
Michigan Technological University Michigan Technological University 

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech 

Dissertations, Master's Theses and Master's 
Reports - Open 

Dissertations, Master's Theses and Master's 
Reports 

2011 

Fixed block configuration GDDs with block size 6 and (3, r)-regular Fixed block configuration GDDs with block size 6 and (3, r)-regular 

graphs graphs 

Melanie R. Laffin 
Michigan Technological University 

Follow this and additional works at: https://digitalcommons.mtu.edu/etds 

 Part of the Mathematics Commons 

Copyright 2011 Melanie R. Laffin 

Recommended Citation Recommended Citation 
Laffin, Melanie R., "Fixed block configuration GDDs with block size 6 and (3, r)-regular graphs ", Master's 
Thesis, Michigan Technological University, 2011. 
https://digitalcommons.mtu.edu/etds/204 

Follow this and additional works at: https://digitalcommons.mtu.edu/etds 

 Part of the Mathematics Commons 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Michigan Technological University

https://core.ac.uk/display/151507604?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F204&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.mtu.edu%2Fetds%2F204&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F204&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.mtu.edu%2Fetds%2F204&utm_medium=PDF&utm_campaign=PDFCoverPages


FIXED BLOCK CONFIGURATION GDDs WITH BLOCK SIZE 6 AND
(3, r)-REGULAR GRAPHS

By
MELANIE R. LAFFIN

A THESIS
Submitted in partial fulfillment of the requirements

for the degree of
MASTER OF SCIENCE
(Mathematical Sciences)

MICHIGAN TECHNOLOGICAL UNIVERSITY
2011

Copyright 2011 Melanie R. Laffin





This thesis, “Fixed block configuration GDDs with block size six and (3, r)-regular graphs,”
is hereby approved in partial fulfillment of the requirements for the degree of MASTER OF
SCIENCE in the field of MATHEMATICAL SCIENCES.

Department of Mathematical Sciences

Signatures:

Thesis Advisor
Melissa S. Keranen, PhD

Thesis Co-Advisor
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Preface

This thesis is divided into two topics, “Group divisible designs with block size six” (Chap-
ter 2) and “(3, r)-regular graphs” (Chapter 3). The results presented in Chapter 2 were the
result of a collaborative effort with Melissa S. Keranen, and the results in Chapter 3 were
also a collaborative effort with Sibel Özkan. Both chapters have separately been submitted
for publication.
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Abstract

Chapter 1 is used to introduce the basic tools and mechanics used within this thesis. Most
of the definitions used in the thesis will be defined, and we provide a basic survey of topics
in graph theory and design theory pertinent to the topics studied in this thesis.

In Chapter 2, we are concerned with the study of fixed block configuration group divisible
designs, GDD(n,m, k;λ1, λ2). We study those GDDs in which each block has configu-
ration (s, t), that is, GDDs in which each block has exactly s points from one of the two
groups and t points from the other. Chapter 2 begins with an overview of previous results
and constructions for small group size and block sizes 3,4 and 5. Chapter 2 is largely de-
voted to presenting constructions and results about GDDs with two groups and block size 6.
We show the necessary conditions are sufficient for the existence of GDD(n, 2, 6;λ1, λ2)
with fixed block configuration (3, 3). For configuration (1, 5), we give minimal or near-
minimal index constructions for all group sizes n ≥ 5 except n = 10, 15, 160, or 190. For
configuration (2, 4), we provide constructions for several families ofGDD(n, 2, 6;λ1, λ2)s.

Chapter 3 addresses characterizing (3, r)-regular graphs. We begin with providing previous
results on the well studied class of (2, r)-regular graphs and some results on the structure
of large (t, r)-regular graphs. In Chapter 3, we completely characterize all (3, 1)-regular
and (3, 2)-regular graphs, as well has sharpen existing bounds on the order of large (3, r)-
regular graphs of a certain form for r ≥ 3.

Finally, the appendix gives computational data resulting from Sage and C programs used
to generate (3, 3)-regular graphs on less than 10 vertices.

15



16



Chapter 1

Introduction

We begin by providing the necessary background knowledge in the fields of graph theory
and design theory. We borrow much of the notation that is standard in graph theory and
design theory and obtain the definitions from [5, 7, 21, 23].

1.1 Graph Theory

A graph G is an ordered pair (V (G), E(G)) or (V,E), where V (G) is a finite set called the
vertex set (or points or nodes) and E(G) is the edge set which is comprised of 2 element
subsets of V (G). If {x, y} ∈ E(G) we write xy for short. If there are no repeated sets of
edges or pairs of nondistinct vertices we call G simple, else G is called a multigraph. From
now on, we assume all graphs are simple.

A

B

C

D

Figure 1.1: An example of a graph, G = (V,E)

Figure 1.1 is a graph G with V = {A,B,C,D} and E = {AB,AC,BC,BD,CD}. The
cardinality of the set of vertices is called the order of the graph, while the cardinality of the
edge set is called the size of the graph. If two vertices v and u form an edge, we say that
they are adjacent.

For v ∈ V , we say the (open) neighborhood of v, N(v) are the set of vertices that form
an edge with v. We will denote N(v1) ∪ N(v2) ∪ . . . N(vn) as N(v1), N(v2), . . . , N(vn).
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The degree of a vertex x ∈ G, dG(v) or d(v), is |N(v)|. A graph where every vertex has
the same degree is called a regular graph, or k-regular indicating that every vertex is of
degree k. The maximum degree of the graph is denoted ∆(G) while the minimum degree
is denoted δ(G). A vertex with degree 1 is called a leaf, and a vertex with degree 0 is often
said to be isolated.

We call H = (V ′, E ′) a subgraph of G = (V,E) if V ′ ⊆ V and E ′ ⊆ E. H is an induced
subgraph of G (or subgraph of G induced by V ′) if V ′ ⊆ V and H has all the edges whose
end vertices are connected to V ′. If a vertex is an endpoint of an edge the vertex is incident
to the edge. Figure 1.2 is an induced subgraph of the graph in Figure 1.1 on the vertex set
{A,B,C}.

A

B

C

Figure 1.2: An induced subgraph of G in Figure 1.1

The complementary graph or complement of G, G = (V,E), has the same vertex set of G,
and two vertices are adjacent in G if and only if they are not adjacent in G.

There are several important and commonly studied classes of graphs. A graph of order n
where each pair of vertices forms an edge is called the complete graph and is denoted as
Kn. The complete graph has

(
n
2

)
edges and is (n − 1)-regular. Figure 1.2 is the complete

graph on 3 vertices.

If we can partition the vertex set V into two subsets X and Y such that each edge of G has
one vertex in X and one vertex in Y we call G bipartite, and the pair X, Y a bipartition of
G. A bipartite graph is denoted Kn,m where n and m are the cardinalities of the partitions
X and Y respectively. A complete bipartite graph is denotedKn,n and has the property that
every vertex in X is adjacent to every vertex of Y . The bipartite graph K1,n is sometimes
referred to as the star. IfG has k-partitions we call the graph multipartite, or more precisely,
k-partite.

An independent set of vertices is a subset of vertices so that no pair is adjacent. For exam-
ple, in the graph found in Figure 1.1, an independent set is {A,D}. The largest number
of vertices in an independent set is called the independence number of a graph G and is
denoted by α(G). The determination of the independence number in general is difficult
computational problem (NP-hard). A clique in a graph G is a subset U of vertices where
each pair is adjacent, i.e. the subgraph induced by U is a complete graph. The largest num-
ber of vertices in a clique is called the clique number and is denoted ω(G). It follows that
U is an independent set of G if and only if U is a clique of G and that U is a clique of G if

18



and only if U is an independent set of G. By definition, α(G) = ω(G) and α(G) = ω(G).
Thus finding a maximum clique is equivalent to finding a maximal independent set, and is
also a NP-hard problem.

A walk in a graphG is an alternating sequence of vertices and edges which starts at a vertex
and ends at a vertex. If we have the restriction that no two vertices can be repeated in a
walk then we call the walk a path. A path on n edges is denoted Pn. A cycle is a closed
walk where no two vertices are repeated except for the inital and the final vertex which are
the same. We denote cycles with n vertices Cn.

We call a graph connected if for any 2 vertices u, v ∈ V there is a path from u to v. If
G is not connected then we call the connected subgraphs of G components. A tree is a
connected graph with no cycles, and a forest is a graph whose components are trees.

There are a few graph operations that we will use extensively in the later chapters. Let G1

and G2 be two graphs. Then the graph union G1 ∪ G2 is a graph whose vertex set is the
union of the set of vertices in G1 and G2 and whose edge set is the union of the set of edges
in G1 and G2. The join of a graph, G1 ∨ G2, is the disjoint union G1 ∪ G2 plus the edges
{uv : u ∈ V (G1), v ∈ V (G2)}.

1.2 Design Theory

Another important type of combinatorial configuration is a combinatorial design. A design
is a pair (X,A) such that the following properties are satisfied:

1. X is a set of elements called points.

2. A is a multiset of nonempty subsets of X called blocks.

If two blocks in a design are identical, they are said to be repeated blocks. A design is said
to be simple if there are no repeated blocks.

1.2.1 Balanced-incomplete block designs

Balanced-incomplete block designs are the most-studied type of design. A balanced-
incomplete block design, BIBD(n, k, λ), is a design (X,A) such that the following proper-
ties are satisfied:

1. |X| = n,
19



2. each block contains exactly k points, and

3. every pair of distinct points is contained in exactly λ blocks.

A trivial BIBD(n, k, λ) has parameters BIBD(n, k,
(
n−t
k−t

)
) and is formed by taking λ copies

of every pair of a n-set where k < n.

We will usually write the blocks in the form abc instead of {a, b, c}. We give two examples
of BIBDs.The smallest non-trivial BIBD is BIBD(7, 3, 1):

X = {1, 2, 3, 4, 5, 6, 7}, and
A = {123, 145, 167, 246, 257, 347, 356}.

A BIBD(7, 3, 1) is also known as the Fano plane. The following is a BIBD(9, 3, 1).

X = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and
A = {123, 456, 789, 147, 258, 369, 159, 267, 348, 168, 249, 357}.

If k = 3 we may call the design a triple system, and abbreviate TS(n, λ).

A set of blocks in a design is called a parallel class if it partitions the point set. A partition
of the blocks of a design into parallel classes is a resolution, and such a design is called
resolvable. An α-parallel class in a design is a set of blocks which contain every point of
the design exactly α times. A design that can be resolved into α-parallel classes is called
α-resolvable. We may abbreviate an α-resolvable design as an α-RBIBD(n, k, λ). If α = 1
then we abbreviate RBIBD(n, k, λ).

The necessary conditions for the existence of a α-RBIBD(n, k, λ) were given by Jung-
nickle, Mullin and Vanstone in [20].

Theorem 1.1 ([20]). The necessary conditions for the existence of an α-resolvable BIBD(n, k, λ)
are

1. λ(n− 1) ≡ 0 mod (k − 1)α

2. λn(n− 1) ≡ 0 mod k(k − 1)

3. αn ≡ 0 mod k

In the same paper, they also showed that these conditions were sufficient when k = 3.

Lemma 1.2 ([20]). The necessary conditions for the existence of an α-resolvable BIBD(n, 3, λ)
are sufficient, except for n = 6, α = 1 and λ ≡ 2 mod 4.

20



Vasiga, Furino and Ling [22] showed that the necessary conditions are sufficient for k = 4.

Lemma 1.3. The necessary conditions for the existence of an α-resolvable BIBD(n, 4, λ)
are sufficient, with the exception of (α, n, λ) = (2, 10, 2).

By Theorem 1.2, there exists a RBIBD(9, 3, 1). The design was presented above, and we
now resolve the design into 4 parallel classes:

Π1 = {123, 456, 789},

Π2 = {147, 258, 369},

Π3 = {159, 267, 348}, and

Π4 = {168, 249, 357}.

A near parallel class is a partial parallel class missing a single point. A near resolvable
design, NRB(n, k, k − 1), is a BIBD(n, k, k − 1) with the property that the blocks can
be partitioned into near parallel classes. For such a design, every point is absent from
exactly one class. The necessary condition for the existence of an NRB(n, k, k − 1) is
n ≡ 1 mod k. It is know that the necessary condition is sufficient for the existence of a
NRB(n, k, k − 1) if k ≤ 7 (see [7]).

1.2.2 Two-Associate-Class PBIBDs

The definitions and examples for this section were largely taken from [7]. Let X be a
set of n points. A partially balanced incomplete block design with m associate classes,
PBIBD(m) is a design on X with b blocks of cardinality k with each point appearing
in r blocks. Sometimes points are refered to as treatments. Any two points that are
ith associates appear together in λi blocks of the PBIBD(m). It is custom to abbreviate
PBIBD(n, k, λi).

PBIBDs were initially used in plant breeding work, in survey sampling, and in group test-
ing. They were introduced as generalizations of BIBDs. We will focus on PBIBD(2),
which were classified by Bose and Shimamoto in 1952 in [3] The classified PBIBDs into
6 types based on the association scheme: group divisible, triangular, latin square, cyclic,
partial geometry and miscellaneous. We will focus now on group divisible type.

We say a group divisible design GDD(n,m, k; λ1, λ2) is a collection of k element subsets of
a v-set X called blocks which satisfies the following properties: each point of X appears in
r of the b blocks; the v = nm elements of X are partitioned into m subsets (called groups)
of size n each; pairs of points within the same group are called first associates of each other
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and appear in λ1 blocks; pairs of points not in the same group are second associates and
appear in λ2 blocks together.

We make the remark that a very well studied class of group divisible designs has λ1 = 0
[11], but it is not necessary for either λ values to be 0.

In 1952, Bose and Conner in[2] divided the GDD class of PBIBD(2) into three classes:
singular, semiregular and regular. The differences between the three are that a singular
GDD has that r − λ1 > 0, a GDD is semiregular if r − λ1 > 0 and rk − nλ2 = 0 and it is
regular if r−λ1 > 0 and k−nλ2 > 0. For all three classes, many GDDs have been studied
and put into tables by Clatworthy (see [6]). For more information on PBIBDs, BIBDs and
other designs we invite the reader to read the Handbook of Combinatorial Designs ([7]).
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Chapter 2

Fixed Block Configuration Group
Divisible Designs

In this chapter1 we study a class of group divisible type PBIBDs with two associate classes.
We say that fixed block configuration GDD has the property that every block contains s
points from one group and t = k − s points from the other. We focus our study on fixed
block configuration GDDs with block size 6 and two groups with all possible configura-
tions.

