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Abstract Genetic determination of gender is a fundamental
developmental and evolutionary process in plants. Although
it appears that dioecy in Populus is genetically controlled,
the precise gender-determining systems remain unclear. The
recently released second draft assembly and annotated gene
set of the Populus genome provided an opportunity to revisit
this topic. We hypothesized that over evolutionary time,
selective pressure has reformed the genome structure and

gene composition in the peritelomeric region of the chro-
mosome XIX, which has resulted in a distinctive genome
structure and cluster of genes contributing to gender deter-
mination in Populus trichocarpa. Multiple lines of evidence
support this working hypothesis. First, the peritelomeric
region of the chromosome XIX contains significantly fewer
single nucleotide polymorphisms than the rest of Populus
genome and has a distinct evolutionary history. Second, the
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peritelomeric end of chromosome XIX contains the largest
cluster of the nucleotide-binding site–leucine-rich repeat
(NBS–LRR) class of disease resistance genes in the entire
Populus genome. Third, there is a high occurrence of small
microRNAs on chromosome XIX, which is coincident to
the region containing the putative gender-determining locus
and the major cluster of NBS–LRR genes. Further, by
analyzing the metabolomic profiles of floral bud in male
and female Populus trees using a gas chromatography-mass
spectrometry, we found that there are gender-specific accu-
mulations of phenolic glycosides. Taken together, these
findings led to the hypothesis that resistance to and regula-
tion of a floral pathogen and gender determination
coevolved, and that these events triggered the emergence
of a nascent sex chromosome. Further studies of chromo-
some XIX will provide new insights into the genetic control
of gender determination in Populus.

Keywords Gender determination . Sex chromosome . Single
nucleotide polymorphisms (SNP) .MicroRNA (miRNA) .

Nucleotide-binding site–leucine-rich repeat (NBS–LRR) .

Populus

Introduction and background

Genome structure and synteny map across species

Genus Populus contains approximately 30 species that occur
throughout the northern hemisphere and consists of six sub-
genera or sections: Abaso, Leuce (aka Populus), Leucoides,
Aigeiros, Turanga, and Tacamahaca (Eckenwalder 1996).
The first investigation of the Populus genome was made in
1921, in which the haploid chromosome number was errone-
ously reported as four (Graf 1921). By 1924, it became clear
that the base chromosome number inPopuluswas 19 (Harrison
1924). Since then, examination by various scientists has

revealed that all Populus species generally appear as diploids
with 2n038 (Smith 1943), with occasional cases of triploid or
tetraploid genets arising naturally in various species though
more often reported in members of the Leuce subgenera and
in interspecific crosses (Einspahr et al. 1963; Bradshaw et al.
2000). Analysis of the assembled genome revealed that the
chromosomal structure in modern Populus arose from an
ancient whole-genome duplication event known as “salicoid”
duplication (Fig. 1) in a progenitor that possessed 12 ancestral
chromosomes (Salse et al. 2009). Genome organization and
chromosome structure have been conserved among Populus
and Salix species (Berlin et al. 2010), and comparisons among
Populus and Salix orthologous genes suggest that both genera
share this whole-genome duplication event that predated the
speciation event (Tuskan et al. 2006). Comparative mapping
reveals near-complete marker colinearity in pedigrees estab-
lished from multiple species within Populus and among mem-
bers of Salix (Cervera et al. 2001; Hanley et al. 2006; Yin et al.
2004a, 2008; Berlin et al. 2010) (Table 1). Interestingly, Berlin
et al. (2010) identified a large region of segregation distortion
on linkage group XIX that corresponds to a similar region in
chromosome XIX in Populus (Yin et al. 2008).

