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ABSTRACT 

Purpose: This study proposes a two-stage approach to determine a cycle-time threshold and predict high 

cycle times by examining sample molding process data obtained from a wheel-rim manufacturer. 

Methodology: Our study firstly determines thresholds for high cycle times with two alternate approaches. 

Subsequently, data were labeled regarding the cycle-time threshold. Alternate models based on Artificial 

Neural Networks (ANNs) were developed in R to predict high cycle times. 

Findings: Our findings include a comparison of cycle-time threshold approaches through a distance-based 

metric. After labeling of high cycle times, our study presents the performance of alternate predictive models. 

The performance of models was compared in terms of accuracy, recall and precision. 

Originality: Process mining in wheel rim molding has been found meager in prior research, despite the 

abundance of process mining applications and cycle-time prediction models. Another distinctive aspect of the 

study is cycle-time threshold determination with multiple methods to eliminate manual labeling of processes. 

Keywords: Cycle Time Prediction, Process Mining, Machine Learning, Artificial Neural Networks. 

JEL Codes:  M11, C38, C45. 

JANT DÖKÜMÜNDE YAPAY SİNİR AĞLARI İLE YÜKSEK ÇEVRİM SÜRELERİNİN 
TAHMİN EDİLMESİ 

ÖZET 

Amaç: Bu çalışmada, bir jant üreticisinden alınan numune kalıplama proses verileri incelenerek, çevrim 

süresi eşik değerleri belirleyen ve bu değere dayalı yüksek çevrim sürelerini tahmin eden iki aşamalı bir 

yaklaşım önerilmektedir. 

Yöntem: Çalışmada öncelikle iki alternatif yaklaşımla çevrim süresi için eşik değer belirlenmektedir. 

Ardından, eşik değer uyarınca proses verileri etiketlenmektedir. Yüksek çevrim sürelerini tahmin etmek için 

R'da Yapay Sinir Ağları (YSA) uygulanarak alternatif sınıflandırma modelleri geliştirilmiştir. 

Bulgular: Çalışmada uzaklık bazlı bir ölçüt aracılığıyla çevrim süresi eşiği belirleme yaklaşımları 

karşılaştırılmaktadır. Yüksek çevrim sürelerinin etiketlenmesini takiben alternatif tahminleme modellerinin 

performansları sunulmaktadır. Tahminleyici modellerin performansı doğruluk, duyarlılık ve kesinlik ölçütleri 

ile karşılaştırılmaktadır. 

Özgünlük: Literatürde proses madenciliği uygulamaları ve çevrim süresi tahmin modelleri sıklıkla çalışılmış 

olmasına karşın, jant dökümünde proses madenciliği ile ilgili çalışmalara sık rastlanmamaktadır. Çalışmada 

bir diğer özgün yön ise, gecikmelerin manuel biçimde etiketlenmesi yerine, çevrim süresi için eşik değer 

belirleyen çoklu yaklaşım izlenmesidir. 

Anahtar Kelimeler: Çevrim Süresi Tahmini, Proses Madenciliği, Makine Öğrenmesi, Yapay Sinir Ağları. 

JEL Kodları: M11, C38, C45.
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1. INTRODUCTION 

Digital technologies have been increasingly used in the manufacturing industry to improve efficiency 
and increase profitability. Rapid progress in digital technologies has also been reshaping businesses over 
the last decade. Such progress is often mentioned by scholars as the Industrial Internet or Industry 4.0. 

Scholars have often emphasized the term Industry 4.0 as an extensive change in the manufacturing 
environment. Shrouf et al. (2014) noted that the key ability for smart systems is to adopt behaviors through 
perceiving the information and derive findings that lead to actions in real-time. Rüßmann et al. (2015) also 
noticed that a significant improvement for manufacturing would be the sensing and self-learning capability 
in machinery. Besides, the integration of digital technologies in manufacturing systems improves the 
monitoring of processes by enabling real-time process data collection.  

Process variations are inevitable in production systems. Process variability, which may occur due to 
many internal factors such as the equipment and materials used, methods applied, operational causes, or 
external factors, can create variability in the process cycle time (Mrugalska and Ahram, 2017). The high 
increase in cycle time has significant adverse effects on production performance, traceable in metrics such 
as productivity and on-time delivery rate. Therefore, it is crucial to predict high cycle times and take action 
to prevent such problems. Prediction of high cycle times might be particularly useful in industries such as 
the automotive and automotive supply industry, where fluctuations in productivity might lead to severe 
consequences. With such considerations, this study aims to present a high cycle time prediction model for 
molding process in wheel rim manufacturing.  