2.1 History

We begin by providing a recent survey of GDDs with first and second associates. In [9, 10],
Fu, Rodger and Sarvate completely settle the existence question for group divisible designs
with block size three and first and second associates for n ≥ 2 and 2 or more groups.

Fixed block configuration GDDs began with Hurd and Sarvate in [16, 17]. In these papers,
the necessary conditions for the existence of such designs with block size 4 and config-
urations (2, 2) and (1, 3) were established, and it was shown that the necessary condi-
tions are sufficient for all (n, 2, 4;λ1, λ2). Henson, Hurd and Sarvate studied the class of
GDD(n, 3, 4;λ1, λ2). Here they presented constructions showing that the necessary con-
ditions are sufficient for all GDDs with 3 groups and group sizes 2,3,5 and group size 4
with two exceptions [13]. More recently, Hurd and Sarvate studied GDD(n, 2, 5;λ1, λ2).
Once again, they established necessary conditions and showed that they were sufficient in
[14, 15].

1The results presented in this chapter are a collaborative effort between myself and Melissa Keranen, and
has been submitted for publication.
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2.2 Necessary Conditions

For GDDs with block size six and two groups there are two necessary conditions on the
number of blocks b, and the number of blocks a point appears in r.

Theorem 2.1. The following conditions are necessary for the existence of a GDD(n, 2, 6;λ1,
λ2).

1. The number of blocks is b =
λ1(n)(n− 1) + λ2n

2

15
.

2. The number of blocks a point appears in is r =
λ1(n− 1) + λ2n

5
.

Proof. For condition (1), we count the total number of blocks, b. Each block has(
6
2

)
= 15 pairs. Thus the total number of blocks must be divisible by 15. Con-

sider a point v. There are exactly λ1(n − 1) pairs containing another point from
the same group, and λ2n pairs with a point from the other group. Thus the total
number of pairs is 15b = λ1(n)(n − 1) + λ2n

2 and the total number of blocks is

b =
λ1(n)(n− 1) + λ2n

2

15
. For condition (2), consider a point v. In any block with v

there are 5 pairs containing v and thus the total number of blocks containing v must
be divisible by 5. Further v appears in a block λ1 times with every other point in
its same group, which is n − 1 points, and it appears λ2 times with every point in
the other group (n points in the other group). Thus the total number of blocks that v

appears in is r =
λ1(n− 1) + λ2n

5
.

These two necessary conditions on b and r determine possibilities for the parameter n and
the indices λ1 and λ2. Table 2.1 summarizes this relationship.

There are at least two other necessary conditions:

Theorem 2.2. Suppose a GDD(n, 2, 6;λ1, λ2) exists. Then:

1. b ≥ max(2r − λ1, 2r − λ2)

2. λ2 ≤ 2λ1(n− 1)/n
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Table 2.1:
Possible values of n with respect to λ1, λ2

(mod 15) λ1 ≡ 0 mod 5 λ1 ≡ 1 mod 5 λ1 ≡ 2 mod 5 λ1 ≡ 3 mod 5 λ1 ≡ 4 mod 5

λ2 ≡ 0 Any n n ≡ 1 mod 5 n ≡ 1 mod 5 n ≡ 1 mod 5 n ≡ 1 mod 5
λ2 ≡ 1 impossible n ≡ 3, 8 mod 15 n ≡ 9, 14 mod 15 n ≡ 2, 12 mod 15 impossible
λ2 ≡ 2 impossible n ≡ 12 mod 15 n ≡ 3, 8 mod 15 impossible n ≡ 9 mod 15
λ2 ≡ 3 n ≡ 0 mod 5 n ≡ 4 mod 5 impossible n ≡ 3 mod 5 n ≡ 2 mod 5
λ2 ≡ 4 n ≡ 0 mod 15 impossible n ≡ 2, 12 mod 15 n ≡ 9, 14 mod 15 n ≡ 3, 8 mod 15
λ2 ≡ 5 n ≡ 0 mod 3 n ≡ 6 mod 15 n ≡ 6, 11 mod 15 n ≡ 6, 11 mod 15 n ≡ 6, 11 mod 15
λ2 ≡ 6 n ≡ 0 mod 5 n ≡ 3 mod 5 n ≡ 4 mod 5 n ≡ 2 mod 5 impossible
λ2 ≡ 7 impossible n ≡ 2, 12 mod 15 n ≡ 3, 8 mod 15 impossible n ≡ 9, 14 mod 15
λ2 ≡ 8 impossible n ≡ 4, 9 mod 15 impossible n ≡ 3, 8 mod 15 n ≡ 2, 12 mod 15
λ2 ≡ 9 n ≡ 0 mod 5 impossible n ≡ 2 mod 5 n ≡ 4 mod 5 n ≡ 3 mod 5
λ2 ≡ 10 n ≡ 0 mod 3 n ≡ 6, 11 mod 15 n ≡ 6, 11 mod 15 n ≡ 6 mod 15 n ≡ 6, 11 mod 15
λ2 ≡ 11 impossible n ≡ 3 mod 15 n ≡ 9, 14 mod 15 n ≡ 2, 12 mod 15 impossible
λ2 ≡ 12 n ≡ 0 mod 5 n ≡ 2 mod 5 n ≡ 3, 13 mod 15 impossible n ≡ 4, 9 mod 15
λ2 ≡ 13 impossible n ≡ 9, 14 mod 15 impossible n ≡ 3, 8 mod 15 n ≡ 2, 12 mod 15
λ2 ≡ 14 impossible impossible n ≡ 2, 12 mod 15 n ≡ 9, 14 mod 15 n ≡ 3 mod 5

Proof. For part (1), consider the set of blocks containing the points x and y. There are r
blocks containing x and r−λi blocks which contain y but do not contain x. So there are at
least 2r − λi blocks. For part (2) let b6 be the number of blocks with all 6 points from one
group, b5 be the number of blocks with 5 points from 1 group, and the remaining point from
the other group, b4 be the number of blocks with 4 points from 1 group, and the remaining 2
points from the other group, and b3 be the number of blocks with 3 points from each group.
Counting the contribution of these blocks towards the number of pairs of points from the
same group in the blocks together gives: 15b6 + 10b5 + 7b4 + 6b3 = 2λ1

(
n
2

)
= n(n− 1)λ1.

Counting the pairs of points from different groups gives 5b5 + 8b4 + 9b3 = n2λ2. Thus we
have:

−15b6 − 5b5 + b4 + 3b3 = n2λ2 − n2λ1 + nλ1 ≤ b4 + 3b3 ≤ 5b =
n[λ1(n− 1) + λ2n]/3
⇒ 3n2λ2 − 3n2λ1 + 3nλ1 ≤ n2λ2 + n2λ1 − nλ1
⇒ 2n2λ2 ≤ 4n2λ1 − 4nλ1

⇒ λ2 ≤
2(n− 1)λ1

n

Condition (2) shows that while λ2 ≥ λ1 is possible, we always have λ2 < 2λ1. We can
apply the theorem to assert the following:

Corollary 2.3. The family GDD(n, 2, 6; s, 2st) does not exist for any integers s, t > 0.

In [15], Hurd, Mishra and Sarvate proved the following two results for GDDs with fixed
block configuration. We repeat their results here.

Theorem 2.4 ([15]). Suppose a GDD(n, 2, k;λ1, λ2) has configuration (s, t). Then the
number of blocks with s points (respectively t) from the first group is equal to the number
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of blocks with s points (respectively t) from the second group. Consequently, for any s and
t, the number of blocks b is necessarily even.

Theorem 2.5 ([15]). For any GDD(n, 2, k;λ1, λ2) with configuration (s, t), the second

index is given by λ2 =

(
λ1(n− 1)

n

)(
k(k − 1)− 2β

2β

)
where β =

(
s

2

)
+

(
t

2

)
.

For the remainder of this paper, we refer to the results presented in this section as the
“necessary conditions.”

2.3 GDDs with Configuration (3,3)

In this section, we introduce a basic construction for configuration (3,3) GDDs with specific
indices and present the minimal indices for any configuration (3,3) GDD(n, 2, 6; λ1, λ2).
We begin by providing an example of a configuration (3,3) GDD where λ1 = 4 and λ2 = 5.
Example 1: GDD(6, 2, 6; 4, 5). Let A = {0, 1, 2, 3, 4, 5} and B = {a, b, c, d, e, f}. Then
the b = 20 blocks are:

{0, 1, 2, a, b, c}, {0, 1, 2, d, e, f}, {0, 1, 3, a, b, d}, {0, 1, 3, c, e, f}, {0, 2, 4, a, c, e},
{0, 2, 4, b, d, f}, {0, 3, 5, a, d, f}, {0, 3, 5, b, c, e}, {0, 4, 5, a, e, f}, {0, 4, 5, b, c, d},
{1, 2, 5, b, c, f}, {1, 2, 5, a, e, d}, {1, 3, 4, b, d, e}, {1, 3, 4, a, c, e}, {1, 4, 5, b, e, f},
{1, 4, 5, a, c, d}, {2, 3, 4, c, d, e}, {2, 3, 4, a, b, f}, {2, 3, 5, c, d, f}, {2, 3, 5, a, b, e}

By applying Theorem 2.5 to configuration (3,3) GDDs, we get the following result.

Corollary 2.6. For any configuration (3, 3) GDD(n, 2, 6;λ1, λ2), we have

λ2 =
3λ1(n− 1)

2n

.

2.3.1 A Basic Construction for Configuration (3, 3)

In this section we use triple systems, TS(n, λ) or BIBD(n, 3, λ), extensively to construct a
family of configuration (3, 3) GDDs.

Theorem 2.7. If there exists a TS(n, λ) with b blocks and repetition number r, then there
exists a configuration (3, 3) GDD(n, 2, 6;λb, r2). Further if such a GDD exists, then there
exists a TS(n, λb).
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Proof. Suppose there exists a TS(n, λ). Consider two copies of this triple system, TS1(n, λ)
and TS2(n, λ). Form the complete bipartite graph G with bipartitions G1 and G2 where
V (G1) is the set of blocks of TS1(n, λ) and V (G2) is the set of blocks of TS2(n, λ). The
blocks of the desired design are the edge set of G. Consider a pair of first associates. They
will appear λ times in TSi(n, λ), i = 1, 2. Therefore, in the given construction they will
appear together exactly λb times, where b is the number of blocks in a TS(n, λ). Now
consider a pair of second associates {v1, v2} where vi ∈ TSi(n, λ). Any point appears
exactly r times in a TS(n, λ), thus the pair {v1, v2} is contained in exactly r2 blocks of this
design.

Now suppose a GDD exists with groups G1 and G2. For each block, remove the points
contained in G1, and then remove G1. What remains is a set of blocks of size 3 on G2

which have the property that any pair of points occurs in exactly λb blocks. Thus it is a
TS(n, λb).

The construction given in Theorem 2.7 can easily be generalized to any configuration (k, k)
GDD. Thus we have the following corollary.

Corollary 2.8. If there exists a BIBD(n, k, λ) with b blocks and repetition number r then
there exists a configuration (k, k) GDD(n, 2, 2k;λb, r2).

2.3.2 Minimal Indices

There exists a TS(7, 1), and thus by Theorem 2.7 there exists a GDD(7, 2, 6; 7, 9). From
Theorem 2.6, λ2 = 3λ1(6)

14
= 9λ1

7
, so the construction given in Theorem 2.7 gives a design

with the minimum possible indices. However, there also exists a TS(9,1) which means that
there exists a GDD(9,2,6;12,16) by Theorem 2.7. In this case we have that λ2 = 3λ1(8)

18
=

4λ1
3

. Here the minimum values for (λ1, λ2) are (3,4). So the construction given in Theorem
2.7 does not give a design with the minimum possible indices. In general, Theorem 2.6 says
that for any configuration (3,3) GDD, if for some value of n, the minimum possible indices
are (λ1,λ2), then any other GDD with that configuration will have the indices (wλ1,wλ2) for
some positive integer w. We can find the minimal indices by using Theorem 2.6 and by the
equations given in Theorem 2.1. Any configuration (3,3) GDD with indices (wλ1,wλ2) can
be obtained by taking w copies of the blocks in the minimal design. Therefore, we focus
on constructing configuration (3,3) GDDs with indices (λ1, λ2). We may then say that the
necessary conditions are sufficient for the existence of any configuration (3,3) GDD with
that n.

Theorem 2.9. The minimal indices (λ1, λ2) for any configuration (3, 3) GDD(n,2, 6;λ1,λ2)
are summarized in Table 2.2.
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Table 2.2:
Summary of Minimal Indices for Configuration (3, 3)

n λ1 λ2
n ≡ 0 mod 6 2n/3 (n− 1)
n ≡ 1 mod 6 n 3(n− 1)/2
n ≡ 2 mod 6 6n 9(n− 1)
n ≡ 3 mod 6 n/3 (n− 1)/2
n ≡ 4 mod 6 2n 3(n− 1)
n ≡ 5 mod 6 3n 9(n− 1)/2

Proof. We know that λ2 = 3λ1(n−1)
2n

from Theorem 2.6. If n ≡ 0 mod 3 and n ≡ 1
mod 2, then n ≡ 3 mod 6. Thus λ1 is a multiple of n/3 and λ2 is a multiple of (n− 1)/2.
If n ≡ 0 mod 3 and n ≡ 0 mod 2, then n ≡ 0 mod 6, so λ1 is a multiple of 2n/3 and λ2
is a multiple of (n− 1). If n ≡ 1 mod 3 and n ≡ 1 mod 2, n ≡ 1 mod 6, implying λ1
is a multiple of n and λ2 is a multiple of 3(n− 1)/2. If n ≡ 1 mod 3 and n ≡ 0 mod 2,
n ≡ 4 mod 6, and λ1 is a multiple of 2n and λ2 is a multiple of 3(n−1). If n ≡ 2 mod 3
and n ≡ 1 mod 2, then n ≡ 5 mod 6. This implies that λ1 is a multiple of n and λ2 is a
multiple of 3(n − 1)/2. However, if we take these values to be the minimal indices, these
number of blocks given by Theorem 2.1 would not be integer valued. The smallest values
for (λ1, λ2) that give integer values for b are (λ1, λ2) = (3n, 9

2
(n − 1)). Finally consider

when n ≡ 2 mod 3 and n ≡ 0 mod 2. Then n ≡ 2 mod 6, which means that λ1 is a
multiple of 2n and λ2 is a multiple of 3(n − 1). If we take these values to be the minimal
indices, these number of blocks given by Theorem 2.1 would not be integer valued so the
smallest values for (λ1, λ2) that give integer values for b are (λ1, λ2) = (6n, 9(n− 1)).