Members of the genus Populus generally display separate
genders on individual trees, i.e., Populus which is dioecious
(Slavov et al. 2010; Hughes et al. 2000; McLetchie et al. 1994;
Nagaraj 1952), as is Salix (Karp et al. 2011). Only about 4 %
of higher plants are dioecious (Ainsworth 2000; Ming et al.
2007; Heslop-Harrison and Schwarzacher 2011). This repro-
ductive habit in Populus, along with the ubiquitous vegetative
reproduction via root suckering, air layering, and/or cladop-
tosis, evolved proximally to or simultaneously with the advent
of this family 65 million years ago, as nearly all members of
the Salicaceae family displays these habits (Karrenberg et al.
2002; Eckenwalder 1996). Dioecy in Populus is strongly
genetically controlled, and a region of the genome located
on chromosome XIX appears to contain a gene (genes) that
controls gender determination, though there are noted exam-
ples of gender reversion and hermaphroditic plants in most
species (Rottenberg et al. 2000; Markussen et al. 2007; Yin et
al. 2008; Gaudet et al. 2008; Pakull et al. 2009, 2011; Paolucci
et al. 2010). The peritelomeric region on chromosome XIX in
female Populus trichocarpa genotypes contains approximately
1 Mb of DNA that is not found in male genotypes and appears
to have a region of suppressed and/or reduced recombination
that extends 3–4 Mb beyond the hemizygous segment in
females (Yin et al. 2004a).

These observations suggest that inP. trichocarpa, gender is
determined using a ZW system where the female genotype is
the heterogametic gender (Yin et al. 2008). However, work by
Pakull et al. (2011) suggested that both ZZ/ZW (female
heterogamety) and XX/XY (male heterogamety) gender-
determining systems could be present in some members of
the genus Populus. Gender-determining systems in plants, in
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general, exhibit a wide range of diversity to the extreme where
some taxa have evolved systems that are unique to those taxa,
e.g., in dioecious Rumex species, two different sex

chromosomal systems and sex-determining systems have
been described as: (1) XX/XY with an active Y chromosome
(e.g., Rumex acetosella) and (2) XX/XY1Y2 with sex

Fig. 1 The “salicoid” duplication event revealed by the Populus
genome assembly version 2.2. Common colors refer to homologous
genomic blocks. Chromosomes are identified by their linkage group
number (I to XIX). The diagram to the left uses the same color-coding

and further illustrates the chimeric nature and origin of most chromo-
somes. Chromosome XIX contains high homology with chromosome
XIII expected for the peritelomeric end of XIX which contains the
segment related to gender determination

Table 1 Sex ratios in Populus species and hybrids

References Species/hybrida No. of trees Sex Segregation

Total Flowering
(%)

No. of
males (%)

No. of
females (%)

M/F ratio χ2 Ratio

Yin et al. (2008) Populus x canadensis 312 312 (100) 197 (63.1) 115 (36.9) 2:1 21.5****

Paolucci et al. (2010) P. alba 154 136 (88.3) 87 (64) 49 (36) 2:1 10.6**

Pakull et al. (2011) Populus x wettsteinii 130 126 (96.9) 79 (62.7) 47 (37.3) 2:1 8.1**

Sabatti et al., unpublished data P. alba 251 72 (28.7) 48 (66.7) 24 (32.3) 2:1 8.0**

Vanden Broeck, personal communication Populus x generosa 140 70 (50) 49 (70) 21 (33.9) 2:1 11.2***

Vanden Broeck, personal communication P. x generosa 137 62 (45.2) 41 (66.1) 21 (33.9) 2:1 6.45*

Gaudet et al. (2008) P. nigra 165 118 (71.5) 63 (53.4) 55 (46.6) 1:1 0.5*****

Vanden Broeck, personal communication P. x canadensis 141 53 (37.6) 21 (39.6) 32 (60.4) 1:1 2.3*****

Numbers of flowering trees with male and female flowers are presented

*p≤0.05; **p≤0.01; ***p≤0.001; ****p≤0.0001; values are significant at their respective levels; *****p>0.5; values are nonsignificant at this
level
aPopulus x canadensis, P. deltoides × P. nigra; P. x generosa, P. deltoides × P. trichocarpa; P. x wettsteinii, P. tremula × P. tremuloides
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determination based on the X/A (autosome) ratio (e.g., Rumex
acetosa) (Navajas-Pérez et al. 2005). There is also a species,
Rumex hastatulus, which has two chromosomal races: the
Texas race with XX/XY and the North Carolina race with
XX/XY1Y2. In this species, the X/A ratio regulates sex de-
termination, although the presence of the Y chromosome is
necessary for male fertility (Smith 1963).

