9 research outputs found

    Generation and Screening of a BAC Library from a Diploid Potato Clone to Unravel Durable Late Blight Resistance on Linkage Group IV

    Get PDF
    We describe the construction and screening of a large insert genomic library from the diploid potato clone HB171(13) that has been shown to express durable quantitative field resistance to Phytophthora infestans, the causal agent of potato late blight disease. Integrated genetic mapping of the field resistance quantitative trait locus with markers developed from populations segregating for Rpi-blb3, Rpi-abpt, R2, and R2-like resistance, all located on linkage group IV, has positioned the field resistance QTL within the proximity of this R gene cluster. The library has been successfully screened with resistance gene analogues (RGA) potentially linked to the R gene cluster. Over 30 positive BAC clones were identified and confirmed by PCR and Southern hybridisations to harbour RGA-like sequences. In addition, BAC end sequencing of positive clones has corroborated two BAC clones with a very high level of nucleotide similarity to the RGA probes utilised

    The obscure events contributing to the evolution of an incipient sex chromosome in Populus: a retrospective working hypothesis

    Get PDF
    Genetic determination of gender is a fundamental developmental and evolutionary process in plants. Although it appears that dioecy in [i]Populus[/i] is genetically controlled, the precise gender-determining systems remain unclear. The recently released second draft assembly and annotated gene set of the [i]Populus[/i] genome provided an opportunity to revisit this topic. We hypothesized that over evolutionary time, selective pressure has reformed the genome structure and gene composition in the peritelomeric region of the chromosome XIX, which has resulted in a distinctive genome structure and cluster of genes contributing to gender determination in [i]Populus trichocarpa[/i]. Multiple lines of evidence support this working hypothesis. First, the peritelomeric region of the chromosome XIX contains significantly fewer single nucleotide polymorphisms than the rest of [i]Populus[/i] genome and has a distinct evolutionary history. Second, the peritelomeric end of chromosome XIX contains the largest cluster of the nucleotide-binding site–leucine-rich repeat (NBS–LRR) class of disease resistance genes in the entire [i]Populus[/i] genome. Third, there is a high occurrence of small microRNAs on chromosome XIX, which is coincident to the region containing the putative gender-determining locus and the major cluster of NBS–LRR genes. Further, by analyzing the metabolomic profiles of floral bud in male and female [i]Populus[/i] trees using a gas chromatography-mass spectrometry, we found that there are gender-specific accumulations of phenolic glycosides. Taken together, these findings led to the hypothesis that resistance to and regulation of a floral pathogen and gender determination coevolved, and that these events triggered the emergence of a nascent sex chromosome. Further studies of chromosome XIX will provide new insights into the genetic control of gender determination in [i]Populus[/i]

    The impact of Ty3-gypsy group LTR retrotransposons Fatima on B-genome specificity of polyploid wheats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transposable elements (TEs) are a rapidly evolving fraction of the eukaryotic genomes and the main contributors to genome plasticity and divergence. Recently, occupation of the A- and D-genomes of allopolyploid wheat by specific TE families was demonstrated. Here, we investigated the impact of the well-represented family of <it>gypsy </it>LTR-retrotransposons, <it>Fatima</it>, on B-genome divergence of allopolyploid wheat using the fluorescent <it>in situ </it>hybridisation (FISH) method and phylogenetic analysis.</p> <p>Results</p> <p>FISH analysis of a BAC clone (BAC_2383A24) initially screened with Spelt1 repeats demonstrated its predominant localisation to chromosomes of the B-genome and its putative diploid progenitor <it>Aegilops speltoides </it>in hexaploid (genomic formula, BBAADD) and tetraploid (genomic formula, BBAA) wheats as well as their diploid progenitors. Analysis of the complete BAC_2383A24 nucleotide sequence (113 605 bp) demonstrated that it contains 55.6% TEs, 0.9% subtelomeric tandem repeats (Spelt1), and five genes. LTR retrotransposons are predominant, representing 50.7% of the total nucleotide sequence. Three elements of the <it>gypsy </it>LTR retrotransposon family <it>Fatima </it>make up 47.2% of all the LTR retrotransposons in this BAC. <it>In situ </it>hybridisation of the <it>Fatima</it>_2383A24-3 subclone suggests that individual representatives of the <it>Fatima </it>family contribute to the majority of the B-genome specific FISH pattern for BAC_2383A24. Phylogenetic analysis of various <it>Fatima </it>elements available from databases in combination with the data on their insertion dates demonstrated that the <it>Fatima </it>elements fall into several groups. One of these groups, containing <it>Fatima</it>_2383A24-3, is more specific to the B-genome and proliferated around 0.5-2.5 MYA, prior to allopolyploid wheat formation.</p> <p>Conclusion</p> <p>The B-genome specificity of the <it>gypsy</it>-like <it>Fatima</it>, as determined by FISH, is explained to a great degree by the appearance of a genome-specific element within this family for <it>Ae. speltoides</it>. Moreover, its proliferation mainly occurred in this diploid species before it entered into allopolyploidy.</p> <p>Most likely, this scenario of emergence and proliferation of the genome-specific variants of retroelements, mainly in the diploid species, is characteristic of the evolution of all three genomes of hexaploid wheat.</p