2.4 Constructing Configuration (3,3) GDDs

In this section, we give a similar construction to the one given in Theorem 2.7 based on
α-resolvable triple systems. We then show that this construction produces designs with
minimal indices for all configuration (3,3) GDDs with block size 6 and 2 groups.

We use α-resolvable designs to obtain the following result.

Lemma 2.10. Suppose there exists an α-resolvable TS(n, λ) with s α-parallel classes,
where each parallel class contains t blocks. Then there exists a configuration (3, 3)
GDD(n, 2, 6;λt, α2s).
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Proof. For i = 1, 2, let Di be an α-resolvable TS(n, λ). Resolve the blocks of Di into
α-parallel classes Ci

1, C
i
2, . . . C

i
s. Construct a graph G in the following manner. For j =

1, 2, . . . , s, create the complete bipartite graphGj with bipartitionsG1
j andG2

j where V (G1
j)

are the blocks of C1
j and V (G2

j) are the blocks of C2
j . Let G =

⋃s
j=1Gj . The edge set of

G will form the blocks of the desired design.

Consider a pair of first associates. It will appear in exactly λ blocks of Di. Therefore, in
the given construction, it will appear in λt blocks of size 6. Now consider a pair of second
associates {v1, v2} where v1 ∈ D1 and v2 ∈ D2. Here v1 will be matched with v2 exactly α
times per α-parallel class, thus λ2 = α2s.

We now consider values of n mod 6 and apply Lemma 2.10 in each case to obtain the
desired configuration (3,3) GDD with minimal indices (λ1, λ2).

Theorem 2.11. The necessary conditions are sufficient for the existence of a configuration
(3, 3)
GDD (n, 2, 6; n

3
, n−1

2
) when n ≡ 3 mod 6.

Proof. Let n ≡ 3 mod 6. Then by Lemma 1.2 there exists a 1-resolvable TS(n, 1) with
n−1
2

parallel classes, each containing n
3

blocks. By applying the construction in Lemma
2.10 we obtain a GDD with indices (λ1, λ2) = (n

3
, n−1

2
), which are the minimal indices

given in Theorem 2.9.

Theorem 2.12. The necessary conditions are sufficient for the existence of
GDD (n, 2, 6;n, 3

2
(n− 1)) when n ≡ 1 mod 6 with configuration (3, 3).

Proof. Let n ≡ 1 mod 6. By Lemma 1.2 there exists a 3-resolvable TS(n, 1) each con-
taining n−1

6
3-parallel classes with n blocks. If we apply the construction in Lemma 2.10,

we obtain a GDD with minimal indices (λ1, λ2) = (n, 3(n−1)
2

).

Theorem 2.13. The necessary conditions are sufficient for the existence of
GDD (n, 2, 6; 6n, 9(n− 1)) when n ≡ 2 mod 6 with configuration (3, 3).

Proof. Let n ≡ 2 mod 6. Then by Lemma 1.2 there exists a 3-resolvable TS(n, 6) with
(n− 1) 3-parallel classes, each containing n blocks. Applying Lemma 2.10 yields a GDD
with minimal indices (λ1, λ2) = (6n, 9(n− 1)).

Theorem 2.14. The necessary conditions are sufficient for the existence of
GDD (n, 2, 6; 2n, 3(n− 1)) when n ≡ 4 mod 6 with configuration (3, 3).

Proof. Let n ≡ 4 mod 6. By Lemma 1.2, there exists a 3-resolvable TS(n, 2) with n−1
3

3-parallel classes each containing n blocks. We may apply Lemma 2.10 to obtain a GDD
with minimal indices (λ1, λ2) = (2n, 3(n− 1)).
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Theorem 2.15. The necessary conditions are sufficient for the existence of
GDD (n, 2, 6; 3n, 9

2
(n− 1)) when n ≡ 5 mod 6 with configuration (3, 3).

Proof. Let n ≡ 5 mod 6. Then by Lemma 1.2 there exists a 3-resolvable TS(n, 3) with
n−1
2

3-parallel classes, each containing n blocks. We may apply Lemma 2.10 to obtain a
GDD with minimal indices (λ1, λ2) = (3n, 9(n−1)

2
).

Theorem 2.16. The necessary conditions are sufficient for the existence of
GDD(n, 2, 6; 2

3
n, n− 1) for n ≡ 0 mod 6 with configuration (3, 3).

Proof. Let n ≡ 0 mod 6 with n ≥ 12. Then by Lemma 1.2 there exists a 1-resolvable
TS(n, 2) with n− 1 parallel classes, each containing n

3
blocks. If we apply the construction

given in Lemma 2.10 we obtain a GDD with minimal indices (λ1, λ2) = (2n
3
, n − 1). If

n = 6, we may not use the construction described in Lemma 1.2. However if n = 6, the
minimal indices (λ1, λ2) = (4, 5) and Example 1 gives a GDD(6,2,6;4,5).

Since we have given a construction for all possible values of n mod 6, we may give the
following result.

Theorem 2.17. The necessary conditions are sufficient for the existence of all configuration
(3, 3) GDD(n, 2, 6;λ1, λ2) with minimal indices.

2.5 GDDs with Configuration (2,4)

In this section we present the minimal indices for any configuration (2,4)
GDD(n, 2, 6;λ1, λ2). By Theorem 2.5 we have the following relation between λ1 and λ2
for any configuration (2, 4) GDD.

Theorem 2.18. For any configuration (2, 4) GDD(n, 2, 6;λ1, λ2) we have λ2 = 8λ1(n−1)
7n

.

For any configuration (2,4) GDD if for some value of n, the minimum possible indices
are (λ1, λ2), then any other GDD with that configuration will have the indices (wλ1, wλ2)
for some positive integer w. We may find the minimum indices by using the equation in
Theorem 2.18, the equations in Theorem 2.1, and the condition in Theorem 2.4. As in
the case with configuration (3, 3), we focus on constructing GDDs with minimal indices
since we may then say the necessary conditions are sufficient for the existence of any
configuration (2,4) GDD with that n.
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Table 2.3:
Summary of Minimal Indices for Configuration (2, 4)

n λ1 λ2
n ≡ 0, 16, 24, 32, 40, 48 mod 56 7n/8 n− 1

n ≡ 2, 6, 10, 14, 18, 26, 30, 34, 38, 42, 46, 54 mod 56 7n/2 4(n− 1)
n ≡ 4, 12, 20, 28, 44, 52 mod 56 7n/4 2(n− 1)

n ≡ 8 mod 56 n/8 (n− 1)/7
n ≡ 22, 50 mod 56 n/2 4(n− 1)/7
n ≡ 36 mod 56 n/4 2(n− 1)/7

n ≡ 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 27, 31,
33, 35, 37, 39, 41, 45, 47, 49, 51, 53, 55 mod 56 7n 8(n− 1)

n ≡ 1, 15, 29, 43 mod 56 n 8(n− 1)/7

Theorem 2.19. The minimal indices (λ1, λ2) for any configuration (2, 4) GDD(n, 2,6; λ1,
λ2) are summarized in Table 2.3.

Proof. By Theorem 2.18, we know that λ2 = 8λ1(n−1)
7n

. If n 6≡ 1 mod 7 and n is odd,
then this implies that n ≡ 3, 5, 7, 9, 11, 13 mod 14. Thus λ1 is a multiple of 7n and λ2 is
a multiple of 8(n − 1). If n ≡ 1 mod 7 and n is odd, then n ≡ 1 mod 14. In this case,
λ1 must be a multiple of n and λ2 a multiple of (8/7)(n− 1). If n 6≡ 1 mod 7 and n ≡ 0
mod 8, we have that n ≡ 0, 16, 24, 32, 40, 48 mod 56, so λ1 is a multiple of 7n/8 and λ2
is a multiple of n − 1. If n 6≡ 1 mod 7 and n ≡ 2 mod 8 then n ≡ 2, 10, 18, 26, 34, 42
mod 56 implying λ1 is a multiple of 7n/2 and λ2 is a multiple of 4(n−1). If n 6≡ 1 mod 7
and n ≡ 4 mod 8, n ≡ 4, 12, 20, 28, 44, 52 mod 56. Then λ1 is a multiple of 7n/4 and
λ2 is a multiple of 2(n− 1). If n 6≡ 1 mod 7 and n ≡ 6 mod 8, n ≡ 6, 14, 30, 38, 46, 54
mod 56, then λ1 is a multiple of 7n/2 and λ2 is a multiple of 4(n − 1). If n ≡ 1 mod 7
and n ≡ 0 mod 8, we have that n ≡ 8 mod 56. Here, it follows that λ1 is a multiple
of n/8 and λ2 is a multiple of (n − 1)/7. If n ≡ 1 mod 7 and n ≡ 2 mod 8, we have
that n ≡ 50 mod 56. Here, it follows that λ1 is a multiple of n/2 and λ2 is a multiple of
4(n − 1)/7. If n ≡ 1 mod 7 and n ≡ 4 mod 8, we have that n ≡ 36 mod 56. Here, it
follows that λ1 is a multiple of n/4 and λ2 is a multiple of 2(n − 1)/7. If n ≡ 1 mod 7
and n ≡ 6 mod 8, n ≡ 22 mod 56, and it follows λ1 is a multiple of n/2 and λ2 is a
multiple of 4(n− 1)/7.

2.6 Constructing (2, 4) GDD(n, 2, 6;λ1, λ2)

We use the Theorem 2.19 and Lemma 1.3 to construct configuration (2,4) GDDs with
minimal indices, when possible. We begin with a general construction.
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Lemma 2.20. If there exists an α-resolvable BIBD(n, 4, λ) with n even and λ = 3α, then
there exists a configuration (2, 4) GDD(n, 2, 6; n

2
(λ+ α

2
), 2α(n− 1)).

Proof. Let the two groups be A = {1, 2, . . . , n}, and A′ = {1′, 2′, . . . , n′}. Let D be an α-
resolvable BIBD(n, 4, λ) on the point set ofA. Let F be a 1-factorization ofKn on the point
set of A′. Resolve the blocks into α parallel classes. There will be λ(n− 1)/3α = (n− 1)
classes with (nα)/4 blocks in each class. Construct a graph G in the following manner.
For j = 1, 2, . . . , (n − 1), create the complete bipartite graph Gj with bipartitions G1

j and
G2
j where V (G1

j) are the blocks of an α parallel class and V (G2
j) are a 1-factor of Kn. If

we switch A with A′ and repeat the construction, we obtain all desired blocks.

Consider a pair of first associates, {x, y} ∈ A. It will appear exactly λ times in D. There-
fore in the given construction, it will appear nλ/2 times when in the first part of the con-
struction. This pair will appear an additional nα/4 times when the second part of the
construction. Thus λ1 = n

2
(λ + α

2
). Now consider a pair of second associates {x, y′},

where x ∈ A and y′ ∈ A′. Here x will appear with y′ exactly α(n− 1) in both parts of the
construction, so λ2 = 2α(n− 1).

We use the above construction to obtain the following results:

Corollary 2.21. Let n ≡ 2, 6, 10, 14, 18, 26, 30, 34, 38, 42, 46, 54 mod 56. Then the nec-
essary conditions are sufficient for the existence of a configuration (2, 4) GDD(n, 2, 6;
7n
2
, 4(n− 1)).

Proof. Let n be assumed as above. By Lemma 1.3, there exists a 2-resolvable
BIBD(n, 4, 6). Apply Lemma 2.20 to obtain a GDD with minimal indices (λ1, λ2) =
(7n

2
, 4(n− 1)).

Corollary 2.22. Let n ≡ 4, 12, 20, 28, 44, 52 mod 56. Then the necessary conditions are
sufficient for the existence of a configuration (2, 4) GDD(n, 2, 6; 7n

4
, 2(n− 1)).

Proof. Let n be assumed as above. By Lemma 1.3, there exists a resolvable
BIBD(n, 4, 3). So we may apply Lemma 2.20 to obtain a GDD with minimal indices
(λ1, λ2) = (7n

4
, 2(n− 1)).

We define a near-minimal GDD as a GDD which has indices exactly twice the minimal
size.

Corollary 2.23. If n ≡ 0, 8 mod 24 then there exists a near minimal configuration (2, 4)
GDD(n, 2, 6; 7n

4
, 2(n− 1)).
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Proof. Let n be assumed as above. By Lemma 1.3, there exists a resolvable BIBD(n, 4, 3).
Apply Lemma 2.20 to obtain a near-minimal GDD with indices (7n

4
, 2(n− 1)).

The above construction gives near-minimal GDDs for n ≡ 0, 8 mod 24. The next theorem
shows that for n = 8, the minimal indices can not be obtained.

Theorem 2.24. There does not a exist a configuration (2, 4) GDD(8, 2, 6; 1, 1).

Proof. Assume such a design exists with groups A and B. Then it would have 8 blocks
and every point would appear 3 times. Consider a point in the design, x and let its first
associates be {1, 2, 3, 4, 5, 6, 7}. Suppose x appears in 3 blocks which intersect A in 4
points, and x ∈ A in each of these blocks. Then because there are only 7 other points, there
must be a repeated pair in one of these blocks. However, we assumed λ1 = 1, so this is
not possible. Now suppose x appears in 2 blocks which intersect A in 4 points and x ∈ A
in those blocks. Then x must also appear in a block which intersects B in 2 points and
x ∈ B. Let the two partial blocks containing x ∈ A be {x, 1, 2, 3} and {x, 4, 5, 6}. Without
loss, assume the last partial block containing x also contains 1, and 1 ∈ A. The part of this
block which intersects A may not contain x, 2, 3, and we cannot repeat pairs, so 1 must be
in a partial block with {4, 7}. However, there is no additional first associate available to
complete this block. Finally assume x appears in one block which intersects A in 4 points
and x ∈ A. Without los, we may assume the partial block containing x ∈ A be {x, 1, 2, 3}.
Then x appears in 2 blocks which intersect B in 2 points, and x ∈ B. One of these blocks
must contain the pair {x, 1} where 1 ∈ A and the other block must contain the pair {x, 2}
where 2 ∈ A. However, we have no way to cover the pair {x, 3} where x ∈ A and 3 ∈ B
or x ∈ B or 3 ∈ A. Thus this design cannot exist.

We use a slightly different construction for n ≡ 16 mod 24.

Theorem 2.25. If n ≡ 16 mod 24 then the necessary conditions are sufficient for the
existence of a configuration (2, 4) GDD(n, 2, 6; 7n/8, (n− 1)).