The chromosomes of Populus are typically metacentric
and small (Blackburn and Harrison 1924; Meurman 1925;
Erlanson and Hermann 1927; Nakajima 1937; Islam-Faridi
et al. 2009), and based on cytological studies, there is no
evidence of morphologically differentiated sex chromo-
somes in any Populus species (Peto 1938; Van Dillewijn
1940; van Buijtenen and Einspahr 1959). One generalized
hypothesis is that sex chromosomes originate from auto-
somes, and dioecy almost certainly evolves from ancestral
hermaphrodites that lacked sex chromosomes (Muller 1914;

Liu et al. 2004). Based on genetic mapping results, evidence
of sex chromosomes has been reported in various species by
Gaudet et al. (2008), Yin et al. (2008), Pakull et al. (2009,
2011), and Paolucci et al. (2010). Yin et al. (2008) described
genetic and genomic features in the peritelomeric region of
chromosome XIX that suggested this region of the Populus
genome is in the process of developing characteristics of a
sex chromosome. A provocative feature of chromosome
XIX is the location of a gender determination locus, which
maps to alternate positions on chromosome XIX, depending
upon the Populus species (Gaudet et al. 2008; Pakull et al.
2009, 2011; Yin et al. 2008; Paolucci et al. 2010) (Fig. 2),
with a peritelomeric localization in members of the Aigeiros
and Tacamahaca subgenera and a centromeric localization
in Leuce.

Although mapping studies in Populus revealed that there is
a single locus that is associated with gender determination,

Fig. 2 Comparative mapping of chromosome XIX for gender locus
position from different Populus species. Marker positions and distan-
ces on P. trichocarpa genome sequence v2.2 are proportional and
drawn in black. Lengths of chromosome linkage groups are propor-
tional to map distance in cM. Numbers on the left of each chromosome
indicate the marker position. The consensus map (P. trichocarpa and
Populus deltoids; Yin et al. 2008) is drawn in blue; the P. nigramap (in

green), the Populus tremuloides map (in orange), the Populus alba
map (in red) (Gaudet et al., unpublished), and the Populus tremula map
(in mustard) (Pakull et al. 2009, 2011). Common SSRs are connected
with broken line. SSR in blue were mapped in almost one parent of the
pedigrees analyzed. The red SSRs were found linked to gender by
Pakull et al. (2011)

Tree Genetics & Genomes



recombination suppression, as noted above, would render all
genes within this region as one locus. Thus, the gender locus
might encompass several genes underlying gender determina-
tion. In support of this supposition, Populus trees show evi-
dence of labile sex expression (Stettler 1971; Rowland et al.
2002). If there is more than one genetic locus determining
gender, recombination would impair sexual differentiation.
When the recombination suppression is relaxed or transloca-
tion of sex determination loci occurs, hermaphrodites may
arise (Ming et al. 2007). The observed sex ratios in certain
genetic backgrounds of Salix viminalis suggest a multilocus
epistatic model of gender determination (Alström-Rapaport et
al. 1998). To maintain separate sexes, the genes determining
maleness or femaleness would have to be closely linked on
opposing haplotypes of a single chromosome, and this region
would have to develop local mechanisms to prevent recombi-
nation (Ohno 1967; Nei 1969; Charlesworth 1984; Ming et al.
2007).

Multiple lines of evidence from studies focused on P.
trichocarpa support the role of chromosome XIX in sex
determination. First, the sequenced tree, Nisqually-1, is a
female, and it showed highly divergent haplotypes in the sex
determination region (Tuskan et al. 2006). Second, sup-
pressed recombination in this region was only observed in
the female parent. Finally, distorted segregation ratios have
been observed in the maternal genotypes of several mapping
populations in Populus (Yin et al. 2004a). However, the
gender-determining locus has not been resolved into an
individual gene (genes) yet. As noted above, in P. tricho-
carpa and other members of the Aigeiros and Tacamahaca
subgenera, the gender locus is located in peritelomeric re-
gion of chromosome XIX. However, in members of the
Leuce subgenera, the gender-determining locus appears to
be located near the centromere (Fig. 2). A segmental inver-
sion on the maternal haplotype of chromosome XIX or a
completely unique set of genetic loci in the centromeric
region of the Leuce species may account for this difference
and may be one of the reasons that members of the Leuce
subgenera are generally not sexually compatible with other
subgenera in interspecific crosses (Liesebach et al. 2011).
Interestingly, in contrast with P. trichocarpa, a member of
the Tacamahaca subgenera, an XY sex determination sys-
tem appears to be in place in the Aigeiros and Leuce species.