Despite the availability of prior research in cycle time prediction, to our knowledge, there has been no 
study in this domain where sensor data was used for high cycle time prediction in wheel rim molding. Our 
model for the problem incorporates a two-stage approach that involves high cycle time threshold 
determination, and high cycle time prediction. The first stage in our approach incorporates leveraging 
statistical methods to determine an appropriate threshold rather than manually choosing a specific value. 
Particularly, a median-based approach of Leys et al. (2013) and the k-means clustering algorithm have 
been employed one at a time to determine cycle time thresholds. The second stage involves training and 
using neural networks as binary classifiers towards high cycle time prediction. The model was tested 
against the process data obtained from a large-scale wheel rim manufacturer in Turkey.  

A secondary objective in this study is to compare the effect of threshold determination method 
selection on the predictive power of our model. In our case, cycle times are labeled after comparing to a 
threshold, and changing a threshold is a significant decision that modifies the labels within the data before 
analysis. Therefore, another original aspect of our study is the persistence to obtain better predictive 
performance at the cost of relabeling data and retraining the predictive model. 

This paper is organized as follows. The following section provides a literature review on process mining 
and prediction of process parameters, including cycle times. Moreover, prior research on high cycle time 
prediction in relevant processes is summarized in this section. The next section introduces the case study. 
In the methodology section, the two-stage approach is presented in two stages: threshold selection and 
high cycle time prediction. The subsequent section involves the results where a detailed comparison of 
trained models is demonstrated. Finally, the high cycle time prediction model being presented is briefly 
summarized and reviewed in the conclusion section. 

2. LITERATURE REVIEW 

2.1. Process Mining 

In manufacturing systems, real-time monitoring of processes, recording real-time values of process 
parameters, and predicting important process performance measures by applying machine learning 
methods is a widely followed approach to cut down product failures (Deuse et al., 2019). Monitoring of 
systems, capturing real-time event logs, mining data to extract potentially valuable information are among 
essential activities in process mining (Van der Aalst, 2011). In this regard, predicting process-related 
parameters, including cycle time, can be described as process mining tasks. This concept also relates to 
the determination of high cycle times in processes. 

2.2. Process Parameter Prediction 

In recent studies, it is noticeable that machine learning methods are often employed to predict the 
target variables or classify patterns obtained within data. The literature hosts numerous studies that utilize 
supervised learning techniques for classification and prediction in manufacturing. Yu and Xi (2009) 
proposed an out-of-control signal detection model based on neural networks for a manufacturing process. 
Chen (2015) examined the cycle time prediction problem of jobs in wafer fabrication and proposed a 
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methodology comprising steps of the initial prediction of jobs’ cycle time based on ANN, improvements of 
these predictions by constructing parameters’ adjustments, and post-classification using the adjusted 
parameters. 

Quality prediction is another significant prediction task in prior process mining studies. Wang et al. 
(2019)’s ANN-based and Bai et al. (2019)’s SVM-based models were both proposed to predict quality-
related parameters. Moreover, Köksal et al. (2010) examined process data obtained from a business in the 
molding industry and extracted decision trees that predict batch quality and identify the underlying factors 
for quality-related problems. 

In a relevant study, Quintana et al. (2011) employed ANNs for the surface roughness prediction 
problem for the milling process. Asiltürk and Çunkaş (2011) employed Multiple Regression and ANN using 
the measurements taken after the turning operations to predict the steel surface roughness. Moreover, 
Lieber et al. (2013) used sensor data to predict the quality of products by utilizing Decision Trees, Support 
Vector Machines, the Nearest Neighbor Method. Table 1 lists several studies that predict process 
parameters with machine learning methods: 

Table 1. Machine learning models for prediction of process parameters 

Authors Predicted Process Parameter Method(s) 

Yu and Xi (2009) Out-of-control signals ANN 

Chen (2015) Cycle Time in wafer fabrication ANN 

Wang et al. (2019) Quality-related process parameters ANN 

Quintana et al. (2011) Surface roughness prediction ANN 

Asiltürk and Çunkaş (2011) Steel surface roughness Multiple Regression and ANN 

Lieber et al. (2013) Product quality Decision Trees, Nearest Neighbor 
Method, Support Vector Machines 

