468,727 research outputs found

    A 1.2 V and 69 mW 60 GHz Multi-channel Tunable CMOS Receiver Design

    Get PDF
    A multi-channel receiver operating between 56 GHz and 70 GHz for coverage of different 60 GHz bands worldwide is implemented with a 90 nm Complementary Metal-Oxide Semiconductor (CMOS) process. The receiver containing an LNA, a frequency down-conversion mixer and a variable gain amplifier incorporating a band-pass filter is designed and implemented. This integrated receiver is tested at four channels of centre frequencies 58.3 GHz, 60.5 GHz, 62.6 GHz and 64.8 GHz, employing a frequency plan of an 8 GHz-intermediate frequency (IF). The achieved conversion gain by coarse gain control is between 4.8 dB–54.9 dB. The millimeter-wave receiver circuit is biased with a 1.2V supply voltage. The measured power consumption is 69 mW

    Statistical properties of 12.2 GHz methanol masers associated with a complete sample of 6.7 GHz methanol masers

    Full text link
    We present definitive detection statistics for 12.2 GHz methanol masers towards a complete sample of 6.7 GHz methanol masers detected in the Methanol Multibeam survey south of declination -20 degrees. In total, we detect 250 12.2 GHz methanol masers towards 580 6.7 GHz methanol masers. This equates to a detection rate of 43.1%, which is lower than that of previous significant searches of comparable sensitivity. Both the velocity ranges and the flux densities of the target 6.7 GHz sources surpass that of their 12.2 GHz companion in almost all cases. 80 % of the detected 12.2 GHz methanol maser peaks are coincident in velocity with the 6.7 GHz maser peak. Our data support an evolutionary scenario whereby the 12.2 GHz sources are associated with a somewhat later evolutionary stage than the 6.7 GHz sources devoid of this transition. Furthermore, we find that the 6.7 GHz and 12.2 GHz methanol sources increase in luminosity as they evolve. In addition to this, evidence for an increase in velocity range with evolution is presented. This implies that it is not only the luminosity, but also the volume of gas conducive to the different maser transitions, that increases as the sources evolve. Comparison with GLIMPSE mid-infrared sources has revealed a coincidence rate between the locations of the 6.7 GHz methanol masers and GLIMPSE point sources similar to that achieved in previous studies. Overall, the properties of the GLIMPSE sources with and without 12.2 GHz counterparts are similar. There is a higher 12.2 GHz detection rate towards those 6.7 GHz methanol masers that are coincident with extended green objects.Comment: Accepted to ApJ March 2011. 28 pages, 9 figure

    Spectral Properties of the Core and the VLBI-Jets of Cygnus A

    Full text link
    We present a detailed VLBI study of the spectral properties of the inner core region of the radio galaxy Cygnus A at 5 GHz, 15 GHz, 22 GHz, 43 GHz and 86 GHz. Our observations include an epoch using phase-referencing at 15 GHz and 22 GHz and the first successful VLBI observations of Cygnus A at 86 GHz. We find a pronounced two-sided jet structure, with a steep spectrum along the jet and an inverted spectrum towards the counter-jet. The inverted spectrum and the frequency-dependent jet-to-counter-jet ratio suggest that the inner counter-jet is covered by a circum-nuclear absorber as it is proposed by the unified scheme.Comment: 2 pages, 2 figures, Proceedings of the 7th EVN Symposium held in Toledo, Spain in October 2004, needs evn2004.cl

    NMR GHZ

    Full text link
    We describe the creation of a Greenberger-Horne-Zeilinger (GHZ) state of the form |000>+|111> (three maximally entangled quantum bits) using Nuclear Magnetic Resonance (NMR). We have successfully carried out the experiment using the proton and carbon spins of trichloroethylene, and confirmed the result using state tomography. We have thus extended the space of entangled quantum states explored systematically to three quantum bits, an essential step for quantum computation.Comment: 4 pages in RevTex, 3 figures, the paper is also avalaible at http://qso.lanl.gov/qc

    The first high-resolution observations of 37.7-, 38.3- and 38.5-GHz methanol masers

    Full text link
    We have used the Australia Telescope Compact Array (ATCA) to undertake the first high angular resolution observations of 37.7-GHz (7281E7_{-2} - 8_{-1}E) methanol masers towards a sample of eleven high-mass star formation regions which host strong 6.7-GHz methanol masers. The 37.7-GHz methanol sites are coincident to within the astrometric uncertainty (0.4 arcseconds) with the 6.7-GHz methanol masers associated with the same star formation region. However, spatial and spectral comparison of the 6.7- and 37.7-GHz maser emission within individual sources shows that the 37.7-GHz masers are less often, or to a lesser degree co-spatial than are the 12.2-GHz and 6.7-GHz masers. We also made sensitive, high angular resolution observations of the 38.3- and 38.5-GHz class II methanol transitions (6253A6_{2} - 5_{3}A^{-} and 6253A+6_{2} - 5_{3}A^{+}, respectively) and the 36.2-GHz (4130E4_{-1} - 3_{0}E) class I methanol transition towards the same sample of eleven sources. The 37.7-, 38.3- and 38.5-GHz methanol masers are unresolved in the current observations, which implies a lower limit on the brightness temperature of the strongest masers of more than 10610^6K. We detected the 38.3-GHz methanol transition towards 7 sources, 5 of which are new detections and detected the 38.5-GHz transition towards 6 sources, 4 of which are new detections. We detected 36.2-GHz class I methanol masers towards all eleven sources, 6 of these are new detections for this transition, of which 4 sources do not have previously reported class I methanol masers from any transition.Comment: Accepted for publication in MNRAS, 34 pages, 20 figure

    Electromagnetic Bandgap Structure For Isolation In Mixed-signal Systems

    Get PDF
    Electromagnetic bandgap (EBG) structures, systems incorporating EBG structures, and methods of making EBG structures, are disclosed. An embodiment of the structure, among others, includes a plurality of first elements disposed on a first plane of a device; and a second element connecting each first element to an adjacent first element, the second element being disposed on the first plane of the device. The structure is configured to substantially filter electromagnetic waves to a stopband floor of about -40 dB to about -120 dB in a bandgap of about 100 MHz to about 50 GHz having a width selected from about 1 GHz, 2 GHz, 3 GHz, 5 GHz, 10 GHz, 20 GHz, and 30 GHz. In addition, the structure has a center frequency positioned at a frequency from about 1 GHz to 37 GHz.Georgia Tech Research Corporatio
    corecore