64 research outputs found

    Fixed block configuration group divisible designs with block size six

    Get PDF
    AbstractWe present constructions and results about GDDs with two groups and block size six. We study those GDDs in which each block has configuration (s,t), that is in which each block has exactly s points from one of the two groups and t points from the other. We show the necessary conditions are sufficient for the existence of GDD(n,2,6;λ1,λ2)s with fixed block configuration (3,3). For configuration (1,5), we give minimal or near-minimal index examples for all group sizes n≥5 except n=10,15,160, or 190. For configuration (2,4), we provide constructions for several families of GDD(n,2,6;λ1,λ2)s

    Group divisible designs of four groups and block size five with configuration (1; 1; 1; 2)

    Get PDF
    We present constructions and results about GDDs with four groups and block size five in which each block has Configuration (1,1,1,2)(1, 1, 1, 2), that is, each block has exactly one point from three of the four groups and two points from the fourth group. We provide the necessary conditions of the existence of a GDD(n,4,5;λ1,λ2)(n, 4, 5; \lambda_1, \lambda_2) with Configuration (1,1,1,2)(1, 1, 1, 2), and show that the necessary conditions are sufficient for a GDD(n,4,5;λ1,(n, 4, 5; \lambda_1, λ2)\lambda_2) with Configuration (1,1,1,2)(1, 1, 1, 2) if n≢0(n \not \equiv 0 (mod 6)6), respectively. We also show that a GDD(n,4,5;2n,6(n−1))(n, 4, 5; 2n, 6(n - 1)) with Configuration (1,1,1,2)(1, 1, 1, 2) exists, and provide constructions for a GDD(n=2t,4,5;n,3(n−1))(n = 2t, 4, 5; n, 3(n - 1)) with Configuration (1,1,1,2)(1, 1, 1, 2) where n≠12n \not= 12, and a GDD(n=6t,4,5;4t,2(6t−1))(n = 6t, 4, 5; 4t, 2(6t - 1)) with Configuration (1,1,1,2)(1, 1, 1, 2) where n≠6n \not= 6 and 1818, respectively

    Fixed block configuration GDDs with block size 6 and (3, r)-regular graphs

    Get PDF
    Chapter 1 is used to introduce the basic tools and mechanics used within this thesis. Most of the definitions used in the thesis will be defined, and we provide a basic survey of topics in graph theory and design theory pertinent to the topics studied in this thesis. In Chapter 2, we are concerned with the study of fixed block configuration group divisible designs, GDD(n; m; k; λ1; λ2). We study those GDDs in which each block has configuration (s; t), that is, GDDs in which each block has exactly s points from one of the two groups and t points from the other. Chapter 2 begins with an overview of previous results and constructions for small group size and block sizes 3, 4 and 5. Chapter 2 is largely devoted to presenting constructions and results about GDDs with two groups and block size 6. We show the necessary conditions are sufficient for the existence of GDD(n, 2, 6; λ1, λ2) with fixed block configuration (3; 3). For configuration (1; 5), we give minimal or nearminimal index constructions for all group sizes n ≥ 5 except n = 10, 15, 160, or 190. For configuration (2, 4), we provide constructions for several families ofGDD(n, 2, 6; λ1, λ2)s. Chapter 3 addresses characterizing (3, r)-regular graphs. We begin with providing previous results on the well studied class of (2, r)-regular graphs and some results on the structure of large (t; r)-regular graphs. In Chapter 3, we completely characterize all (3, 1)-regular and (3, 2)-regular graphs, as well has sharpen existing bounds on the order of large (3, r)- regular graphs of a certain form for r ≥ 3. Finally, the appendix gives computational data resulting from Sage and C programs used to generate (3, 3)-regular graphs on less than 10 vertices

    Polynomiality of Plancherel averages of hook-content summations for strict, doubled distinct and self-conjugate partitions

    Get PDF
    International audienceThe polynomiality of shifted Plancherel averages for summations of contents of strict partitions were established by the authors and Matsumoto independently in 2015, which is the key to determining the limit shape of random shifted Young diagram, as explained by Matsumoto. In this paper, we prove the polynomiality of shifted Plancherel averages for summations of hook lengths of strict partitions, which is an analog of the authors and Matsumoto's results on contents of strict partitions. In 2009, the first author proved the Nekrasov-Okounkov formula on hook lengths for integer partitions by using an identity of Macdonald in the framework of type A affine root systems, and conjectured that the Plancherel averages of some summations over the set of all partitions of size n are always polynomials in n. This conjecture was generalized and proved by Stanley. Recently, Pétréolle derived two Nekrasov-Okounkov type formulas for C and Cˇwhich involve doubled distinct and self-conjugate partitions. Inspired by all those previous works, we establish the polynomiality of t-Plancherel averages of some hook-content summations for doubled distinct and self-conjugate partitions
    • …
    corecore