Bai et al. (2019) Quality-related process parameters Support Vector Machines 

In the context of manufacturing, cycle time and throughput are essential measures that help decision-
makers to assess performance (Chien et al., 2012). Cycle time is one of the most significant measures 
reflecting many production system performance indicators such as the production rate and quality, 
productivity, required inventory amounts to be held, and the on-time delivery ratio (Backus et al., 2006; 
Khan et al., 2014). In prior research, cycle time is often discussed along with Little's Law (Little, 1961) that 
relates cycle time with the WIP (work in process) and throughput. Accordingly, average throughput equals 
the ratio of total WIP over the average cycle time; however, the rule results in long-term results with 
relatively steady conditions (Rust, 2008). 

A significant opportunity led by digital technologies in manufacturing is the increased availability of 
real-time data. In their discussion of the use of Industry 4.0 technologies in manufacturing, Kolberg and 
Zühlke (2015) noted that smart machines might negotiate cycle-times to contribute to a higher degree of 
lean automation. In this regard, the cycle-time prediction might be dealt with as a problem with a context-
aware aspect. Besides, data-driven models that rely on contextual data have been proposed to predict 
cycle time more instantaneously. 

2.3. High Cycle Time Prediction 

Cycle time estimation or high cycle time prediction has been addressed in various domains. Due to 
the scarcity of prior models for this problem in wheel rim molding, this study attempts to present a 
classification model. On the other hand, there are processes that exhibit similar characteristics, such as the 
degree of variability in the process. For instance, the wafer fabrication process often hosts cycle time 
prediction problems. The prediction models in this domain involve techniques such as simulation, fuzzy 
modeling, neural networks, and hybrid techniques. Moreover, Chen et al. (2009) noticed that neural 
networks are often employed due to their effectiveness and accuracy for cycle time prediction in wafer 
fabrication. 

Goodwin et al. (2004) covered the problem of cycle-time prediction for semiconductor manufacturing 
and underlined the necessity of statistical learning and data mining techniques due to the variety of 
stochastic variables in the process. Additionally, the authors presented predictions with several techniques, 
including ANNs. 

For the prediction of cycle time and related measures, the wafer fabrication process has been 
occasionally revisited by scholars. Chen (2007) handled the output time prediction problem by firstly 
classifying the wafer lots with the k-means algorithm. Chen et al. (2008) predicted job completion times with 
a hybrid approach, including the use of neural networks and self-organization maps in this process. 
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Moreover, Chang et al. (2009) examined the flow time prediction problem about the same process and 
proposed a multi-step approach in which the data is clustered and flow times are individually predicted for 
each cluster. In prediction, the authors used a case-based reasoning approach where the feature weights 
are adjusted by the Genetic Algorithm. Additionally, Meidan et al. (2011) investigated the cycle time 
prediction problem for the wafer fabrication process by focusing on the waiting time, which is among the 
most significant components of cycle time. Such an approach relied on firstly determination of the key 
identifiers of waiting time by feature selection; then, prediction of the classes of waiting time with naive 
Bayesian classifier by using these identifiers. Furthermore, Wang and Zhang (2016) dealt with the cycle 
time prediction problem by focusing on the determination of the features that reflect the characteristics of 
the wafer fabrication system being analyzed. Accordingly, the authors employed a conditional mutual 
information-based approach in feature selection; then, a hybrid backpropagation network and fuzzy c-
means approach in cycle time prediction. 

Depending on the importance of cycle time, in the literature, the prediction of cycle time has attracted 
considerable interest. To date, many approaches, including statistical, simulation-based, analytical, artificial 
intelligence, hybrids of those, have been proposed and applied to predict cycle time in different types of 
industries (Chen, 2007; Wang and Zhang, 2016). Siller et al. (2006) proposed an instance of such models 
for predicting cycle time in a high-speed milling process. Chien et al. (2005) analyzed historical 
semiconductor production line data for cycle time prediction using Decision Trees. Furthermore, recent 
studies also incorporated a combination and comparison of multiple methods for cycle-time prediction. 
Backus et al. (2006) noted that most studies involve statistical analysis (such as regression technique), 
simulation models, and neural networks to obtain cycle time; and compared the predictive performance of 
Classification and Regression Trees (CART), ANN, and K-Nearest Neighbors methods using mean and 
median absolute error values. In a more recent study, Polato et al. (2014) developed a regression model 
to predict the remaining time for completion, rather than the cycle time; and noted that the use of such 
models provides an output at real-time for operational support that help to take proper actions. 