    Isolation and sequence analysis of the wheat B genome subtelomeric DNA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Telomeric and subtelomeric regions are essential for genome stability and regular chromosome replication. In this work, we have characterized the wheat BAC (bacterial artificial chromosome) clones containing Spelt1 and Spelt52 sequences, which belong to the subtelomeric repeats of the B/G genomes of wheats and <it>Aegilops </it>species from the section <it>Sitopsis</it>.</p> <p>Results</p> <p>The BAC library from <it>Triticum aestivum </it>cv. Renan was screened using Spelt1 and Spelt52 as probes. Nine positive clones were isolated; of them, clone 2050O8 was localized mainly to the distal parts of wheat chromosomes by <it>in situ </it>hybridization. The distribution of the other clones indicated the presence of different types of repetitive sequences in BACs. Use of different approaches allowed us to prove that seven of the nine isolated clones belonged to the subtelomeric chromosomal regions. Clone 2050O8 was sequenced and its sequence of 119 737 bp was annotated. It is composed of 33% transposable elements (TEs), 8.2% Spelt52 (namely, the subfamily Spelt52.2) and five non-TE-related genes. DNA transposons are predominant, making up 24.6% of the entire BAC clone, whereas retroelements account for 8.4% of the clone length. The full-length CACTA transposon <it>Caspar </it>covers 11 666 bp, encoding a transposase and CTG-2 proteins, and this transposon accounts for 40% of the DNA transposons. The <it>in situ </it>hybridization data for 2050O8 derived subclones in combination with the BLAST search against wheat mapped ESTs (expressed sequence tags) suggest that clone 2050O8 is located in the terminal bin 4BL-10 (0.95-1.0). Additionally, four of the predicted 2050O8 genes showed significant homology to four putative orthologous rice genes in the distal part of rice chromosome 3S and confirm the synteny to wheat 4BL.</p> <p>Conclusion</p> <p>Satellite DNA sequences from the subtelomeric regions of diploid wheat progenitor can be used for selecting the BAC clones from the corresponding regions of hexaploid wheat chromosomes. It has been demonstrated for the first time that Spelt52 sequences were involved in the evolution of terminal regions of common wheat chromosomes. Our research provides new insights into the microcollinearity in the terminal regions of wheat chromosomes 4BL and rice chromosome 3S.</p

    TILLING - a shortcut in functional genomics

    Get PDF
    Recent advances in large-scale genome sequencing projects have opened up new possibilities for the application of conventional mutation techniques in not only forward but also reverse genetics strategies. TILLING (Targeting Induced Local Lesions IN Genomes) was developed a decade ago as an alternative to insertional mutagenesis. It takes advantage of classical mutagenesis, sequence availability and high-throughput screening for nucleotide polymorphisms in a targeted sequence. The main advantage of TILLING as a reverse genetics strategy is that it can be applied to any species, regardless of its genome size and ploidy level. The TILLING protocol provides a high frequency of point mutations distributed randomly in the genome. The great mutagenic potential of chemical agents to generate a high rate of nucleotide substitutions has been proven by the high density of mutations reported for TILLING populations in various plant species. For most of them, the analysis of several genes revealed 1 mutation/200–500 kb screened and much higher densities were observed for polyploid species, such as wheat. High-throughput TILLING permits the rapid and low-cost discovery of new alleles that are induced in plants. Several research centres have established a TILLING public service for various plant species. The recent trends in TILLING procedures rely on the diversification of bioinformatic tools, new methods of mutation detection, including mismatch-specific and sensitive endonucleases, but also various alternatives for LI-COR screening and single nucleotide polymorphism (SNP) discovery using next-generation sequencing technologies. The TILLING strategy has found numerous applications in functional genomics. Additionally, wide applications of this throughput method in basic and applied research have already been implemented through modifications of the original TILLING strategy, such as Ecotilling or Deletion TILLING

    Protein interactions across and between eukaryotic kingdoms: networks, inference strategies, integration of functional data and evolutionary dynamics

    Full text link
    Thesis (Ph.D.)--Boston UniversityHow cellular elements coordinate their function is a fundamental question in biology. A crucial step towards understanding cellular systems is the mapping of physical interactions between protein, DNA, RNA and other macromolecules or metabolites. Genome-scale technologies have yielded protein-protein interaction networks for several eukaryotic species and have provided insight into biological processes and evolution, but many of the currently available networks are biased. Towards a true human protein-protein interaction network, we examined literature-based aggregations of lowthroughput experiments, high-throughput experimental networks validated using different strategies, and predicted interaction networks to infer how the underlying interactome may differ from current maps. Using systematically mapped interactome networks, which appear to be the least biased, we explored the functional organization of Arabidopsis thaliana and characterize the asymmetric divergence of duplicated paralogous proteins through their interaction profiles. To further dissect the relationship between interactions and function enforced by evolution, we investigated a first-of-its-kind systematic crossspecies human-yeast hybrid interactome network. Although the cross-species network is topologically similar to conventional intra-species networks, we found signatures of dynamic changes in interaction propensities due to countervailing evolutionary forces. Collectively, these analyses of human, plant and yeast interactome networks bridge separate experiments to characterize bias, function and evolution across eukaryotic kingdoms

    Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes.

    No full text
    Many changes in environmental conditions and hormones are mediated by MAPK (mitogen-activated protein kinase) cascades in all eukaryotes, including plants. Studies of MAPK pathways in genetic model organisms are especially informative in revealing the molecular mechanisms by means of which MAPK cascades are controlled and modulate cellular processes. The present review highlights recent insights into MAPK-based signalling in Arabidopsis thaliana (thale cress), revealing the complexity and future challenges to understanding signal-transduction networks on a global scale
    corecore