3 research outputs found

    PREDICTION OF HIGH CYCLE TIMES IN WHEEL RIM MOLDING WITH ARTIFICIAL NEURAL NETWORKS

    Get PDF
    Purpose: Monitoring processes through real-time data collection is useful for businesses to understand their processes better, and deal with production problems. Predicting cycle-time allows identifying production delays, downtime, and productivity loss. Thereby, taking necessary actions is facilitated to eliminate detected losses and to prevent problems towards meeting customer due dates. This study proposes a two-stage approach to determine a cycle-time threshold and predict high cycle times by examining sample molding process data obtained from a wheel-rim manufacturer. Methodology: Our study firstly determines thresholds for high cycle times with two alternate approaches. Subsequently, data were labeled regarding the cycle-time threshold. Alternate models based on Artificial Neural Networks (ANNs) were developed in R to predict high cycle times. Findings: Our findings include a comparison of cycle-time threshold approaches through a distance-based metric. After labeling of high cycle times, our study presents the performance of alternate predictive models. The performance of models was compared in terms of accuracy, recall and precision. Originality: Process mining in wheel rim molding has been found meager in prior research, despite the abundance of process mining applications and cycle-time prediction models. Another distinctive aspect of the study is cycle-time threshold determination with multiple methods to eliminate manual labeling of processes

    Internal Due Date Assignment in a Wafer Fabrication Factory by an Effective Fuzzy-Neural Approach

    Get PDF
    Owing to the complexity of the wafer fabrication, the due date assignment of each job presents a challenging problem to the production planning and scheduling people. To tackle this problem, an effective fuzzy-neural approach is proposed in this study to improve the performance of internal due date assignment in a wafer fabrication factory. Some innovative treatments are taken in the proposed methodology. First, principal component analysis (PCA) is applied to construct a series of linear combinations of the original variables to form a new variable, so that these new variables are unrelated to each other as much as possible, and the relationship among them can be reflected in a better way. In addition, the simultaneous application of PCA, fuzzy c-means (FCM), and back propagation network (BPN) further improved the estimation accuracy. Subsequently, the iterative upper bound reduction (IUBR) approach is proposed to determine the allowance that will be added to the estimated job cycle time. An applied case that uses data collected from a wafer fabrication factory illustrates this effective fuzzy-neural approach

    Comparison of deterministic, stochastic and fuzzy logic uncertainty modelling for capacity extension projects of DI/WFI pharmaceutical plant utilities with variable/dynamic demand

    Get PDF
    The last 30 years have seen Fuzzy Logic (FL) emerging as a method either complementing or challenging stochastic methods as the traditional method of modelling uncertainty. But the circumstances under which FL or stochastic methods should be used are shrouded in disagreement, because the areas of application of statistical and FL methods are overlapping with differences in opinion as to when which method should be used. Lacking are practically relevant case studies comparing these two methods. This work compares stochastic and FL methods for the assessment of spare capacity on the example of pharmaceutical high purity water (HPW) utility systems. The goal of this study was to find the most appropriate method modelling uncertainty in industrial scale HPW systems. The results provide evidence which suggests that stochastic methods are superior to the methods of FL in simulating uncertainty in chemical plant utilities including HPW systems in typical cases whereby extreme events, for example peaks in demand, or day-to-day variation rather than average values are of interest. The average production output or other statistical measures may, for instance, be of interest in the assessment of workshops. Furthermore the results indicate that the stochastic model should be used only if found necessary by a deterministic simulation. Consequently, this thesis concludes that either deterministic or stochastic methods should be used to simulate uncertainty in chemical plant utility systems and by extension some process system because extreme events or the modelling of day-to-day variation are important in capacity extension projects. Other reasons supporting the suggestion that stochastic HPW models are preferred to FL HPW models include: 1. The computer code for stochastic models is typically less complex than a FL models, thus reducing code maintenance and validation issues. 2. In many respects FL models are similar to deterministic models. Thus the need for a FL model over a deterministic model is questionable in the case of industrial scale HPW systems as presented here (as well as other similar systems) since the latter requires simpler models. 3. A FL model may be difficult to "sell" to an end-user as its results represent "approximate reasoning" a definition of which is, however, lacking. 4. Stochastic models may be applied with some relatively minor modifications on other systems, whereas FL models may not. For instance, the stochastic HPW system could be used to model municipal drinking water systems, whereas the FL HPW model should or could not be used on such systems. This is because the FL and stochastic model philosophies of a HPW system are fundamentally different. The stochastic model sees schedule and volume uncertainties as random phenomena described by statistical distributions based on either estimated or historical data. The FL model, on the other hand, simulates schedule uncertainties based on estimated operator behaviour e.g. tiredness of the operators and their working schedule. But in a municipal drinking water distribution system the notion of "operator" breaks down. 5. Stochastic methods can account for uncertainties that are difficult to model with FL. The FL HPW system model does not account for dispensed volume uncertainty, as there appears to be no reasonable method to account for it with FL whereas the stochastic model includes volume uncertainty
    corecore