The molding process is a process where process dynamics vary depending on time; the used raw 
materials change state, and therefore show non-linear properties and involve multi successive steps (Zhou, 
2013). The high variability of the molding process makes it harder to determine whether an increase in 
cycle time depends on the variability caused by the nature of the process, or if it is due to process failures 
that can be eliminated. To distinguish these preventable increases in cycle time is a crucial step to improve 
business performance. Additionally, the benefits of predicting and preventing high cycle times might be 
noticed through performance indicators such as production rate, product quality, on-time delivery rate, and 
productivity. 

A prerequisite for preventing high cycle times is essentially describing a rule that signifies whether a 
cycle time is normal or high. In this manner, several approaches from prior research might be adopted to 
classify processes over their cycle times or figure out processes with high-cycle time as outliers. 

For the highly variable datasets that do not follow a normal distribution, approaches based on median 
and median absolute deviation measures are seen as more appropriate than the mean and standard 
deviation-based approaches in determining outliers (Da Costa et al., 2016; Leys et al., 2013). In the 
literature, there have been studies adopting the median-based approach by Leys et al. (2013), which is one 
of the most applied median-based outlier detection approaches for determining outliers in data pre-
processing (Marti-Puig et al., 2018; Herrema et al., 2019), and as a fault detection strategy (Muhammed 
and Shaikh, 2017). 

As another approach, clustering is an unsupervised learning task that groups similar data objects into 
clusters. The basic idea in clustering tasks is to group similar objects into clusters that are separate from 
each other (Han et al., 2012:490). K-means algorithm randomly generates k clusters at the first step, then 
places data objects into the nearest clusters using similarity criterion while recalculating the cluster means 
(Han et al., 2012:453). K-means clustering method is also useful in the identification of outliers (Sumathi 
and Sivanandam, 2006) since outliers do not easily classify in a particular cluster.  

Additionally, several studies predict measures related to cycle time in various molding processes. 
Yarlagadda and Khong (2001) developed an ANNs based model to predict the injection time and pressure 
in the injection molding process. Ramkumar et al. (2015) followed a simulation-based approach for the 
cycle time prediction problem for the heating process in rotational molding. Kozjek et al. (2019) handled the 
fault detection problem in the plastic injection molding process with data mining approaches. The authors 
labeled the unscheduled machine stoppage observations in their dataset as faulty and the rest observations 
as normal, and aimed to identify these categories using several parameters, including cycle time.  
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Despite the variety of process mining models for high cycle prediction in various domains, it has been 
noted that such studies are meager in wheel rim molding. Arguably, this originates from the recent 
digitalization in wheel rim manufacturing plants, and our study benefits the collection of sensor data during 
the molding process. Besides, prior models on high cycle time prediction often used labeled data or a 
predefined threshold. Our approach differentiates from prior research with the threshold selection 
procedure, where the predictive performances of trained models were compared to determine the best 
method for threshold determination. 

3. PROBLEM DESCRIPTION 

Our case study addresses the prediction of high cycle times in the wheel rim molding process. Molding 
is one of the initial phases in wheel rim manufacturing. Various sub-processes take place during this phase, 
including the heating of the metal, melting, pouring, pressurizing, and cooling consecutively. The units are 
formed during this complex process which even obscures the identification of individual products at this 
step. 

The molding process data analyzed was obtained from a large-scale wheel rim manufacturer located 
in Turkey. The original dataset was organized as a comma-separated text file, and this study examines a 
dataset of 1709 recordings for wheel rims molded into a standard cast on the same day. Each data point 
involves sensor-generated attributes, including relevant temperature, pressure, flow data measurements 
recorded during the sub-processes. Moreover, the specific durations of several key steps were also 
involved in the dataset. The independent variables and the range of values are demonstrated in Table 2. 