Proof. Let n ≡ 16 mod 24, and let A = {1, 2, . . . , n} and A′ = {1′, 2′, . . . , n′} be
the point set for the two groups in the desired design. By Theorem 1.3, there exists a
RBIBD(n, 4, 1). Let D be such a design with point set A. Resolve the blocks of D into
parallel classes, C1, . . . , C(n−1)/3. There will be n/4 blocks in each parallel class. We
construct a 1-factorization of Kn on the point set of A′. On each parallel class Cj, j =
1, 2, . . . , (n − 1)/3, decompose the blocks of Cj into three 1-factors as follows. For each
block {a, b, c, d} ∈ Cj we let {{a′, b′}, {c′, d′}} ∈ Fj,1, {{a′, c′}, {b′, d′}} ∈ Fj,2 and
{{a′, d′}, {b′, c′}} ∈ Fj,3.

Now construct a graph G in the following manner. For j = 1, 2, . . . , (n − 1)/3, construct
the complete bipartite graphGj,1 with bipartitionsG1

j,1 andG2
j,1 where V (G1

j,1) are, without
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loss, the first n/8 blocks of parallel class Cj and V (G2
j,1) are the 1-factor Fj,1. Also, create

the complete bipartite graph Gj,2 with bipartitions G1
j,2 and G2

j,2 where V (G1
j,2) are the last,

without loss, n/8 blocks of parallel class Cj and V (G2
j,2) are the 1-factor Fj,2. Construct

the complete bipartite graph Gj,3 with bipartitions G1
j,3 and G2

j,3 where V (G1
j,3) are the

first n/8 blocks of parallel class Cj and V (G2
j,3) are the edges of Fj,3 which were obtained

from the first n/8 blocks of Cj . Finally construct the complete bipartite graph Gj,4 with
bipartitions G1

j,4 and G2
j,4 where V (G1

j,4) are the last n/8 blocks of parallel class Cj and
V (G2

j,4) are the edges of Fj,3 which are obtained from the last n/8 blocks of Cj . If we take
the union of all these bipartite graphs, then we obtain half of the blocks of size 6 in the
GDD.

To obtain the other half, we switch the roles of A and A′ in the design and the
1-factorization. We construct a graph H on the vertex set A,A′ in a similar manner to G.
For j = 1, 2, . . . , (n − 1)/3, construct the complete bipartite graph Hj,1 with bipartitions
H1
j,1 and H2

j,1 where V (H1
j,1) are the last n/8 blocks of parallel class Cj and V (H2

j,1) are
the 1-factor Fj,1. Also, construct the complete bipartite graph Hj,2 with bipartitions H1

j,2

and H2
j,2 where V (H1

j,2) are the first n/8 blocks of parallel class Cj and V (H2
j,2) are the

1-factor Fj,2. Construct the complete bipartite graph Hj,3 with bipartitions H1
j,3 and H2

j,3

where V (H1
j,3) are the first n/8 blocks of parallel class Cj and V (H2

j,3) are the edges of
Fj,3 which were obtained from the last n/8 blocks of Cj . Finally construct the complete
bipartite graph Hj,4 with bipartitions H1

j,4 and H2
j,4 where V (H1

j,4) are the last n/8 blocks
of parallel class Cj and V (H2

j,4) are the edges of Fj,3 which are obtained from the first n/8
blocks of Cj . If we take the union of all these bipartite graphs, then we obtain the other
half of the blocks of size 6 in the GDD.

Consider a pair of first associates. In the first part of the construction, when {x, y} ∈ A
appears in the BIBD, it will appear exactly once. Thus in the construction, it will be in a
block of size 6 exactly n/2 + n/4 = 3n/4 times. In the second part of the construction
when {x, y} is in the role of a 1-factor, it will appear n/8 times. Thus λ1 = 7n/8. Now
consider a pair of second associates, {x, y′} where x ∈ A and y′ ∈ A′. Without loss, we
may assume {x, y′} ∈ Cj for some j. In part one of the construction, there are 4 cases
to consider. Each point is either in the first n/8 blocks of Cj or in the last n/8 blocks
of Cj . Let Cj,1 denote the first n/8 blocks of Cj and Cj,2 denote the last n/8 blocks of
Cj . Suppose x ∈ Cj,1 and y′ ∈ Cj,1. Then in the construction, {x, y′} appears twice. If
x ∈ Cj,1 and y′ ∈ Cj,2, then {x, y′} appears once. If x ∈ Cj,2 and y′ ∈ Cj,1, then {x, y′}
appears once and if x ∈ Cj,2 and y′ ∈ Cj,2, then {x, y′} appears twice. In the second part of
the construction when we reverse the roles, if x ∈ Cj,1 and y′ ∈ Cj,1, then {x, y′} appears
once. If x ∈ Cj,1 and y′ ∈ Cj,2, then {x, y′} appears twice. If x ∈ Cj,2 and y′ ∈ Cj,1, then
{x, y′} appears twice, and if if x ∈ Cj,2 and y′ ∈ Cj,2, then {x, y′} appears once. Thus for
each parallel class, each pair {x, y′} appears a total of 3 times. Thus each pair of second
associates will appear a total of 3(n− 1/3) = n− 1 times in the construction.
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Theorem 2.26. Let n ≡ 3, 5, 7, 9, 11, 13 mod 14. Then the necessary conditions are suf-
ficient for the existence of a configuration (2, 4) GDD(n, 2, 6; 7n, 8(n− 1)).

Proof. Let the two groups be A = {1, 2, . . . , n} and A′ = {1′, 2′, . . . , n′}. By Lemma 1.3,
there exists a 4-resolvable BIBD(n, 4, 6). Let D be such a design with point set A. Resolve
the blocks of D into 4-parallel classes. There will be (n − 1)/2 classes with n blocks in
each class. Construct a graphG in the following manner. For j = 1, 2, . . . , (n−1)/2 create
the complete bipartite graph Gj with bipartitions G1

j and G2
j where V (G1

j) are the blocks
of a 4-parallel class and V (G2

j) are the pairs obtained by developing {0′, j′} mod n. If we
switch A with A′ and repeat the same construction, we obtain all desired blocks.

Consider a pair of first associates, {x, y} ∈ A. It will appear exactly 6 times in D. There-
fore, in the given construction, it will appear 6n times in the first part of the construc-
tion. This pair will appear an additional n times when in the second part. Thus λ1 = 7n.
Now consider a pair of second associates {x, y′} where x ∈ A and y′ ∈ A′. Here x
will be matched with y′ exactly 4(n − 1) times, in each part of the construction, and thus
λ2 = 8(n− 1).

If n ≡ 1, 15, 29, 43 mod 56, then the above construction gives a GDD with 7 times the
minimal indices. However, there is a construction for a configuration (2, 4)
GDD(15, 2, 6; 15, 16).

Theorem 2.27. The necessary conditions are sufficient for the existence of a configuration
(2, 4) GDD(15, 2, 6; 15, 16).

Proof. By Lemma 1.3, there exists a RBIBD(16, 4, 1). It has 5 parallel classes with 4
blocks in each class, for a total of 20 blocks. Let X = {∞, 0, 1, 2, ..., 14} be the points in
the RBIBD(16, 4, 1). Because ∞ appears with every other point exactly once, the blocks
of the form {∞, x, y, z} form a partition the set X\{∞}. Each block is in one of the 5
parallel classes. For each block {∞, x, y, z}, form the pairs {x, y}, {x, z}, {y, z}. Let the
two groups be A = {0, 1, ..., 14} and A′ = {0′, 1′, ..., 14′}. For j = 1, 2, 3, 4, 5, create the
complete bipartite graph Gj with bipartitions Gj1 and Gj2 where V (Gj1) are the blocks of
parallel class j except the block containing∞, and V (Gj2) are the 15 pairs obtained from
the blocks containing ∞. This gives us half of the desired blocks. To get the rest of the
blocks repeat the construction with V (Gj1) as the 15 pairs and V (Gj2) as the blocks of
PCj .

Consider a pair of first associates, {x, y}. If {x, y} was in a block with∞ in the RBIBD,
then it appears exactly 0 times in the first part of the construction and 15 times in the second
part. If {x, y} was not in a block with∞ in the RBIBD, then it appears exactly 15 times in
the first part and 0 times in the second part. Therefore, each pair of first associates appears
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λ1 = 15 times. Now consider a pair of second associates {x, y′}. In the first part, x is in 4
of the blocks and y′ is in 2 of the blocks, so {x, y′} is in 8 blocks. In the second part, x is
in 2 blocks and y′ is in 4 blocks, so {x, y′} is again in 8 blocks. Thus, λ2 = 16.

2.6.1 Summary of Minimality

Table 2.4:
Summary of Constructions and Minimality for Configuration (2, 4)

n λ1 λ2
n ≡ 0, 16, 24, 32, 40, 48 mod 56 and n ≡ 16 mod 24 7n/8 n− 1 minimal
n ≡ 0, 16, 24, 32, 40, 48 mod 56 and n ≡ 0, 8 mod 24 7n/8 n− 1 near minimal
n ≡ 2, 10, 18, 26, 34, 42, 6, 14, 30, 38, 46, 54 mod 56 7n/2 4(n− 1) minimal

n ≡ 4, 12, 20, 28, 44, 52 mod 56 7n/4 2(n− 1) minimal
n ≡ 8 mod 56 and n ≡ 16 mod 24 n/8 (n− 1)/7 7 times the minimal
n ≡ 8 mod 56 and n ≡ 0, 8 mod 24 n/8 (n− 1)/7 14 times the minimal

n ≡ 22, 50 mod 56 n/2 4(n− 1)/7 7 times the minimal
n ≡ 36 mod 56 n/4 2(n− 1)/7 7 times the minimal

n ≡ 3, 5, 7, 9, 11, 13 mod 14 7n 8(n− 1) minimal
n ≡ 1 mod 14, n 6= 15 n 8(n− 1)/7 7 times the minimal

n = 15 15 16 minimal

Table 2.4 summarizes when the previous results show the necessary conditions are suffi-
cient for (2,4) GDDs with minimal indices. Further, the table indicates where the previous
results show the necessary conditions are sufficient for configuration (2, 4) GDDs with near
minimal, seven times the minimal possible or fourteen times the minimal possible indices.

2.7 GDDs with Configuration (1,5)

In this section we focus on the minimal indices for configuration (1, 5) GDD(n,2, 6;λ1, λ2).
Hurd and Sarvate gave a construction for configuration (1, k) GDD(n, 2, k+1;λ1, λ2) using
a BIBD(n, k,Λ)s [15]. We repeat their result here:

Theorem 2.28. The existence of a BIBD(n, k,Λ) implies the existence of a configuration
(1, k) GDD(n, 2, k + 1;λ1, λ2) with λ1 = Λn and λ2 = 2Λ(n− 1)/(k − 1).

Further, in [11] Hanani showed the existence of some classses of BIBD(n, 5, λ). Using his
result and Theorem 2.28 we obtain the following (1, 5) configuration GDD(n, 2, 6;λ1,λ2)s
summarized in Table 2.5.
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Table 2.5:
Existence of BIBD(n, 5, λ) and Resulting Configuration (1, 5) GDDs.

BIBD Existence Resulting GDD
(n, 5, 1) n ≡ 1, 5 mod 20 GDD(n, 2, 6;n, (n− 1)/2)
(n, 5, 2) n ≡ 1, 5 mod 10, n 6= 15 GDD(n, 2, 6; 2n, n− 1)
(n, 5, 4) n ≡ 0, 1 mod 10, n 6= 10, 160, 190 GDD(n, 2, 6; 4n, 2(n− 1))
(n, 5, 5) n ≡ 1 mod 4 GDD(n, 2, 6; 5n, 5/(2(n− 1)))
(n, 5, 10) n ≡ 1 mod 2 GDD(n, 2, 6; 10n, 5(n− 1))
(n, 5, 20) All n GDD(n, 2, 6; 20n, 10(n− 1))

However, this construction does not always give optimal values of λ1 and λ2. By Theorem
2.5, we have the following relation between λ1 and λ2.

Corollary 2.29. For any configuration (1, 5) GDD(n, 2, 6;λ1,λ2) we have
λ2 = λ1(n−1)

2n
.

From Theorem 2.29 we see that for some value of n the minimum possible indices are
(λ1, λ2). As in the other two configurations, we may find the minimal indices by Theorem
2.29 and Theorem 2.1. Further, any other GDD with configuration (1, 5) will have indices
(wλ1, wλ2) for some positive integer w. The minimal indices are summarized in the next
theorem.

Theorem 2.30. The minimal indices (λ1, λ2) for any configuration (1, 5)
GDD(n, 2, 6;λ1,λ2) summarized in Table 2.6.

Table 2.6:
Summary of Minimal Indices for Configuration (1, 5)

n λ1 λ2
n ≡ 0, 6, 10, 11, 15, 16 mod 20 2n (n− 1)

n ≡ 1, 5 mod 20 n (n− 1)/2
n ≡ 2, 4, 8, 12, 14, 18 mod 20 10n 5(n− 1)
n ≡ 3, 7, 9, 13, 17, 19 mod 20 5n 5(n− 1)/2

Proof. By Theorem 2.29, we have that λ2 =
λ1(n− 1)

2n
. This implies that if n ≡ 1 mod 2

then λ1 must be a multiple of n and λ2 must be a a multiple of (n − 1)/2. However, if
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n ≡ 11, 15 mod 20 then the indices given do not give an even number of blocks which is
required by Theorem 2.4. So for n ≡ 11, 15 mod 20, if we take two times the minimum
possible indices, the number of blocks will be integer valued implying (λ1, λ2) = (2n, (n−
1)). Also, using the given indices for n ≡ 3, 7, 9 mod 10 results in a non-integer value
for the number of blocks given by Theorem 2.1. Thus we must take 5 times these, so
the minimal indices are (λ1, λ2) = (5n, 5(n − 1)/2). Finally, if n ≡ 1, 5 mod 20, the
necessary conditions in Theorem 2.1 are met.

If n ≡ 0 mod 2, Theorem 2.29 tells us that λ1 must be a multiple of 2n and λ2 must be
a multiple of n − 1. However if n ≡ 2, 4, 8 mod 10, then these values give a non-integer
value for the number of blocks. If we take 5 times these indices then the necessary condition
in Theorem 2.1 is satisfied, and so the minimal indices are (λ1, λ2) = (10n, 5(n − 1)).
Notice that for n ≡ 0, 6 mod 10, the given indices are (λ1, λ2) = (2n, n − 1) which are
the minimum possible.

2.8 Constructing Configuration (1,5) GDDs

In this section we focus on constructing (1, 5) GDDs with minimal indices. Theorem 2.28
gives us the following results.

Corollary 2.31. The necessary conditions are sufficient for the existence of a configuration
(1, 5) GDD(n, 2, 6;n, (n− 1)/2) for n ≡ 1, 5 mod 20.