The Populus genome was sequenced, assembled, anno-
tated, and released in 2006, and at the time, represented the
most polymorphic genome to be assembled using whole-
genome shotgun approaches (Tuskan et al. 2006). A second
draft assembly and annotated gene set was released in 2010
(http://www.phytozome.net/poplar), and the assembled se-
quence now captures roughly 83 % of the nucleotide (nt)
space, and approximately 43,000 predicted gene models
have been used to create and inform whole-genome micro-
array studies (Jansson and Douglas 2007), saturated genetic

maps/QTL studies (Yin et al. 2008), and proteomics refer-
ence libraries (Abraham et al. 2011).

From a genome resequencing effort, we discovered that
the gender-linked peritelomeric region of the chromosome
XIX contains significantly fewer single nucleotide polymor-
phisms (SNP) than the rest of Populus genome (Fig. 3).
There are approximately 1.8 SNPs per 1 kb of sequence at
the peritelomeric end of chromosome XIX versus 2.6 SNP
per 1 kb on the average across the entire genome. The
peritelomeric end of chromosome XIX also appears to have
a distinct evolutionary history compared to the rest of the
genome as demonstrated by its alignment to the Vitis ge-
nome (Jaillon et al. 2007, Fig. 2a), where the peritelomeric
end of chromosome XIX distinctively lacks homology with
genomic segments found in the Vitis genome. The peritelo-
meric end of chromosome XIX also lacks homology with
any of the duplicated segments associated with salicoid
duplication (Fig. 1).

In addition, the peritelomeric end of chromosome XIX
contains the largest cluster of the nucleotide-binding site–
leucine-rich repeat (NBS–LRR) class of disease resistance
genes in the entire Populus genome (Tuskan et al. 2006;
Kohler et al. 2008). NBS–LRR genes function in the detec-
tion of pathogen occurrence and convey disease resistance
signaling to activate gene expression. There is also a dis-
proportionately high occurrence of small (18–24 nt) micro-
RNAs (miRNA) on chromosome XIX coincident to the
region containing the putative gender-determining locus
and the major cluster of NBS–LRR genes (Klevebring et
al. 2009). Such miRNAs are a class of posttranscriptional
negative regulators that play a vital role in plant develop-
ment and growth (Jones-Rhoades et al. 2006; Shuklaa et al.
2008; Henderson et al. 2006; Chan et al. 2005). A number of
the identified miRNA are predicted to target the NBS–LRR
disease resistance genes within the peritelomeric region of
chromosome XIX. Furthermore, the NBS–LRR genes have
been significantly expanded in Populus relative to Arabi-
dopsis (Kohler et al. 2008; Meyers et al. 2003).

The hypothesis

Based on the above information, the following is a working
hypothesis for the evolution of an incipient sex chromosome
in Populus. Specifically, prior to the advent of the crown
taxa of the family Salicaceae, there was a common progen-
itor of all modern Salicaceae species that was monecious,
diploid, capable of vegetative reproduction via adventitious
root formation, and susceptible to pathogenic attack isolated
to its stigma and/or style. The pathogen caused complete
necrosis of all female reproductive structures such that sex-
ual reproduction was disrupted, favoring genes that facili-
tated the establishment and promulgation of vegetative
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propagation. Extended interannual vegetative propagation
allowed time for somatic mutations to occur, experience
selection pressure, and accumulate favorable alleles in the
susceptible progenitor genotype. Favorable mutations at
multiple independent loci then formed the basis of resistance
to the putative female-specific floral pathogen. Selective
pressure from the putative pathogen also facilitated the
accumulation of miRNA targets within transcripts of the
genes responsible for this resistance as a means of regulating
gene expression. Over evolutionary time, small transloca-
tions within the progenitor genome disproportionately
resulted in the accumulation of resistance genes on the
peritelomeric portion of chromosome XIX, which then min-
imized linkage disequilibrium between the individual resis-
tance loci required for female organ function and survival.
Suppressed recombination associated with the telomere re-
duced the genetic load on the progeny and allowed these
genes to be inherited as a haplotypic block. Translocation of
genes related to female organogenesis to the peritelomeric
end of chromosome XIX ultimately resulted in dioecy. All
modern taxa in the family Salicaceae, descendants of this