Table 2. Variables and range of values in dataset 

No Variable Range No Variable Range 

1 METAL_S_SET (°C) [705, 710] 27 X7_COOL_DURATION (sec) [120, 140] 

2 METAL_SAKT (°C) [685, 712] 28 X8_FLOW_AVG [931,78; 
1019,04] 

3 MOD [1, 8] 29 X9_FLOW_AVG [899,43; 
976,58] 

4 METAL_INTAKE [0, 5] 30 X9_W_DURATION (sec) [90, 100] 

5 PRESSURE_MAX [5,73; 6,11] 31 X10_FLOW_AVG [908,10; 
984,48] 

6 COOLING_TEMP (°C) [507, 526] 32 X10_W_DURATION (sec) [90, 100] 

7 TC1_SET (°C) [450, 500] 33 X11_FLOW_AVG [0; 978,22] 

8 TC1_AKT [368, 3276] 34 X11_W_DURATION (sec) [80, 100] 

9 TC2_AKT [269, 422] 35 X11_COOL_DURATION (sec) [100, 120] 

10 PHASE_1_DURATION (sec) [5, 30] 36 XX11_FLOW_AVG [0; 19,35] 

11 PHASE_1_PRESSURE [131,22; 514,87] 37 XX11_W_DURATION (sec) [45, 65] 

12 PHASE_2_DURATION (sec) [7, 35] 38 XX11_COOL_DURATION (sec) [30, 60] 

13 PHASE_2_PRESSURE [301,22; 
1017,06] 

39 XX12_FLOW_AVG [0; 13,57] 

14 PHASE_3_DURATION (sec) [7, 133] 40 XX12_W_DURATION (sec) [45, 65] 

15 PHASE_4_DURATION (sec) [40, 190] 41 XX12_COOL_DURATION (sec) [30, 60] 

16 PHASE_4_PRESSURE [0, 1000] 42 XX13_FLOW_AVG [0; 11,11] 

17 PHASE_5_DURATION (sec) [0, 50] 43 XX13_W_DURATION (sec) [45, 65] 

18 X1_FLOW_AVG [0; 1233,23] 44 XX13_COOL_DURATION (sec) [30, 60] 

19 X2_FLOW_AVG [1158,35; 
1372,43] 

45 XX14_FLOW_AVG [0; 13,79] 

20 X2_W_DURATION (sec) [80, 100] 46 XX14_W_DURATION (sec) [45, 65] 

21 X2_COOL_DURATION (sec) [120, 140] 47 XX14_COOL_DURATION (sec) [30, 60] 

22 X3_FLOW_AVG [0; 1352,46] 48 XX2_FLOW_AVG [16,4; 17,78] 

23 X3_W_DURATION (sec) [80, 100] 49 XX2_W_DURATION (sec) [100, 120] 

24 X3_COOL_DURATION (sec) [120, 140] 50 XX2_COOL_DURATION (sec) [80, 100] 

25 X7_FLOW_AVG [1133; 1234,72] 51 CYCLE_TIME (sec) [236, 25438] 

26 X7_W_DURATION (sec) [80, 100]    

The input variables in the dataset have been adjusted into the range [0,1] with max-min normalization. 
Moreover, the distribution of cycle times was tested using Shapiro-Wilk’s method in R. The normality test 
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resulted in the p-value of 2.2e-16 < 0.05. Accordingly, the distribution of the cycle time values is significantly 
different from the normal distribution. The density plot for cycle times is depicted below (Figure 1). 

 

Figure 1. Distribution of cycle time values 

4. METHODOLOGY 

Our methodology consists of two stages for high cycle-time prediction, as summarized in Figure 2. 
Accordingly, our approach involves threshold determination and data labeling before training and testing 
prediction models.  

A typical and straightforward approach would be training a prediction model in case class labels 
existed in the process data. However, our dataset includes cycle times, and a threshold should be 
determined to determine labels for data points. Choosing a high threshold would lead to a small group of 
data points labeled as “late”, and vice versa. For this reason, our methodology involves labeling the process 
data with multiple thresholds one at a time and choosing the better threshold that leads to better predictive 
performance. 

 

Figure 2. Threshold determination and prediction in our methodology 

As demonstrated in Figure 2, first stage involves threshold determination to classify cycle times as 
high or normal, and labeling data accordingly. In the second stage, ANN models are trained and tested to 
predict the target values. The steps in both stages are introduced in more detail through the following 
subsections.  