Corollary 2.32. The necessary conditions are sufficient for the existence of a configuration
(1, 5) GDD(n, 2, 6; 2n, n− 1) for n ≡ 11, 15 mod 20, n 6= 15.

Notice that in the previous two constructions, the design is minimal. We use a resolv-
able BIBD(n, 5, 4) in the following construction. In [1], it is given that a resolvable
BIBD(n, 5, 4) exists for n ≡ 0 mod 10 except for n = 10, 160, 190.

Theorem 2.33. Let n ≡ 0 mod 10, n 6= 10, 160, 190. Then the necessary conditions are
sufficient for the existence of a configuration (1, 5) GDD(n, 2, 6; 2n, n− 1).

Proof. Let n ≡ 0 mod 10, n 6= 10, 160, 190. Assume the two groups are
A = {1, 2, . . . , n} and A′ = {1′, 2′, . . . , n′}. There exists a RBIBD(n, 5, 4) with b =
n(n − 1)/5 blocks, and each point appearing r = (n − 1) times. Let D be such a design
on A with parallel classes C1, C2, . . . , Cn−1. Construct a graph G in the following manner.
For j = 1, 2, . . . , n − 1, create the bipartite graph Gj with bipartitions G1

j and G2
j where

V (G1
j) are the blocks of Cj and V (G2

j) are the points in A′. Each of the first n/10 vertices
in G1

j are adjacent to the vertices in G2
j that correspond to the first n/10 blocks of Cj . Each

of the last n/10 vertices in G2
j are adjacent to the vertices in G2

j that correspond to the last
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n/10 blocks ofCj . Thus each vertex inG1
j has degree n/2 and each vertex inG2

j has degree
n/10. This creates half of the desired blocks in the GDD. To obtain the other half, let D
be an RBIBD(n, 5, 4) on A′ and repeat the construction. This time, each of the first n/10
vertices in G′j will be adjacent to the vertices in G2

j that correspond to the last n/10 blocks
of Cj , and each of the last n/10 vertices of G1

j will be adjacent to the vertices in G2
j that

correspond to the 1st n/10 blocks of Cj .

In the design, each pair appears four times and will be matched n/2 times. Thus λ1 = 2n.
For λ2, consider the pair xy′. It appears exactly once per parallel class, either in the first
part or the second part. Thus λ2 is the number of parallel classes or n− 1.

Recall a near parallel class is a partial parallel class missing a single point. A near - re-
solvable design, NRB(n, k, k− 1), is a BIBD(n, k, k− 1) with the property that the blocks
can be partitioned into near parallel classes. For such a design, every point is absent from
exactly one class. We use near resolvable designs in the following construction.

Theorem 2.34. Let n ≡ 6 mod 10. Then the necessary conditions are sufficient for the
existence of a configuration (1, 5) GDD(n, 2, 6; 2n, n− 1).

Proof. Let n ≡ 6 mod 10, and the two groups have point sets A = {1, 2, . . . , n} and
A′ = {1′, 2′, . . . , n′}. Since n ≡ 6 mod 10, there exists a NRB(n, 5, 4). It has n near
parallel classes with (n − 1)/5 blocks in them each. Let D be such a design on the point
set of A, and resolve the blocks of D into near parallel classes C1, C2, . . . Cn where Ci
misses point i. Construct a graph G in the following manner. For j = 1, 2, . . . n/2,
create the complete bipartite graph Gj with bipartitions G1

j and G2
j where V (G1

j) are the
blocks of Cj and V (G2

j) are the points {1′, 2′, . . . , n/2′}. For j = n/2 + 1, . . . , n, create
the complete bipartite graph Gj with bipartitions G1

j and G2
j where V (G2

j) are the points
{(n/2 + 1)′, (n/2 + 2)′, . . . , n′}. This creates half of the desired blocks. To get the other
half, let D be the NRB(n, 5, 4) on A′ and repeat the construction with V (G2

j) being the
points {1, 2, . . . , n/2} for j = n/2 + 1, . . . , n.

Consider a pair of first associates. It will appear 4(n/2) = 2n times in a block of size 6.
Now consider a pair of second associates where x ∈ A and y′ ∈ A′. If x ∈ {1, 2, . . . , n/2}
and y ∈ {1′, 2′, . . . , (n/2)′} then xy will appear n/2 − 1 times in the first part of the
construction and n/2 times in the second. This is the same case if x ∈ {n/2 + 1, n/2 +
2, . . . , n} and y′ ∈ {(n/1)′, (n/2 + 2)′, . . . , n′}. If x ∈ 1, 2, . . . , n/2 and y′ ∈ {(n/2 +
1)′, (n/2+2)′, . . . , n′}, then xy′ will appear n/2 times in the first part and n/2−1 times in
the second part. It is the same case if y′ ∈ {1′, 2′, . . . , n′} and x ∈ {n/2+1, n/2+2, . . . , n}.
Thus λ2 = n− 1.

Note that we have constructed minimal GDDs for n ≡ 0, 1, 5, 6 mod 10 (for all but a
few values). Recall that a near-minimal design is one that has exactly twice the minimal
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indices. By Theorem 2.28, the necessary conditions are sufficient for the existence of a
near minimal GDD(n, 2, 6;λ1, λ2) for n ≡ 2, 3, 4, 7, 8, 9 mod 10. We may construct a
minimal GDD(n, 2, 6;λ1, λ2) for n ≡ 3, 7, 9 mod 10 given the existence of a 5-resolvable
BIBD(n, 5, 10).

Theorem 2.35. The existence of a 5-resolvable BIBD(n, 5, 10) implies the existence of a
configuration (1, 5) GDD(n, 2, 6; 5n, 5(n− 1)/2) for n ≡ 3, 7, 9 mod 10.

Proof. Let n ≡ 3, 7, 9 mod 10 and assume there exists a 5-resolvable BIBD (n, 5, 10).
Assume the two groups are A = {1, 2, 3, . . . , n} and A′ = {1′, 2′, 3′, . . . , n′} and let
D be such a design on point set A. Resolve the blocks of D into 5-parallel classes
C1, C2, . . . , Cn−1/2, each having n blocks. Construct a graph G in the following man-
ner. For j = 1, 2, . . . , (n − 1)/4, create the complete bipartite graph Gj with bipartitions
G1
j and G2

j where V (G1
j) are the blocks of Cj and V (G2

j) are the odd numbers in A′. For
j = (n−1)/4+1, . . . , (n−1)/2, create the complete bipartite graphGj with bipartitionsG1

j

and G2
j where V (G1

j) are the blocks of Cj and V (G2
j) are the even numbers in A′. This cre-

ates half of the desired blocks. To get the other half, letD be a 5-RBIBD(n, 5, 10) onA′ and
repeat the construction with V (G2

j) being the even numbers inA for j = 1, 2, . . . , (n−1)/4
and V (G2

j) being the odd numbers in A for j = (n− 1)/4 + 1, . . . , (n− 1)/2.

Consider a pair of first associates. It will appear 10 times in D. Therefore, in the given
construction it will appear 5n times in a block of size 6. Now consider a pair of second
associates {x, y′}. In each part of the construction, this pair appears 5(n− 1)/4 times, thus
it appears a total of 5(n− 1)/2 times.

2.8.1 Summary of Minimality

Table 2.7:
Summary of Constructions and Minimality for Configuration (1, 5)

n λ1 λ2
n ≡ 0, 10, 11, 15, 6, 16 mod 20, n 6= 10, 15, 160, 190 2n (n− 1) minimal

n ≡ 1, 5 mod 20 n (n− 1)/2 minimal
n ≡ 2, 4, 8, 12, 14, 18 mod 20 10n 5(n− 1) near-minimal
n ≡ 3, 7, 9, 13, 17, 19 mod 20 5n 5(n− 1)/2 near-minimal

We conclude this section with a summary of the GDDs we have constructed, and their
minimality found in Table 2.7.
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2.9 Future Work and Open Problems

We conclude this chapter with a summary of open problems and future work regarding fixed
block configuration GDDs. A major open problem would be to find a construction for those
fixed block configuration GDDs for which there is no construction, or no construction with
the minimal indices. Alternatively, it might be the case that no such design exists, in which
case a proof of nonexistence is required. We summarize the cases for which there is no
minimal index construction, or no construction at all.

Table 2.8:
Open Cases

Configuration Values of n Open Cases
(2, 4) n ≡ 0, 16, 24, 32, 40, 48 mod 56 or n ≡ 0, 8 mod 24 Construction with minimal indices
(2, 4) n ≡ 8 mod 56 or n ≡ 0, 8, 16 mod 24 Construction with near minimal or minimal indices
(2, 4) n ≡ 22, 36, 50 mod 56 Construction with near minimal or minimal indices
(2, 4) n ≡ 1 mod 14, n > 15 Construction with near minimal or minimal indices
(1, 5) n = 10, 15, 160, 190 Find a construction
(1, 5) n ≡ 2, 3, 4, 7, 8, 9 mod 10 Construction with minimal indices

Notice that for configuration (1, 5) and n ≡ 3, 7, 9 mod 10, we have a construction with
minimal indices, but it is dependent on the existence of α-resolvable BIBD(n, 5, λ). The
necessary and sufficient conditions are known for k = 3, 4 but to my knowledge there is no
such results for block size five.

Finally another possible research project is to find the necessary and sufficient conditions
for the existence of higher block sizes or more groups.
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Chapter 3

(3, r)-Regular Graphs

Let G = {V (G), E(G)} be a simple, finite graph. Recall that the neighborhood set of
a vertex v ∈ V (G) is the subset of vertices of N(v) ⊂ V (G) where for u ∈ N(v) uv ∈
E(G). If {u, v} 6∈ V (G) we say the vertices are independent. A graph is (t, r)-regular if the
cardinality of the neighborhood set of every t independent vertices is r. Thus an r-regular
graph is (1, r)-regular. A graph is (t, 0)-regular if and only if G = Kn. In this chapter1 we
survey previous work done in characterizing the structure of (t, r)-regular graphs and give
new results on the characterization of (3, r)-regular graphs.

We take a moment to remind the reader of some definitions and notation that will be per-
tinent to this chapter. More information can be found in Chapter 1. If {u, v} ∈ E(G) we
will abbreviate the edge uv. Also, we denote N(u)∪N(v)∪ · · · ∪N(z) as N(u, v, . . . , z).
The cardinality of the neighborhood set of a vertex v ∈ V is called the degree and we
abbreviate this as d(v). If we are considering the neighbors of v in a specific subset of
vertices S, S ⊆ V (G), then we sometimes write dS(v). The join of two graphs, G1 ∨G2 is
the disjoint union G1 ∨ G2 plus the edges {uv : u ∈ V (G1), v ∈ V (G2)}. Finally we say
that a (vertex) induced subgraph, 〈S〉, is a subset S ⊆ V (G) with edges whose endpoints
are both in this subset.

3.1 History

There have been several results about (2, r)-regular graphs. Faudree and Knisley showed
in [8] that if r, s, p are nonnegative integers and G is a (2, r)-regular graph of order n, then
if n is sufficiently large G is isomorphic to Ks ∨mKp where 2(p− 1) + s = r. While the
Faudree and Knisley characterized the structure for for (2, r)-regular graphs with large n,

1The results in this chapter are a collaborative effort between myself and Sibel Özkan. The results will be
submitted for publication.

43



Johnson and Morgan [19] established a bound.

Theorem 3.1 (Johnson-Morgan). Suppose that r ≥ 1 and G is a (2, r)-regular graph on n
vertices. Suppose that n ≥ N(2, r), where N(2, 1) = 4, N(2, 2) = 6, N(2, 3) = 8, and
N(2, r) = (r − 1)2 + 2 for r ≥ 4. Then G = Ks ∨mKp for some integers s ≥ 0, m ≥ 2,
p ≥ 1 satisfying n = s+mp and r = s+ 2(p− 1).

In addition, there is been work in characterizing all (2, r)-regular graphs for small values of
r. Haynes and Knisley [12] determined all (2, 1)-regular graphs and (2, 2)-regular graphs,
as well as some (2, 3)-regular graphs. More recently, Bragan and Dooley [4], found all
(2,3)-regular graphs on less than N(2, 3) = 8 vertices. There have been results on (t, r)-
regular graphs. In [18], Jamison and Johnson showed that for sufficiently large order, the
structure of (t, r)-regular graphs with t ≥ 3 is similar to the structure of the graphs de-
scribed in Faudree and Knisley’s paper. In the same paper, the authors discuss the structure
of (t, r)-regular graphs for t ≥ 3 and r ≥ 1. In particular, they showed that while Faudree
and Knisley’s theorem does not hold for t > 2, we have that for n sufficiently large, if G is
(t, r)-regular then G is ’almost’ the join of mKp with a graph H which is ’almost’ a clique
for m ≥ t and p such that t(p−1) +n(H) = r where n(H) denotes the number of vertices
in H . We use the notions of t-kernel and t-shell found in [18]. The t-kernel of G, denoted
Kert(G), as the set of vertices that do not belong to any set of t independent vertices. We
define the t-shell of G, denoted Shellt(G), as V (G)\Kert(G); that is, the t-shell is the set
of vertices that are in some set of t independent vertices. Using the notions of t-shell and
t-kernel, we may now give the main result of [18]:

Theorem 3.2 (Jamison-Johnson). Let G be a (t, r)-regular graph with order n. Suppose
that t ≥ 3 and r ≥ 1. For n ≥ N(t, r), 〈Shellt(G)〉 ' mKp for some integers m ≥ t and
p ≥ 1 such that r = t(p− 1) + |Kert(G)|. .Furthermore, the smallest

N(t, r) for which this holds satisfies N(t, r) ≤ max[N(2, r) + r + t− 2, tr + 3r + t− 1].

The remainder of this chapter is devoted to studying (3, r)-regular graphs. In this chapter
we characterize (3, r)-regular graphs where r ∈ {1, 2, 3}, and give an analogue of the re-
sults in [19] for (3, r)-regularity. We give a tighter bound than the one provided in Theorem
3.2. We now present our main result.

Theorem 3.3. Suppose that r ≥ 1, G is a (3, r)-regular graph of order n. Suppose that
n ≥ N(3, r) where N(3, 1) = 5, N(3, 2) = 7, N(3, 3) = 9, N(3, 4) = 16, and n ≥
N(3, r) = (r − 1)2 + r + 2 for r ≥ 5. Then 〈Shell3(G)〉 ∼= mKp for some integers m ≥ 3
and p ≥ 1 such that r = 3(p− 1) + |Ker3(G)|.

For the remainder of this chapter, we will abbreviate Shell3(G) as Shell(G) and Ker3(G) as
Ker(G). Further, we will refer to graphs where Shell(G) ∼= mKp as canonical. Otherwise,
we will say that these graphs are sporadic.
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3.2 Preliminary Theory

In this section we introduce some basic theorems about (3, r)-regular graphs that are useful
in proving theorems in later sections.