progenitor, are now dioecious, capable of vegetative propa-
gation, and have syntenic chromosome structure. Selective
sweep associated with these events is evident in the reduced
number of single nucleotide polymorphisms in the peritelo-
meric region of chromosome XIX.

Evidence in the modern Populus genome

The lack of comparative synteny on chromosome XIX with
Vitis, the suppressed recombination in the peritelomeric end
of chromosome XIX, and the reduced number of SNP found
in this region are consistent with the occurrence of a selec-
tive sweep in Populus. Reduction in the accumulation of
genetic mutations is a classic indication of an ancient severe
genetic bottleneck within the evolution history of an organ-
ism or segment of DNA. Paape et al. (2008) reported a
similar event in Solanaceae where the founding members
of the extant genera Physalis andWitheringia appear to have
been derived from a reduced number of lineages in genomic
regions surrounding the S-locus for self-incompatibility. The

Fig. 3 Single nucleotide distribution across all 19 Populus chromo-
somes, with N and S representing an arbitrary 4 Mb “north” and
“south” end of each chromosome. The S4 and N4 regions of

chromosomes XVII and XIX contain significantly (p≤0.01) more
and fewer SNP than expected by chance alone, respectively
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fingerprints of restricted founding lineages and genetic bottle-
neck are also present in many modern domesticated crop
plants where artificial selection has reduced the amount of
genetic variation surrounding loci associated with domestica-
tion (Purugganan and Fuller 2009; Hyten et al. 2006; Palaisa
et al. 2004). Based on nucleotide diversity, the peritelomeric
end of chromosome XIX appears to be younger than the rest
of the Populus genome. Interestingly, similar observations
have been made for the X chromosomes in humans and mice
(Hughes et al. 2010; Patterson et al. 2006).

Floral pathogens and floral biochemistry

Many species of plants have evolved methods of producing
antibacterial and antifungal compounds in their floral tissues
(Tavares et al. 2008; Jones and Dangl 2006; Lokvam and
Braddock 1999; Carlson et al. 1948). These compounds are
thought to protect the flowers from lethal and semilethal
attacks from microorganisms (Theis et al. 2009; Thadeo et
al. 2008; Vamosi and Otto 2002). Moreover, many of these
compounds vary between tissue types, flower structures,
gynomorphs, and andromorphs (Kaltz and Shykoff 2001;
Strauss 1997; Carlson et al. 1948). In addition, there are
several plant diseases that are known to affect only the male
or female structures of perfect flowers or male or female
flowers in dioecious plant species (Giles et al. 2006;
Lokvam and Braddock 1999). Finally, there are plant
pathogens that gain access via the stigma or style tissue
within female flowers (Pusey and Curry 2004; Stretch and
Ehlenfeldt 2000; Shykoff et al. 1997).

Populus and other members of the Salicaceae family are
known to produce antimicrobial and antifungal compounds in
nectary found near meristematic tissues, and that these com-
pounds contribute to plant adaptive success (Heil 2008;
Thadeo et al. 2008). A gas chromatography-mass spectrome-
try (GC-MS) analysis of the metabolomic profiles of expand-
ing floral buds of 16 trees (12 females and 4 males) from two
Populus species (Populus deltoides and Populus nigra) was
conducted to determine whether secondary metabolites were
correlated with gender (Table 2). Species differences in