4.1. Determining Samples with High Cycle Time 

Labeling a process based on its cycle time necessitates a threshold that differentiates normal and high 
cycle times. For this purpose, threshold determination was conducted as detailed in the following 
subsection. The next subsection briefly describes how data points are labeled right after threshold 
determination. Completing both steps at Stage 1 (Figure 2) prepares a labeled dataset that enables training 
a predictive machine learning model. 
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4.1.1. Calculating Thresholds for High Cycle Time 

Our methodology employs two alternative approaches for high cycle-time threshold determination. The 
first approach calculates the median absolute deviation of cycle time recordings and determines the 
threshold based on this value. The second approach clusters process data regarding their cycle times. 
Thereby, the cluster with the higher cycle-time average involves potentially late processes. With this idea, 
determining a threshold separates clusters having normal and relatively high cycle time averages.  

Our first approach for threshold determination is based on the method proposed by Leys et al. (2013) 
that relies on the use of the mean absolute deviation. The authors argued that the mean measure is 
sensitive to outliers, especially when the magnitude of outliers is remarkable. Due to the high variability in 
the cycle times and the existence of possible outliers, this approach was adopted to determine the data 
points with high cycle times. 

Table 3 demonstrates our threshold computation procedure according to the method by Leys et al. 
(2013). The median and median absolute deviation measures for cycle-time were computed with median() 
and mad() functions in R. As detailed below, such computation resulted in a threshold of 325.58. 

Table 3. Cycle time threshold by median-based approach 

Measure Value (sec) 

Median 290,00 
Median Absolute Deviation (MAD) 11,86 
Threshold = Median + 3 x MAD 325,58 

Our second approach to obtain a threshold was to apply the k-means algorithm to cluster data based 
on cycle times measured for individual parts. The technique was executed to obtain two clusters from the 
initial dataset, resulting in the clusters demonstrated in Table 4. 

Table 4. Initial clustering results with k-means (k=2) 

Cluster Members Cluster Mean 

1 1 25438 
2 1708 325,5 

The clustering results in Table 4 apparently demonstrate an outlier for the record with an extremely 
high cycle time of 25,438. With such consideration, this record was removed as a part of the data 
preprocessing phase. The k-means clustering was repeated by taking k=2 and k=3 to obtain two and three 
clusters, respectively. The clusters obtained with both parameters are listed in Table 5: 

Table 5. Clustering results with k-means for k=2 and k=3 

Parameter Clusters Mean Range Members 
Cluster 

Similarity 

k=2 1 4515,78 [3121, 9761] 9 77,6% 
2 303,31 (0, 3121) 1699 

                            Total 1708 
k=3 1 4515,78 [3121, 9761] 9 78,6% 

2 453,90 [374, 3121) 111 
3 292,78 (0, 374) 1588 

             Total 1708 

Both sets of clusters identified a particular group of 9 processes with cycle times higher than 3121. 
Taking this threshold would result in 10 high cycle times, including the outlier. Moreover, clustering for k=3 
discovered another group of 111 data points with relatively high cycle times. At this step, a comparison of 
both clustering results (k=2 and k=3) was conducted using the distance-based similarity metric, calculated 
as in Equation 1. 

𝑑𝑖𝑠𝑡 =
𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑐𝑙𝑢𝑠𝑡𝑒𝑟

𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑡𝑜 𝑜𝑡ℎ𝑒𝑟 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠
              (1) 

The distance-based similarity for clusters obtained by k=3 was found slightly better than those obtained 
by k=2. (78,9% vs 77,6%). Moreover, the scarcity of members of Cluster 1 in both groups was noticed. In 
addition, Cluster 2 in the second clustering solution (k=3) also involved 111 members that still have 
relatively high cycle times. With those considerations, the second group of clusters obtained with k=3 was 
picked as the more appropriate option. 

The minimum value of two clusters (clusters of 1 and 2, when k=3) was taken as the threshold to 
determine high cycle times in our k-means clustering approach. 
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4.1.2. Setting Target Classes for Input Data 

The thresholds determined in the previous step were used to label the dataset in terms of cycle times. 
Accordingly, the target variable ‘LATE’ was set with binary values where 1 indicates high, and 0 indicates 
normal cycle times. Each record was labeled by simply comparing its cycle time with the threshold.  

Since our study adopts two different approaches in threshold computation, this step was repeated for both 
thresholds. 