We begin by repeating a lemma from Johnson and Morgan from [19].

Lemma 3.4 ([19]). Pairs of distinct non-adjacent vertices in a graph G have no common
neighbors if and only if G is a disjoint union of cliques.

The previous lemma is useful in proving the following.

Lemma 3.5. Suppose that if r ≥ 1, and G is a (3, r)-regular graph on n vertices, and
∆(G) ≤ r.

(a) If ∆(G) = r then n ≤ 2r + 2 with equality only if G = 2K1 ∪Kr,r.

(b) If ∆(G) = r/3 then G = mK r
3
+1 for some integer m ≥ 3.

Proof. (a) Let ∆(G) = r and v ∈ V (G) have maximum degree r, where r 6= n − 1
and let S = V (G)/NG[v]. Since G is (3, r)-regular, for each u ∈ S, |N(u, v)| ≤ r
because u, v are not neighbors. But since |N(v)| = r, we have |N(u, v)| = r,
implying that N(u) ⊆ N(v). Since all neighbors of any vertex in S is outside of S,
S is an independent set. Let z ∈ N(v). For any {a, b, c} ∈ S, |N(a, b, c)| = r and
N(a, b, c) ⊆ N(v) implies thatN(a, b, c) = N(v). So z must be in the neighborhood
of every 3 set of vertices in S. If z is adjacent to all the vertices of S, then |S| ≤
d(z) − 1 ≤ r − 1, and n = 1 + r + |S| ≤ 2r. If z is not adjacent to one vertex of
S, then |S| ≤ r and n ≤ 2r + 1 and if z is not adjacent to two vertices in S, then
|S| ≤ r + 1 and n ≤ 2r + 2.
Suppose n = 2r+2. Then |S| ≤ r+1, which implies that z is not adjacent to at least
two points in S. Without loss, we may assume z is not adjacent to {a, b}. Because
z is in the neighborhood of every three set of vertices in S, z must be adjacent to
all vertices in S\{a, b}. Thus z has degree r. Furthermore, z is not adjacent to any
of the vertices in NG[v] besides v. Because z is adjacent to all vertices in S\{a, b},
|N(z, a, b)| > r unless a and b are isolated points. Since v and z are arbitrary, we
have G = 2K1 ∪Kr,r.

(b) Let G be a (3, r)-regular graph with ∆(G) = r/3. Let {u, v, w} be an arbitrary
independent set. It must be the case that d(u) = d(v) = d(w) since ∆(G) = r/3
and |N(u, v, w)| = r. Further, N(u) ∩ N(v) ∩ N(w) = ∅. Then u, v, w must
be in different components. Further, since {u, v, w} are arbitrary, this implies the
components are (r/3)-regular. Assume the components are not cliques. Then there
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is a non-adjacent pair {x, y} in some component Gi, 1 ≤ i ≤ n where n is the
number of components. Consider a third vertex from a different component, namely
z ∈ Gj, j 6= i. Then, {x, y, z} is an independent set and |N(x, y, z)| = r since
G is (3, r)-regular. Then it is true that d(x) = r/3 = d(y) = d(z), implying that
N(x) ∩ N(y) = ∅. By Lemma 3.4, Gi, is a disjoint union of cliques. But Gi is a
connected component, so it must be a clique, namely K r

3
+1 since it is (r/3)-regular.

Thus Shell(G) ∼= mK r
3
+1 for m ≥ 3.

Finally, we aim to show that the assumptions imply that Ker(G) = ∅. Again,
let {u, v, w} ∈ Shell(G) be a three vertex independent set. Then without loss
u ∈ G1, v ∈ G2, w ∈ G3 where G1

∼= G2
∼= G3

∼= K r
3
+1 for different com-

ponents G1, G2, G3. Since Ker(G) is contained in the neighborhood of every ver-
tex in 〈Shell(G)〉, N(u) = NG1(u) ∪ Ker(G), N(v) = NG1(v) ∪ Ker(G) and
N(w) = NG1(w) ∪Ker(G). Notice that

|N(u, v, w)| = |NG1(u) ∪NG2(v) ∪NG3(w) ∪Ker(G)|
= r/3 + r/3 + r/3 + |Ker(G)|
= r + |Ker(G)|

The above realization implies that |Ker(G)| = 0, and thusG = Shell(G) ∼= mK r
3
+1

for m ≥ 3.

Next we make the seemingly simple but important following two observations. First note
that |Ker(G)| ≤ r, since Ker(G) ⊆ N(u, v, w) for all 3 independent vertices {u, v, w} ∈
Shell(G). Next, for u ∈ Shell(G), it must be that d(u) ≤ r, else there would be a 3 vertex
independent set with more than r neighbors.

Proposition 3.6. Let G be a (3, r)-regular graph. Let u ∈ Shell(G), and |N(u)| = k.
Then G\N [u] is a (2, r − k)-regular graph.

Proof. Let G be a (3, r)-regular graph and u ∈ Shell(G) with |N(u)| = k. Any pair of in-
dependent vertices v, w ∈ G\N [u] forms a 3 independent set with u. Thus, |N(u, v, w)| =
r. When we consider G\N [u], we have removed all k neighbors of u, so it follows that
|N(v, w)| = r−k for any pair of independent vertices inG\N [u]. SoG\N [u] is a (2, r−k)-
regular graph.

Corollary 3.7. Let G be a (3, r)-regular graph on n ≥ (r − 1)2 + r + 3 vertices. Let
u ∈ Shell(G) have degree k. Then G\N [u] must be of the form Ks ∨ mKp where s +
2(p− 1) = r − k.
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Proof. Let G be a (3, r)-regular graph on n ≥ (r− 1)2 + r+ 3 vertices. Let u ∈ Shell(G)
have degree k. Consider S = G\N [u]. By Proposition 3.6, S is a (2, r − k)-regular graph.
Notice that |S| = n − k − 1 ≥ (r − 1)2 + (r − k) + 2. But since r ≥ k, we have that
|S| ≥ (r − k − 1)2 + 2. By the Johnson-Morgan bound, this implies S is of the form
Ks ∨mKp where s+ 2(p− 1) = r − k.

3.3 (3, 1)-regular graphs

Suppose that r ≥ 1, G is a (3, r)-regular graph of order n and n ≥ N(3, r). Then
〈Shell(G)〉 ∼= mKp for some integersm ≥ 3 and p ≥ 1 such that r = 3(p−1)+|Ker(G)|.
In this section we characterize all (3, 1)-regular graphs and show that N(3, 1) = 5.

Theorem 3.8. A graph is (3, 1)-regular if and only if G = K2 ∪ K2, G = K1 ∪ P2, and
G = αK1 ∪K1,m where m ≥ 3 and α = {0, 1}.

Proof. It is clear that the graphs listed are (3, 1)-regular. Assume G is a (3, 1)-regular
graph, and let {u, v, w} be an independent vertex set. Then |N(u, v, w))| = 1. Let x ∈
N(u, v, w). First assume u, v, w are all adjacent to x. If there are no other vertices then
G = K1,3. If there is another vertex y ∈ V (G), then {u, v, y}, {u,w, y}, and {v, w, y} are
independent sets and x ∈ N(u, v, y), x ∈ N(u,w, y) and x ∈ N(v, w, y). So, y is adjacent
to either x or y is isolated. If y is adjacent to x then {u, y}, {v, y} and {w, y} do not form
an edge and all vertices are connected to x, so G = K1,4. We may continue to add vertices
in this manner, so we will get K1 ∪Km+1. If we add an isolated vertex to G, we will have
G′ = K1 ∪K4. If we add more vertices to G′ = K1 ∪K1,m+1, there may be only 1 more
isolated vertex, so we get either K2 ∪K1,m or K1 ∪K1,1+m for m ≥ 2.

Now assume without loss that u and v are adjacent to x but w is not. Since G is (3, 1)-
regular, |N(u, v, w)| = 1. Thus w must be an isolated vertex and N(u) = N(v) = {x}.
If there are no other vertices then G = K1 ∪ P2. If there is another vertex y ∈ V (G),
by the same argument as above y is either isolated or adjacent to x. If y is isolated then
{x, y, w} form an independent set with x, y, and w, so N(x, y, w) = N(x) = {u, v},
so |N(x, y, w)| = 2. which is a contradiction. Thus y cannot be isolated, and has to be
adjacent to x. Then by the same argument as above, G = K1,m.

Finally without loss, assume u is adjacent to x but v and w are not. SinceG is (3,1)-regular,
|N(u, v, w)| = |N(u,w, x)| = 1. Thus v, w must be isolated vertices and N(x) = {u} and
N(u) = {x}. If there are no other vertices in G then G = K2 ∪ K2. If there is another
vertex y ∈ V (G), by the same argument as above y is either isolated or adjacent to x. If y is
isolated then |N(y, v, w)| = 0, which contradicts the (3,1)-regularity of G. Further, if y is
not isolated then |N(y, v, w)| ≥ 2. Thus there are no other vertices and G = K2 ∪K2.
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From the above characterization, the following result is apparent.

Corollary 3.9. The only sporadic (3, 1)-regular graph is K2 ∪K2. Thus N(3, 1) = 5.

3.4 (3, 2)-regular graphs

We now characterize some (3, 2)-regular graphs and show that N(3, 2) = 7. The following
lemma will be useful.

Lemma 3.10. Let G be a (3, r)-regular graph. Then |Ker(G)| ≤ r.

Proof. Let G be a (3, r)-regular graph. Let x ∈ Ker(G) be contained in no neighborhood
of an independent set {u, v, w}. Then {u, v, w} creats an independent set that contradicts
the fact that x is in the kernel. So Ker(G) must be contained in the neighborhood of every
independent set of size 3, and since the degree of any vertex in Shell(G) must be less than
or equal to r, Ker(G) may not have more than r vertices.

Theorem 3.11. If G is a (3, 2)-regular graph on n ≥ 7 vertices then 〈Shell(G)〉 ∼= mK1

for some integer m ≥ 3 and |Ker(G)| = 2.

Proof. Let G be a (3, 2)-regular graph on n ≥ 7 vertices, and let e = uv ∈ 〈Shell(G)〉.
Since u ∈ Shell(G), d(u) ≤ 2. First, assume d(u) = 1, so v is the only neighbor of u.
Now let S = G\N [u], that is, S = G\{u, v}.

By Proposition 3.6, S is a (2, 1)-regular graph. Since |V (G)| = n ≤ 7, |V (S)| ≥ 5. Then
by Theorem 3.1, S is of the form Ks ∨mKp where 1 = s + 2(p − 1). The only way this
equation holds is when s = 1 and p = 1. So S is a star, K1 ∨mK1, where m ≥ 4. Let y be
the center vertex of the star. Since every 3 independent {x,w, z} has y as the only neighbor
in S, every independent set {x,w, z} should also have v as their neighbor in G since G is
(3, 2)-regular. Because {u, v} ∈ Shell(G), d(v) ≤ 2 and we know u ∈ N(v) it follows
v may only be neighbors with one vertex in {x,w, z}. Without loss, assume v 6∈ N(w)
and v 6∈ N(z). Since n ≥ 7, there is another vertex t 6∈ {u, v, y, w, x, z} and since t 6= y,
t is independent with {w, x, z}. And we know that {v, y} is the neighborhood of every
independent set by the above argument.

So, N(w, z, t) = {v, y} but v 6∈ N(w) and v 6∈ N(z) by assumption. But then v ∈ N(t)
implying d(v) ≥ 3. This is not possible since v ∈ Shell(G).

Now assume d(u) = 2 and let y be the other neighbor of u. By Proposition 3.6, S ′ =
G\N [u] is a (2, 0)-regular graph, containing any isolated vertices. Since n ≥ 7, |V (S ′)| ≥
4. So for any {x,w, z} ∈ S ′, {v, y} = N(x,w, z) in G. As in the first case, d(v) ≤ 2 and
without loss assume v 6∈ N(w) and v 6∈ N(z) and that we can find another t that is not
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u, v, y, x, z. Now, we must have {v, y} = N(w, z, t) as well. But we have v 6∈ N(w) and
v 6∈ N(z). So, v ∈ N(t) implying d(v) ≥ 3 since {u, x, t} ⊆ N(v). This is a contradiction,
so d(u) 6= 2.

Combining the above two cases, we have d(u) = 0 for all u ∈ Shell(G). So, 〈Shell(G)〉 ∼=
mK1 for some m. Now let {u,w, x} be a 3 vertex independent set in Shell(G). It follows
that

|N(u,w, x)| = |NShell(G)(u,w, x)|+ |Ker(G)|
2 = 0 + |Ker(G)|
2 = |Ker(G)|

Some canonical (3, 2)-regular graphs include G = K2,m,m ≥ 3, G = K2 ∨mK1,m ≥ 2;
G = K2 ∨mK1 ∪K1,m ≥ 2, and the graphs in Figure 3.1

. . .

. . .

. . .

Figure 3.1: Some canonical (3, 2)-regular graphs.

In light of the last theorem, we now characterize all low order (3, 2)-regular graphs.

Theorem 3.12. IfG is (3, 2)-regular on 5 or 6 vertices, thenGmust be one of the following
graphs: K2,3, K2,4, K2,3− e,K2,4− e where e is an edge, K2 ∨K3, (K2 ∨K3)∪K1, K2 ∨
K4, (H ∨ K3) − e∗, (H ∨ K4) − e∗ where e∗ 6⊆ E(H) and H = K2, C4 ∪ K1, C4 ∪
K2, P4, P3 ∪K1, P2 ∪K2, (K4 − e) ∪K1, K3 ∪K2, 2K2 ∪K1 or a graph Gi, 1 ≤ i ≤ 8
listed in the proof.

Proof. The graphs listed are clearly (3, 2)-regular. Assume G = (V,E) is a (3, 2)-regular
graph and let {u, v, w} ∈ V be an independent set of 3 vertices. Thus |N(u, v, w)| = 2. Let
{x, y} = N(u, v, w). We consider the cases depending on the degrees of d(u), d(v), d(w).
Note that d(u) ≤ 2, d(v) ≤ 2 and d(w) ≤ 2. In the following cases, let z ∈ V (G) and
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assume z to be independent of u, v, w. Then N(z) ⊆ N(u, v, w). We consider the possible
degrees of u, v, w, whether or not x, y form an edge, and possible degrees of z.
First assume d(u) = d(v) = d(w) = 2.

