of this study showed lower values in postprandial subjective appetite ratings and
better metabolic profile after ONS-D intake when compared to standard supplements. A more
attenuated glycaemic and insulinemic response along with a lower GIP release and higher levels
of GLP-1 confirmed the synergistic effect of slow-digesting carbohydrates along MUFA addition.
Isomaltulose and sucromalt may have influenced these factors. In this study, GI/GL in subjects with
DM2 after ONS-D consumption were lower than the reference food (glucose solution) and the standard
supplement, and lower for GS than DI.

Strategies in food technology, such as intestinal amylase-resistant dextrins along with new
functional fibres, need to be considered in low GI product development in order to obtain adequately
managed metabolic responses of fullness perception after ONS-D consumption. Our study qualifies
two of these supplements as optimal for prescription in people with diabetes when compared with
a standard supplement. However, it is necessary to conduct more investigations allowing to correlate
long-term appetite suppression with the EG/CG of these supplements.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/11/7/1477/s1,
Table S1: Correlation coefficients between biochemical variables and subjective measurements of appetite in
0, 30, 90 and 120 min at standard oral nutritional supplements not specific for diabetic patients (ET). Table S2:
Correlations coefficients between biochemical variables and subjective measurements of appetite in 0, 30, 90
and 120 min at isomaltulose and resistant starch supplement (DI). Table S3: Correlations coefficients between
biochemical variables and subjective measurements of appetite in 0, 30, 90 and 120 min at resistant maltodextrin
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and sucromalt supplement (GS). Table S4: Correlations coefficients between glycaemic index and glycaemia load
with AUC values of hormones and subjective measurements of appetite.
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Abbreviations

ADA American Diabetes Association
BMI Body mass index
DI Isomaltulose and resistant starch supplement
DM2 Diabetes mellitus type 2
ET Standard nutritional supplement not specific for diabetics
GB Glucose solution or reference food
GI Glycaemic index
GIP Glucose-dependent insulinotropic polypeptide
GL Glycaemic load
GLP-1 Glucagon-like peptide 1
GS Resistant maltodextrin and sucromalt supplement
HbA1c Glycated haemoglobin (HbA1c)
IDF International Diabetes Federation
ONS-D Oral nutritional supplements specific for diabetics
SEM Standard error of the mean
VAS Visual analogue scale
LGL Low glycaemic load
AUCG Area under the curve glucose
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