secondary metabolites of Populus are well documented
(Greenaway and Whatley 1990, 1991a, b; Greenaway et al.
1989, 1992; Tsai et al. 2006), and male and female flowers of
Salix display gender-specific floral scent characteristics
(Fussel et al. 2007). Our analyses demonstrate metabolite
differences between genders, that is, although buds of both
species and both genders contain pinobanskin-3-acetate,
pinobanksin-3-acetate chalcone and pinobanksin and 3-
isobutanoate, the male floral buds contained very low concen-
trations of these metabolites. In contrast, P. nigra males
contained high concentrations of higher-order populin conju-
gates, including 6-hydrocyclohexenyl (HCH)-populin and
populin conjugated with benzoic acid and another unknown
476Damoiety. Moreover, several secondary metabolites were
orthogonally associated with gender. This included major
secondary metabolites of Populus, including salicortin and
salireposide, which were higher in females. There were also
several unidentified secondary metabolites that were much
higher in female buds, including a metabolite tentatively
identified as caffeoyl-populoside and a series of metabolites
that all share a 171 m/z moiety, along with a coumarate
glycoside conjugate (retention time (RT) 18.78 min) and a
caffeoyl glycoside conjugate (RT 19.3 min). Scanning for the
unidentified 171 m/z moiety resulted in the identification of
several additional secondary metabolites uniquely associated
with female floral buds, including a feruloyl glycoside conju-
gate (RT 19.36 min) and a benzyl-caffeoyl glycoside conju-
gate (RT 20.3 min). Taken together, these preliminary
analyses suggest that there are gender-specific accumulations
of phenolic glycosides. Based on these results, antimicrobial
and antifungal compounds appear to be differentially found in
male and female floral structures.

LRR genes

As a perennial organism, Populus species interact with
numerous diverse microorganisms over periods of decades
(Gottel et al. 2011). In order to survive, Populus species
must resist against recurring, perpetual pathogenic attack.
Moreover, with a large root system maintaining water and

Table 2 Concentrations (ug/g FW sorbitol equivalents) of Populus floral bud metabolites associated with gender

Species Gender Salicortin Salireposide 18.78–171 19.30–171 19.36–171 20.30–171 22.06
331 Coumaroyl
glycoside

331 Caffeoyl
glycoside

Feruloyl
glycoside

Benzyl-caffeoyl
glycoside

Caffeoyl-
populoside

P. nigra Female 2,110.5 (210.8) 116.3 (16.1) 43.1 (4.7) 11.8 (3.3) 41.8 (4.4) 17.1 (3.5) 28.3 (11.7)

P. deltoides Female 1,991.7 (145.6) 100.9 (13.9) 31.6 (4.2) 13.8 (1.6) 37.5 (6.0) 10.7 (3.8) 32.3 (6.7)

P. nigra Male 488.3 (143.2) 13.9 (3.8) 1.9 (0.3) 0.3 (0.2) 0 (0) 0 (0) 0.2 (0.2)

P. deltoides Male 1,243.0 (97.4) 45.7 (4.5) 9.2 (8.2) 5.1 (0.6) 20.6 (0.7) 0 (0) 9.7 (3.1)

As determined by gas chromatography-mass spectrometry; retention time and key m/z are shown at the column headings; mean and SEM () of two
male to six female replicate buds are shown within rows
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nutrient uptake and functioning to facilitate interannual store of
carbon over multiple decades, the selective pressure to develop
symbiotic interactions with soil microflora may be as strong as
to develop pathogenic resistances. As an illustration, various
loci controlling variation for both symbiosis levels and resis-
tance have been identified in Populus (Zhang et al. 2001; Yin et
al. 2004b; Jorge et al. 2005; Tagu et al. 2005; Kohler et al.
2008; Duplessis et al. 2009; Labbé et al. 2011).