1. First consider the case where x and y do not form an edge. If there are no additional
vertices in G, then G must be K2,3. Now assume there is another vertex z ∈ V (G).
Then d(z) ∈ {0, 1, 2} and N(z) ⊆ {x, y}. If d(z) = 0, then {x, y, z} form an
independent set that is collectively adjacent to 3 vertices, implying this graph is not
(3, 2)-regular. If d(z) = 1 then without loss, assume z is adjacent to x. This graph
is K2,4 − e where e is a single edge. If d(z) = 2 then z must be connected to both x
and y. Thus G = K2,4.

2. Now assume x and y are adjacent. If there are no additional vertices in G, then G
must be K2 ∨ K3. Consider another vertex z. Then d(z) ∈ {0, 1, 2} and N(z) ⊆
{x, y}. If d(z) = 0 then G is (K2 ∨ K3) ∪ K1. If d(z) = 1 then without loss let z
be adjacent to y and G is (K2 ∨K4)− e∗ where e∗ ∈ E(G) and e∗ 6= xy . Finally if
d(z) = 2 then G is K2 ∨K4.

Let d(u) = d(v) = 2 and d(w) = 1 and without loss let wy be an edge.

1. We first consider the case where x and y are not adjacent. If there are no other
vertices G is K2,3 − e where e is an edge . Now assume there is another vertex z;
d(z) ∈ {0, 1, 2} and N(z) ⊆ {x, y}. If d(z) = 0 then G is K2,3 − e ∪ K1, which
is not (3, 2)-regular since |N(x, y, z)| = 3. If d(z) = 1 then z may be adjacent to
x or z may be adjacent to y. If z is adjacent to x then G is the graph (G1) given
in Figure 3.2. If z is adjacent to y then |N(x, y, z)| = 3, implying this graph is not

Figure 3.2: (3, 2)-regular graph G1

(3, 2)-regular. Finally if d(z) = 2, then z is adjacent to both x, y and G = K2,4 − e.

2. Assume x and y are adjacent. If there are no other vertices in G then G = (K2 ∨
K3) − e∗ where e∗ ∈ E(G) and e∗ 6= xy. Now assume there is another vertex z;
d(z) ∈ {0, 1, 2} and N(z) ⊆ {x, y}. If d(z) = 0 then {x, z, w} form a 3 vertex
independent set and G is not (3, 2)-regular. If d(z) = 1 then z is adjacent to either x
or y. If z is adjacent to x, G is the graph (G2) illustrated in Figure 3.3.
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Figure 3.3: (3, 2)-regular graph G2

If z is adjacent to y then |N(x,w, z)| > 2 implying that this graph is not (3, 2)-
regular. If d(z) = 2 then z is adjacent to both x and y which is G = (K2 ∨K4)− e∗
where e∗ ∈ E(G) and e∗ 6= xy.

Assume d(u) = d(v) = 2 and d(w) = 0.

1. First assume x and y are not adjacent. If there are no other vertices in G, then
G = C4 ∪K1. Now assume there is another vertex z ∈ V (G). Then d(z) ∈ {0, 1, 2}
and N(z) ⊆ {x, y}. If d(z) = 0 then G = C4 ∪K2. If d(z) = 1 then without loss
assume z is adjacent to x. This graph is not (3, 2)-regular since |N(z, w, y)| = 3.
Finally if d(z) = 2, G = K2,3 ∪K1, and this is not (3, 2)-regular.

2. Now let xy be an edge. If there are no other vertices in G, then G = (K4 − e) ∪K1.
If d(z) = 0, then |N(w, z, y)| = 3. If d(z) = 1 then without loss assume xz is an
edge. Then |N(z, w, y)| = 3. Finally let d(z) = 2. Then G is (K2 ∨K3) ∪K1.

Assume d(u) = 2 and d(v) = d(w) = 1. It is possible for v and w to be adjacent to the
same vertex or to two different ones, so without loss we will consider cases (a) vx and wx
are edges and (b) vx and wy are edges.

1. Assume further that x and y are not adjacent.

(a) Now without loss, consider the case where vx and wx are edges. Then, if
there are no other vertices, G is the graph (G3) illustrated in Figure 3.4. Now

Figure 3.4: (3, 2)-regular graph G3

assume that there is another vertex z ∈ V (G). If z is an isolated vertex, then
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G = G3∪K1 which is not (3, 2)-regular since {v, w, z} are independent vertices
and |N(v, w, z)| = 1. Now assume that d(z) = 1. If xz is an edge, then
xz, vx, wx are all adjacent to only x implying this graph is not (3, 2)-regular.
If yz is an edge then G is the graph (G4) illustrated in Figure 3.5. Finally let

Figure 3.5: (3, 2)-regular graph G4

d(z) = 2. Then |N(y, v, w)| = 3 and this graph is not (3, 2)-regular.

(b) First, without loss let vx and wy be edges. If there are no other vertices then
G = P4. Now assume that there is another vertex z ∈ V (G). If z is an isolated
vertex, thenG = P4∪K1, however, this graph is not (3, 2)-regular. Now assume
that d(z) = 1, and without loss let xz be an edge. Then |N(z, u, v)| = 3 and
since {u, v, z} is an independent set this graph is not (3, 2)-regular. Finally, let
d(z) = 2. Then G is the graph (G5) illustrated in Figure 3.6.

Figure 3.6: (3, 2)-regular graph G5

2. Now assume that x and y are adjacent.

Figure 3.7: (3, 2)-regular graph G6

(a) Let vx and wx be edges. If there are no other edges then G is the following
graph (G6) illustrated in Figure 3.7.
Now assume there is another vertex z ∈ V (G). If z is an isolated vertex, then
{z, v, w} form an independent set and |N(v, w, z)| = 1, so this graph cannot
be (3, 2)-regular. Consider d(z) = 1. It may be that z is adjacent to x or y. If
xz is an edge, then {z, v, w} are an independent set whose neighbourhood has
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one vertex, and if yz is an edge then {v, w, y} are an independent set whose
neighborhood set has cardinality three. Thus neither of these graphs are (3, 2)-
regular. If d(u) = 2, then {v, w, y} are an independent set and the cardinality
of their neighborhood set is 3, so this graph is not (3, 2)-regular.

(b) Let vx and wy be edges. If there are no other edges then G is the graph (G7)
given in Figure 3.8. Now assume there is another vertex z ∈ V (G). If d(z) = 0

Figure 3.8: (3, 2)-regular graph G7

then {y, v, z} form an independent set and |N(v, y, z)| = 3, so this graph cannot
be (3, 2)-regular. Consider d(z) = 1. It may be that z is adjacent to x or y. If
xz is an edge, then {w, x, z} are an independent set whose neighbourhood has
three vertices, and if yz is an edge then {v, w, y} are an independent set whose
neighborhood set has cardinality three. Thus neither of these graphs are (3, 2)-
regular. Finally assume d(z) = 2. Then G is the graph G2.

Assume d(u) = 2, d(v) = 1, and d(w) = 0. Without loss, assume vx is an edge.

1. First assume that x and y are not adjacent. If there are no other vertices in G, then
G = P3 ∪ K1. Assume there is another vertex z ∈ V (G). If d(z) = 0 then G =
P3 ∪ K2, which is not (3, 2)-regular. Let d(z) = 1. Then if xz is an edge, then
G = G3∪K1 which is not (3, 2)-regular. Further, if yz is an edge, then G = P4∪K1

which is also not (3, 2)-regular since {w, x, y} form an independent set that has 3
vertices in its neighbourhood set. Finally assume d(z) = 2. In this case, {w, x, y}
are an independent set that have three vertices in their neighborhood set, so this graph
is not (3, 2)-regular.

2. Now assume xy is an edge. If there are no other vertices in G, then it is the graph
(G8) given in Figure 3.9 Now assume there is another vertex z ∈ V (G). If d(z) = 0,

Figure 3.9: (3, 2)-regular graph G8

then G = G8 ∪K1, but {v, w, z} form an independent set with only one vertex in its
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neighborhood set, so this is not (3, 2)-regular. Now assume d(z) = 1. If xz forms
an edge then G = G6 ∪K1 which is not (3, 2)-regular since |N(v, w, z)| = 1. If yz
is an edge then G = G7 ∪ K1 which is not (3, 2)-regular. Finally if d(z) = 2, then
|N(v, w, y)| = 3, implying this graph is not (3, 2)-regular.

Assume d(u) = 2 and d(v) = d(w) = 0.

1. Let x and y be nonadjacent. If there are no additional vertices, then G = P2 ∪ K2,
which is not (3, 2)-regular. If d(z) = 0, then G = P2 ∪ K3 which is obviously
not (3, 2)-regular. If d(z) = 1, then without loss assume xz is an edge. Then G =
P3 ∪K2 which is not (3, 2)-regular. Finally if d(z) = 2, then G = C4 ∪K2 which is
(3, 2)-regular.

2. Now assume x and y are adjacent. If there are no other vertices, then G = K3 ∪K2.
If there is another isolated vertex z, then {v, w, z} are three isolated vertices and
G is obviously not (3, 2)-regular. If d(z) = 1, then without loss assume xz is an
edge. Then {v, w, z} again are an independent set but since there is only one vertex
in their open neighbourhood this graph cannot be (3, 2)-regular. Finally if d(z) = 2
then G = (K2 ∨ K2) ∪ K2 which is not (3, 2)-regular since |N(v, w, y)| = 3 and
{v, w, y} are independent.

Now assume d(u) = d(v) = d(w) = 1. Notice that we have two subcases (up to isomor-
phism) where u, v, w are all connected to either x or y, and where u, v are adjacent to x
and w is adjacent to y. However, if u, v, w are all connected to one vertex, then this graph
cannot be (3, 2)-regular, so we consider only the latter case.

1. First assume that xy is not an edge, and there are no other vertices in G. If ux, vx
and wy are edges then G = P2 ∪ K2. Now assume there is another vertex, z. First
consider d(z) = 0. Then {u, v, z} are independent and N(z, u, v) = x, so this graph
is not (3, 2)-regular. Now assume d(z) = 1, and z is adjacent to x. Then we have
that N(u, v, z) = x and N(w) = y so this graph is clearly not (3, 2)-regular. Now
consider the case when yz is an edge. Then N(u, v) = x and N(w, z) = y. This
graph is 2P2 which is not (3, 2)-regular. Finally assume that d(z) = 2. This graph
has the property that |N(u, v, y)| = 3 and thus is not (3, 2)-regular.

2. Now assume that xy form an edge. If there are no additional vertices then G = G3.
Assume there is another vertex z ∈ V (G). First assume z is an isolated vertex, then
G is G3 ∪K1. However, this graph is not (3, 2)-regular. If d(z) = 1, then either xz
or yz can be an edge. If xz is an edge then N(z, u, v) = {x}, which combined with
the fact {u, v, z} is an independent set means this graph is not (3, 2)-regular. If yz is
an edge then |N(y, u, v)| = 3 which by the same reason as before implies this graph
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is not (3, 2)-regular. If d(z) = 2 then |N(y, u, v)| = 3 which again implies the graph
is not (3, 2)-regular.

Finally assume d(u) = d(v) = 1 and d(w) = 0. If u, v were adjacent to the same vertex,
the graph would not be (3, 2)-regular. So, without loss assume ux, vy are edges.

1. Assume x and y are not adjacent. If there are no additional vertices, then G =
2K2 ∪ K1. Now assume there is another vertex z ∈ V (G). If d(z) = 0, then
G = 2K2 ∪ K2, but |N(z, w, u)| = 1, so this graph is not (3, 2)-regular. Now let
d(z) = 1, and without loss let zx be an edge. Then G = P2 ∪ K2 ∪ K1 which
is not (3, 2)-regular as |N(z, u, w)| = 1. If d(z) = 2 and xz, yz are edges, then
G = P4 ∪K1 which is not (3, 2)-regular.

2. Assume x and y are adjacent. If there are no additional vertices then G = P3 ∪K1.
Assume there is another vertex z ∈ V (G). If d(z) = 0, then G = P3 ∪ K2 which
is not (3, 2)-regular. Let d(z) = 1 and without loss let xz be an edge. Then G =
G3 ∪K1 which is not (3, 2)-regular. Finally if d(z) = 2, then G = G7 ∪K1 which is
also not (3, 2)-regular.

From the above characterization, we know all (3, 2)-regular graphs on 5 or 6 vertices. We
may list sporadic (3, 2)-regular graphs by simply determining which have 〈Shell(G)〉 ∼=
mK1.

Corollary 3.13. The only sporadic (3, 2)-regular graphs are G1, G3, G4 and G8.

3.5 A bound on (3, 3)-regular graphs

In this section we reexamine the Jamison-Johnson bound (Theorem 3.2) for (3, 3)-regular
graphs. By the Jamison-Johnson bound N(3, 3) ≤ 12. We sharpen this bound in the next
theorem.

Theorem 3.14. Let G be a (3, 3)-regular graph with order n. For n ≥ 9, 〈Shell(G)〉 ∼=
mKp, for m ≥ 3 and 3 = 3(p− 1) + |Ker(G)|.

Proof. Let G be a (3, 3)-regular graph with order n ≥ 9. First assume |Ker(G)| = 0.
Then, by assumption |Shell(G)| ≥ 9 and every vertex is in some 3 vertex independent set
since V (G) = Shell(G). We aim to show that d(u) = 1 for all u ∈ V (G).
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We first make the observation that ∆(G) ≤ 3 since every vertex is in some 3 vertex inde-
pendent set. Trivially, ∆(G) cannot be 0 since we assumed our graph to be (3, 3)-regular.
Further, ∆(G) 6= 3 because by Theorem 3.5 this would imply that n ≤ 8. But we assumed
the order of the graph was at least 9, so this may not be the case. Now assume ∆(G) = 2
and let d(u) = 2 for some u ∈ V (G). Suppose N(u) = {x, y}, and let G′ = V (G)\N [u].
G′ is (2, 1)-regular by Proposition 3.6. Since in G′ has more than 4 vertices by Theorem
3.2 it follows G′ is a star with at least 6 leaves. But the center of the star has degree 6,
which is a contradiction since we assumed ∆(G) = 2. So ∆(G) 6= 2. Because ∆(G) is not
0, 2 or 3, and ∆(G) ≤ 3, this means that ∆(G) = 1. By 3.5, this means that G is mK2. So
G = Shell(G) = mK2 for m ≥ 3.