4.2. Training and Testing Classification Model 

Referring to our methodology in Figure 2, the main idea in Stage 2 is training and testing predictive 
models based on data labeled in Stage 1.  

Jain et al. (1996) described ANNs as parallel computing systems that involve large numbers of 
interconnected processors, with the ability to adopt supervised and unsupervised learning abilities and 
perform tasks such as prediction, pattern classification, and function approximation. ANNs are often used 
within predictive models that analyze process data in manufacturing. One of the main advantages of ANNs 
is the ability to process information properties in complex non-linear and quite dynamic environments, even 
in datasets containing noisy information, thanks to their learning and generalization capabilities (Zhang et 
al., 1998; Noorzaei et al., 2007; Singh et al., 2016). Moreover, ANNs have higher fault tolerance than the 
supervised machine learning methods of Support Vector Machine and Random Forest. So, they are 
capable of handling data with missing values. ANNs are also scalable compared to Support Vector Machine 
and Random Forest (Abiodun et al., 2018). In this regard, our study employs ANN-based binary classifiers 
to predict high cycle times. Predictive model design, training, and testing steps are detailed in the following 
subsections. 

4.2.1. Deriving Neural Network Structures 

The selection of network structure is a crucial decision in training neural networks. However, Rafiq et 
al. (2001) noticed the lack of a universal method for selecting the number of hidden neurons when designing 
neural networks. Moreover, the authors underlined that the abundance or shortage of neurons might lead 
to problems such as under-fitting and over-fitting.  

Due to the considerations listed, our methodology aims to minimize those risks by training multiple 
neural networks of different structures. Prediction models in our study are composed of ANNs with alternate 
structures:  

• Three single-layer neural networks with hidden neuron counts of 8, 20, and 25, respectively. 

• A multi-layer neural network with 19 neurons. 

The variables listed in Table 2, except for the cycle-time, correspond to input nodes of ANNs. The 
output is a binary variable that signifies whether the cycle time is high or normal. 

4.2.2. Training of Neural Network Models 

A series of repetitions were executed with four individual settings that differ by the network structures. 
The neuralnet library (Günther and Fritsch, 2010) in R was utilized for training neural networks that predict 
high cycle times based on input variables.  

The neural networks were trained using 80% of random samples from the original dataset. Consequently, 
the remaining 20% was used to test the models. The selection of training and test data was randomly held 
at each iteration, with preserving the balance of the percentage of high cycle times both in training and test 
data. 

4.2.3. Testing and Comparing Predictive Models 

The predictive power of machine learning models is often measured using specific measures such as 
accuracy, precision, recall (Géron, 2019:88-92). Accordingly, our results involved the comparison of 
prediction models in terms of those measures. 

The predictive models are compared with respect to the following measures (Equations 2-4). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
                      (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
                                 (3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
                      (4) 
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Accuracy measures the percentage of objects correctly classified, while recall corresponds to the 
completeness of positive classification, and precision explains what percentage of tuples labeled as positive 
are actually positive (Han et al., 2012:365,368). 

5. FINDINGS 

The average prediction results over 100 repetitions are cumulated in the confusion table demonstrated 
in Table 6. The classes 0 and 1 correspond to normal and high cycle times, respectively, regarding the 
cycle-time threshold. 

Table 6. Overall predictive performance of trained models (with median-based threshold=325.58) 

Network Structure 

Confusion Matrices 

Performance Metrics (Average) 

Layers Hidden Neurons Recall Precision Accuracy 

1 8 
 

Predictions 

29,25% 38,13% 86,87% 
0 (Normal) 1 (High) 

Actual 
0 (Normal) 285,99 18,03 
1 (High) 26,87 11,11 

2 (15, 4) 
 

Predictions 

29,74% 38,35% 86,87% 
0 (Normal) 1 (High) 

Actual 
0 (Normal) 285,79 18,18 
1 (High) 26,72 11,31 

1 20 
 

Predictions 

31,02% 32,04% 87,27% 
0 (Normal) 1 (High) 

Actual 
0 (Normal) 288,45 21,25 
1 (High) 22,28 10,02 

1 25 
 

Predictions 

29,79% 36,22% 86,42% 
0 (Normal) 1 (High) 

Actual 
0 (Normal) 284,27 19,86 
1 (High) 26,59 11,28 

According to Table 6, training ANNs with 20 hidden neurons led to the highest average performance. 
In our results, a high accuracy rate indicates the overall success of predictions; a high recall rate signifies 
the ability to predict high cycle times; and a high precision implies the exactness of positive predictions. 
The average accuracy of all trained models is 86.86%, where recall is found 29.95%, and precision is 
36.19%. Low recall scores indicated that the models overlooked a significant number of occasions with high 
cycle times. 