Plants, in general, and Populus, in particular, have a
variety of disease resistance genes (R) encoding proteins
involved in the detection of pathogens and herbivores. The
largest class of R–genes encodes intracellular nucleotide-
binding site–leucine-rich repeat proteins, and they are divid-
ed into two main subfamilies (TNL and TIR) based on their
predicted N-terminal protein domains (McDowell and
Wolffenden 2003). NBS–LRR genes are known to trigger
protease inhibitor activity; control protease, chitinase, and
kinase production; and regulate salicylic acid, jasmonic
acid, ethylene, and nitric oxide signaling (Duplessis et al.
2009; Sánchez-Rodríguez et al. 2009; McHale et al. 2006;
Meyers et al. 1999, 2003; McDowell and Wolffenden 2003).
In Populus, 37 NBS–LRR genes are found in the peritelo-
meric region of chromosomes XIX and represents nearly
10 % of all NBS–LRR found throughout the rest of the
genome (Tuskan et al. 2006; Kohler et al. 2008, Fig. 1).

Genome-wide, roughly 400 NBS–LRR genes have been
identified in Populus, which is approximately double the
number identified in Arabidopsis (Kohler et al. 2008). The
higher number in Populus appears to represent an expansion
in Populus rather than a contraction in Arabidopsis (Meyers et
al. 2003; Tuskan et al. 2006; Kohler et al. 2008). Indeed, a
remarkable feature of plant NBS–LRR genes is their genomic
organization in multigene clusters (Kohler et al. 2008; Yang et
al. 2008). In Populus, these clusters are distributed unevenly
over the chromosomes and in clusters of clusters or “super-
clusters” of which three occur on chromosome XIX. Highly
similar sequences in head-to-tail orientation suggest that intra-
locus recombination gave rise to the translocation of a se-
quence block (Richy et al. 2002). The largest NBS–LRR gene
supercluster on Populus chromosome XIX collocates with the
resistance loci MER, R1, and RUS, conferring qualitative or
quantitative resistance toMelampsora larici-populina (Lescot
et al. 2004; Jorge et al. 2005; Bresson et al. 2011). Thus,
ancient segmental duplication and subsequent chromosomal
rearrangement that accounted for 10 % of the amplification of
NBS superclusters suggests positive selective pressure on
chromosome XIX that may expedite the progression of sex
chromosome evolution.

Short RNAs

In Populus, there are still only a small number of publica-
tions that have examined or profiled miRNAs, and only one

that has examined the entire sRNA population (Klevebring
et al. 2009). An intriguing finding from the data presented in
Klevebring et al. (2009) was that the proposed sex-
determining peritelomeric region of chromosome XIX
showed a distinctive pattern of sRNA occurrence that dif-
fered significantly from the rest of the genome. Within this
region, there was distinct overrepresentation of 21 and 24 nt
sRNAs along with a phased siRNA locus. Target prediction
of the phased siRNAs indicates that they target NBS–LRR
genes within the same region of chromosome XIX.

Using the methodology outlined in Klevebring et al.
(2009), but applied to v2.2 of the P. trichocarpa genome
assembly (http://www.phytozome.net/poplar), we recharac-
terized sRNA occurrence. Based on our reanalysis, there
was an above average occurrence of sRNAs from the upper
1 Mb of chromosome XIX, in particular, 21 and 24 nt
sRNAs (as was reported in Klevebring et al. 2009). Because
the reference genome represents a female P. trichocarpa
genotype, it is not known whether this pattern is present in
both males and females, or whether there are sex-specific
differences in the sRNA population produced from this
region. Such patterns have not been reported in other
species.

In contrast to the v1.1 analysis, five phased loci were
identified on chromosome XIX with four of the five located
within the peritelomeric end of chromosome XIX (e.g.,
Fig. 4). Target prediction of these four loci identified near-
exclusive targeting of NBS–LRR genes with almost all
target genes located within the peritelomeric region of chro-
mosome XIX. Deeper sequencing and profiling of addition-
al tissues and developmental states will be needed to clarify
these results, as read counts for nearly all sequences within
the loci were low (<5); however, it appears that alternate
male and female haplotypes may have haplotype-specific
phased loci that target NBS–LRR genes in a haplotype-
specific manner.