Now assume that the kernel is not empty. It still is the case that ∆(G) ≤ 3. Let {u, v, w} ∈
Shell(G), and without loss let {uw, vw} ∈ E(G). Now consider a ∈ Shell(G)\{u, v, w},
and let a have degree k. Next let G′ = V (G)\N [a], which by Proposition 3.6 must be
a (2, 3 − k)-regular graph. Since a ∈ Shell(G), d(a) ≤ 3. If d(a) = 0, then G′ is a
(2, 3)-regular graph on at least 8 vertices, if d(a) = 1, then G′ is a (2, 2)-regular graph on
at least 7 vertices, if d(a) = 2 then G′ is a (2, 1)-regular graph on at least 6 vertices and
finally if d(a) = 3 then G′ is a (2, 0)-regular graph on at least 5 vertices. By the Johnson-
Morgan theorem, we have that N(2, 1) = 4, N(2, 2) = 6, N(2, 3) = 8 so if 0 ≤ d(a) ≤ 2,
then G′ is a (2, 3 − k)-regular graph of the form Ks′ ∨ mKp′ , s

′ + mp′ = |G′|, 3 − k =
s′ + 2(p′ − 1), s′ ≥ 0,m ≥ 2, p′ ≥ 1. Note that d(a) 6= 3 since that would imply G′ is
a (2, 0)-regular graph, that is isolated vertices, and we assumed that uw, vw are edges in
the the subgraph induced by Shell(G). We make the following observations: since u, v are
not adjacent, they cannot be in the same clique, and since w is adjacent to both it must be
in the Ks′ component of G′. However, if w is a vertex in Ks′ , then it must be adjacent to
everything in G′, and its degree is |G′| − 1. In particular, d(w) ≥ 5. Since we assumed w
to be in Shell(G), this is not possible. Therefore, it cannot be that for u, v, w ∈ Shell(G),
uw, vw ∈ E(G) while uv is not. Thus the subgraph generated by Shell(G) is a disjoint
union of cliques mKp.

Finally consider a set X of three indpendent vertices in Shell(G). They are in 3 different
Kp’s and thus connected to 3(p − 1) vertices in Shell(G). Further, every X must be
connected to every element of the kernel so 3 = 3(p − 1) + |Ker(G)|. The last equation
implies that p = 1 and |Ker(G)| = 3 or p = 2 and |Ker(G)| = 0.

In the appendix, we have included (3, 3)-regular graphs on 10 or less vertices found by
computational search.
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3.6 Sharpening the Jamison-Johnson Bound on
(3, r)-regularity

Theorem 3.15. Suppose that G is a (3, r)-regular graph of order n ≥ 16 for r = 4 and
n ≥ (r − 1)2 + r + 2 for r ≥ 5. Then 〈ShellG〉 ∼= mKp for some integers m ≥ 3 and
p ≥ 1 such that r = 3(p− 1) + |Ker(G)|.

Proof. First let G be a (3, 4)-regular graph and suppose there are n ≥ 16 vertices. vertices.
Let u, v, w ∈ Shell(G) such that vw, uw ∈ E(G) but u and v do not form an edge. Since
u, v, w ∈ Shell(G) and no vertex in Shell(G) has more than degree 4, it must be the case
that |N [u, v, w]| ≤ 11 since each vertex is connected to at most 4 other vertices and vw and
uw are edges. We make the following observations using the fact that |Ker(G)| ≤ 4.

|Shell(G)| = n− |Ker(G)|
≥ 16− |Ker(G)|
≥ 12

For r = 4, |N [u, v, w]| ≤ 11 < 12 ≤ |Shell(G)|. So |N [u, v, w]| < |Shell(G)|, meaning
there is another vertex, z ∈ Shell(G)\N [u, v, w]. Let z have degree k for some k and let
S = G\N [z]. Then

|S| = n− (k + 1)

≥ 15− k
≥ 11

By Proposition 3.6 and Proposition 3.7, S is a (2, 4 − k)-regular graph of the form Ks ∨
mKp. Now assume G is a (3, r)-regular graph for r > 4, we make a similar observation.

|Shell(G)| = n− |Ker(G)|
≥ (r − 1)2 + r + 3− |Ker(G)|
≥ (r − 1)2 + 2

Then for r ≥ 4 , |N [u, v, w]| ≤ 3r − 1 < (r − 1)2 + 2 ≤ |Shell(G)|. So |N [u, v, w]| <
|Shell(G)|, meaning there is another vertex, z′ ∈ Shell(G)\N [u, v, w]. Let z′ have degree
k for some k and let S = G\N [z′]. Then

|S| = n− (k + 1)

≥ (r − 1)2 + r + 2− k − 1

= (r − 1)2 + r − k + 1

≥ (r − 1)2 + 1
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The last inequality comes from the fact that k ≤ r. If r = k, then S is (2, 0)-regular
implying that it is isomorphic to mK1. So, without loss, assume that r − k > 0. Thus
|S| ≥ (r − 1)2 + 2 and, again, by Proposition 3.6 and Proposition 3.7, S is a (2, r − k)-
regular graph of the form Ks ∨mKp.

Since u and v are not adjacent, they cannot be in Ks and must be in different copies of Kp.
Further, since w is a common neighbor of u and v it must be the case that w is in Ks.

Consider the degree of w, d(w). Since S is of the form Ks ∨mKp, w is connected to every
vertex of S, or |S| = n− (k + 1). Thus

d(w) = |S| − 1

= n− (k + 1)− 1

= (r − 1)2 + (r − k) + 1

≥ (r − 1)2 + 1

Where the last inequality comes from the fact that r ≥ k. For r ≥ 2, (r − 1)2 + 1 > r.
This implies that w is not in any 3 vertex independent set, or that w cannot be in Shell(G)
which is a contradiction. So, we cannot have three vertices {u, v, w} ⊂ Shell(G) so that
uw and vw are edges and uv are not an edge. Thus the subgraph generated by Shell(G) is
a disjoint union of cliques mKp.

Finally consider a set X of three independent vertices in Shell(G). They need to be in 3
different Kp’s and thus connected to 3(p− 1) vertices in Shell(G). Further every X must
be connected to every element of the Ker(G) so r = 3(p− 1) + |Ker(G)|.

We conclude by repeating Theorem 3.3 which summarizes the results of this chapter.

Theorem 3.16. Suppose that r ≥ 1, G is a (3, r)-regular graph of order n. Suppose
that n ≥ N(3, r) where N(3, 1) = 5, N(3, 2) = 7, N(3, 3) = 9, N(3, 4) = 16, and
n ≥ (r − 1)2 + r + 2 for r ≥ 5. Then 〈Shell(G)〉 ∼= mKp for some integers m ≥ 3 and
p ≥ 1 such that r = 3(p− 1) + |Ker(G)|.

3.7 Open Problems

The open problems relating to (t, r)-regular graphs mostly involve reducing previously
known bounds, or characterizing low order graphs of given values of t and r. A fun com-
putational exercise would be to find all (2, 4)-regular or (3, 4)-regular graphs, for example.
However, the most interesting results would be to sharpen the Jamison-Johnson bound on
(t, r)-regular graphs, or even reduce the Johnson-Morgan bound on (2, r)-regularity. Also,
one could show that these bounds are the lowest possible, although the author suspects this
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is not the case. With regard to (3, r)-regularity, future work lies in sharpening the Jamison-
Johnson bound for n ≥ 6. In particular, it would be nice to prove one of the following
conjectures.

1. Let G be (3, r)-regular with order n. For n ≥ N(3, r), where r ≥ 4, 〈Shell(G)〉 ∼=
mKp for some integers m ≥ t and p ≥ 1 such that r = 3(p − 1) + |Ker(G)|. The
smallest such N(3, r) ≤ min[N(2, r) + r + 3, 6r + 2].

2. Let G be (3, r)-regular with order n and suppose r ≥ 4. Let n ≥ N(3, r) where
N(3, r) = (r − 1)2 + 3. Then 〈Shell(G)〉 ∼= Kp for some integers m ≥ t and p ≥ 1
such that r = 3(p− 1) + |Ker(G)|.

For 4 ≤ r ≤ 6, Conjecture 1 holds. It remains to be shown that it is true for r > 6.
Conjecture 2 stems from obtaining values of (3, r)-regular graphs for small values of r
and comparing it to that of (2, r)-regular graphs. Here, the observation was made that the
values of N(2, r) and N(3, r) differ by 1 for respective values of r (for r ≤ 3).
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Appendix

(3, 3)-regular graphs on 6 to 10 vertices. The following graphs are the result of a com-
puter search using Sage and nauty for all (3, 3)-regular graphs on 10 vertices or less.
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Search Code and Sage Output

The following is a patch to nauty that finds (3, 3)-regular graphs. The algorithm used is
similar to NUMTRIANGLES1 but instead we consider independent triples and not triangles.
It was further modified to find independent triples that have three vertices in their collective
neighborhood. A better explanation of this code can be found here:

diff -r 9ec2ed8b4aa8 gutil1.c
--- a/gutil1.c Sun Sep 19 07:01:08 2010 -0400
+++ b/gutil1.c Sun Sep 19 07:16:01 2010 -0400
@@ -67,28 +67,66 @@ degstats(graph *g, int m, int n, unsigne
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boolean
isconnected1(graph *g, int n)
/* test if g is connected (m=1) */
{

setword seen,expanded,toexpand;
int i;

seen = bit[0];
- expanded = 0;
+ expanded = 0;// use?
+
+ // why not for all i, != g[i]?
+ // because we are doing a breadth first search
+ // not just tallying all things adjacent
+ // |= for all g[i] would only get you
+ // all isolated verts

while ((toexpand = (seen & ˜expanded)) != 0)
{

i = FIRSTBIT(toexpand);
expanded |= bit[i];
seen |= g[i];

}

return POPCOUNT(seen) == n;
}

+
+ /*********************************************/
+boolean
+is33regular1(graph *g, int n)
+/* test if a graph is 33regular */
+{
+ setword v,t;
+ int i,j,k;
+ setword gi,w;
+ long total;
+
+ total = 0;
+ for (i = 0; i < n-2; ++i)
+ {

79



+ gi = ((˜(g[i]))ˆBITMASK(n-1)) & BITMASK(i);//
+ everything greater and not
adj
+ while (gi)
+ {
+ TAKEBIT(j,gi);// j is first not adj to i
+ w = (˜(g[j])) & gi;// not adj to either j or i
+ if (w) total++;// we have seen at least one 3 ind set
+ while(w)
+ {
+ TAKEBIT(k,w); // i,j,k is ind set
+ if (POPCOUNT(g[i]|g[j]|g[k]) !=3) return FALSE;
+ }
+ }
+ }
+
+ return !(!(total));
+}
+
+
/*********************************************/

boolean
isconnected(graph *g, int m, int n)
/* Test if g is connected */
{
int i,head,tail,w;
set *gw;

diff -r 9ec2ed8b4aa8 testg.c
--- a/testg.c Sun Sep 19 07:01:08 2010 -0400
+++ b/testg.c Sun Sep 19 07:16:01 2010 -0400
@@ -30,17 +30,17 @@

Constraints are applied to all
input graphs, and only those\n\

which match all constraints are counted or selected.\n\
\n\

-n# number of vertices
-e# number of edges\n\

-d# minimum degree
-D# maximum degree\n\

-r regular
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-b bipartite\n\
-z# radius

-Z# diameter\n\
-g# girth (0=acyclic)

-Y# total number of cycles\n\
- -T# number of triangles\n\
+ -T# number of triangles
-R 33 regular\n\

-a# group size
-o# orbits -F# fixed points
-t vertex-transitive\n\

-c# connectivity (only implemented for 0,1,2).\n\
-i# min common nbrs of adjacent vertices;

-I# maximum\n\
-j# min common nbrs of non-adjacent vertices;

-J# maximum\n\
\n\

Sort keys:\n\
Counts are made for all graphs passing the constraints.

Counts\n\
@@ -145,20 +145,22 @@ static struct constraint_st
/* Table
#define I_j 18

{’j’,0,FALSE,FALSE,CMASK(I_i),-NOLIMIT,NOLIMIT,
"minnoncn",INTTYPE,0},
#define I_J 19

{’J’,0,FALSE,FALSE,CMASK(I_i),-NOLIMIT,NOLIMIT,
"maxnoncn",INTTYPE,0},
#define I_T 20

{’T’,0,FALSE,FALSE,0,-NOLIMIT,NOLIMIT,"triang",
INTTYPE,0},
#define I_Q 21
#ifdef USERDEF
- {’Q’,0,FALSE,FALSE,0,-NOLIMIT,NOLIMIT,
USERDEFNAME,INTTYPE,0}
+ {’Q’,0,FALSE,FALSE,0,-NOLIMIT,NOLIMIT,
USERDEFNAME,INTTYPE,0},
#else
- {’ ’,0,FALSE,FALSE,0,-NOLIMIT,NOLIMIT,
USERDEFNAME,INTTYPE,0}
+ {’ ’,0,FALSE,FALSE,0,-NOLIMIT,NOLIMIT,
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USERDEFNAME,INTTYPE,0},
#endif
+#define I_R 22
+ {’R’,0,FALSE,FALSE,0,-NOLIMIT,NOLIMIT,"33regular",
BOOLTYPE,0}
};

#define NUMCONSTRAINTS
(sizeof(constraint)/sizeof(struct constraint_st))
#define SYMBOL(i) (constraint[i].symbol)
#define ISNEEDED(i) (constraint[i].needed > 0)
#define NEEDED(i) (constraint[i].needed)
#define ISKEY(i) ((constraint[i].needed & 1) != 0)
#define ISCONSTRAINT(i) (constraint[i].needed > 1)
@@ -486,16 +488,20 @@ compute(graph *g, int m, int n, int code

COMPUTED(I_E) = COMPUTED(I_r) = TRUE;
break;

case I_b:
VAL(I_b) = isbipartite(g,m,n);
COMPUTED(I_b) = TRUE;
break;

+ case I_R:
+ VAL(I_R) = is33regular1(g,n);
+ COMPUTED(I_R) = TRUE;
+ break;

case I_g:
VAL(I_g) = girth(g,m,n);
COMPUTED(I_g) = TRUE;
break;

case I_z:
case I_Z:

diamstats(g,m,n,&rad,&diam);

Next we made the graphs found in Section 1 of the appendix by porting the graphs found
above to SAGE.

def print_graph(g):
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print(r"\begin{tikzpicture}[scale=1.7]")
print("\GraphInit[vstyle=Normal]")
ast = str(g.vertices())
ast = ast.replace("[","")
ast = ast.replace(", ",",")
ast = ast.replace("]","")
print(join(["\Vertices*{circle}{",ast,"}"],""))
for e in g.edges():

print("\Edge({0[0]})({0[1]})".format(e))
print(r"\end{tikzpicture}")
print("%")

i = 0
for g in itertools.chain(graphs633,graphs733,graphs833,
graphs933,graphs1033):

i = i + 1
print_graph(g)
if (i%4) == 0:

print("\\\\")
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