Table 7. Overall predictive performance of trained models (with clustering-based 

threshold=374.00) 

Network Structure 

Confusion Matrices 

Performance Metrics (Average) 

Layers Hidden Neurons Recall Precision Accuracy 

1 8 
  

Predictions 

39,63% 48,47% 92,81% 
0 (Normal) 1 (High) 

Actual 
0 (Normal) 307,89 10,11 

1 (High) 14,49 9,51 

2 (15, 4) 
  

Predictions 

38,54% 50,11% 92,99% 
0 (Normal) 1 (High) 

Actual 
0 (Normal) 308,79 9,21 

1 (High) 14,75 9,25 

1 20 
  

Predictions 

40,58% 48,22% 92,77% 
0 (Normal) 1 (High) 

Actual 
0 (Normal) 307,54 10,46 

1 (High) 14,26 9,74 

1 25 
  

Predictions 

39,17% 46,33% 92,55% 
0 (Normal) 1 (High) 

Actual 
0 (Normal) 307,11 10,89 

1 (High) 14,6 9,4 

As noted, the predictive models summarized in Table 6 relied on labels (high/normal) obtained by 
taking the median-based threshold. Alternatively, our methodology involved another approach for threshold 
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determination with the use of the k-means clustering technique. Accordingly, data was relabeled by 
comparing each cycle time with this clustering-based threshold of 374.00. Taking this dataset, we iterate 
the same number of tests with identical network structures. The performance metrics obtained through 100 
repetitions are presented in Table 7. 

The average accuracy in Table 7 is 92.78%, where average recall and precision scores are 39.48% 
and 48.22%, respectively. In addition to a noticeable increase in the accuracy, the average recall was found 
significantly higher when the threshold was set according to the k-means clusters. Moreover, the same 
conclusion still holds when comparing the ANN structures one at a time. Such difference signals the impact 
of threshold in model performance. 

6. CONCLUSION 

Cycle times in manufacturing are among essential indicators that might signal unforeseen stoppages 
and failures when high cycle times occur. In this regard, predicting high cycle times might be helpful in 
detection of such incidents, and productivity improvements in a manufacturing plant. 

This study addresses a high cycle time prediction problem and proposes an ANN-based high cycle 
time prediction model with two stages. The first stage involves cycle time threshold determination through 
statistical and clustering-based methods. The second stage involves ANN-based binary classification for 
predicting high cycle times. To demonstrate our model, we analyzed molding process data obtained from 
a wheel rim manufacturer. The dataset involved process-specific attributes collected via sensors, and cycle 
times recorded. 

Our study contributes to prior studies by involving and comparing multiple threshold determination 
approaches used when labeling high cycle times. Before the tests, we might speculate that a high threshold 
would label fewer observations with higher delays. Consequently, it should be easier to distinguish those 
observations since they are more deviated from other data points. Alternate neural network structures were 
repeatedly trained and tested to predict high cycle times by taking clustering-based and median-based 
thresholds, which are 374 and 325, respectively. The performance of model structures was evaluated in 
terms of accuracy, recall, and precision in our findings. We noticed that threshold determination has 
fundamentally affected the average performance of classifiers in all tested configurations. The results 
demonstrate that taking the higher threshold obtained through k-means clustering has consistently led to 
better predictions in terms of accuracy, recall, and precision. Nevertheless, we underline that prediction 
models with different thresholds might signify delays or problems at different scales. Accordingly, it might 
still be beneficial to use multiple prediction models to determine the severity of alerts to be raised in real-
time monitoring systems. 

A limitation for the study was using a dataset that involved process data captured from a single batch. 
In future studies, the proposed methodology might be further tested with a broader set of attributes for the 
molding process by virtue of forthcoming sensors. Moreover, the model might be even extended to provide 
cycle time estimates rather than merely signifying high cycle times. Furthermore, the high cycle time 
prediction model might be modified for handling real-time data and integrated into decision support models 
to reinforce online monitoring systems in wheel rim manufacturing. 
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