Many miRNA families regulate the development in Ara-
bidopsis and have been shown to be necessary for proper
specification of floral organ identity (e.g., miR172; Jones-
Rhoades et al. 2006; Mallory and Vaucheret 2006). Arabi-
dopsis plants that over express miR172 have floral defects
that resemble APETALA2-like loss-of-function mutants
where there is an absence of petals and sepals and an excess
of carpels (Aukerman and Sakai 2003; Chen 2004). More-
over, recent studies investigating genes that control sex
determination in maize reveals that a miRNA is involved
in the determination of the male inflorescence (Banks 2008).
Here, the tasselseed4 miRNA, i.e., miR172, targets APE-
TALA2 floral homeotic transcription factors (Chuck et al.
2007). miR172 also targets F-box family protein (FKF1) in
Arabidopsis, and in Eschscholzia californica, miR172
appears to control protein degradation and sex determina-
tion (Barakat et al. 2007b). Interestingly, the miR172 family
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is conserved in Populus (Barakat et al. 2007a) and is located
on the peritelomeric end chromosome XIX, and coinciden-
tally, there is an under representation of F-box genes in the

peritelomeric region of chromosome XIX in Populus (Yang
et al. 2008, Fig. 1).

Future characterizations of the role of miRNAs in sex
determination in Populus may illuminate biochemical pref-
erences in the sex determination pathway and, in the pro-
cess, define male/female differentiation. Deep sequencing of
miRNAs from pre- and postdifferentiated male and female
floral meristems will be necessary to understand which
miRNAs change during differentiation and to determine
the target gene upon which they act.

The metabolic differences between male and female
flowers, the overrepresentation of NBS–LRR genes, the
presence of phased sRNA loci targeting those genes, and
the generally higher than average production of sRNAs, all
which collocate with gender, support the hypothesis that
resistance to and regulation of a floral pathogen and gender
determination coevolved in a region of the genome that
experiences reduced recombination, i.e., the peritelomeric
region of chromosome XIX in P. trichocarpa.

Conclusions

Genetic determination of gender occurs in most plant spe-
cies and is a fundamental developmental and evolutionary
process. The sexual phenotypes of commercially important
Populus species and their varieties will dictate how they are
bred and cultivated. Understanding of the genetic mecha-
nisms guiding this intricate process is in its infancy. Thus,
dissecting the mechanisms underlying gender determination
in Populus will allow several evolutionary, developmental,
and economic questions to be resolved. Based on various
Populus species, we suggest that the gender determination
may vary among species, with some species following a ZW
gender determination system and other using a XY system.
Identifying the molecular basis of floral differentiation that
cosegregate with gender represents a promising approach to
define the gender-determining system in Populus. Rese-
quencing and expression studies in parental, F1, and F2
generations will enable us to definitively identify the het-
erogametic sex.

While genetic linkage mapping studies have started to
reveal regions of recombination suppression in Populus,
identifying the actual gene or genes involved in gender
determination remains a prime objective. Greater effort in
comparative mapping, targeted resequencing, gender-
specific expression studies, and physical mapping efforts
will be invaluable in discovering the key gene or genes
and in answering questions about their evolution. These
types of information will shed light on the developmental
patterns of gender determination and evolution of sex chro-
mosomes. Finally, cloning the Populus gender-determining
genes and complementation transgenic experiments will

Fig. 4 A phased sRNA locus located on chromosome XIX. The phased
locus is located within the second exon of POPTR_0019s01100, a gene
containing multiple leucine-rich repeat domains. The sRNA locus and
phased locus shown were identified using the UEA plant sRNA toolkit
(http://srna-tools.cmp.uea.ac.uk/). Phased sRNA sequences are shown as
are all sRNA sequences within the identified sRNA locus. sRNA se-
quence colors indicate size class: pink ≤19 bp, red ≤21 bp, green ≤23 bp,
blue ≤25 bp. All sRNA data are from Klevebring et al. (2009)
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ultimately be needed to unravel the role of genetic and
epigenetic factors in gender determination. The genus Pop-
ulus is an excellent model for studying the evolution of
gender determination because of the genus-wide occurrence
of dioecy-related gender-determining systems that can pro-
vide new perspectives on the genetic mechanism of gender
determination in plants in general. With the availability of
the whole-genome sequence and the initiation of a number
of efforts to characterize adaptive polymorphisms and gen-
der determination in natural and structured populations,
answers to these and other intriguing questions about the
evolutionary biology of this model genus will emerge in the
near future.
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