4,162 research outputs found

    Fuzzy set based multiobjective allocation of resources and its applications

    Get PDF
    AbstractThis paper presents results of research into the use of the Bellman-Zadeh approach to decision making in a fuzzy environment for solving multiobjective optimization problems. Its application conforms to the principle of guaranteed result and provides constructive lines in obtaining harmonious solutions on the basis of analyzing associated maxmin problems. The use of the Bellman-Zadeh approach has served as a basis for solving a problem of multiobjective allocation of resources (or their shortages) and developing a corresponding adaptive interactive decision-making system (AIDMS1). Its calculating kernel permits one to solve maxmin problems using an algorithm based on a nonlocal search (modification of the Gelfand's and Tsetlin's “long valley” method). The AIDMS1 includes procedures for considering linguistic variables to reflect conditions that are difficult to formalize as well as procedures for constructing and correcting vectors of importance factors for goals. The use of these procedures permits one to realize an adaptive approach to processing information of a decision maker to provide successive improving of the solution quality. C++ windows of the AIDMS1 are presented for input, output, and special possibilities related to considering linguistic variables and constructing and correcting vectors of importance factors. The results of the paper are universally applicable and are already being used to solve power engineering problems

    Multi crteria decision making and its applications : a literature review

    Get PDF
    This paper presents current techniques used in Multi Criteria Decision Making (MCDM) and their applications. Two basic approaches for MCDM, namely Artificial Intelligence MCDM (AIMCDM) and Classical MCDM (CMCDM) are discussed and investigated. Recent articles from international journals related to MCDM are collected and analyzed to find which approach is more common than the other in MCDM. Also, which area these techniques are applied to. Those articles are appearing in journals for the year 2008 only. This paper provides evidence that currently, both AIMCDM and CMCDM are equally common in MCDM

    Multiobjective strategies for New Product Development in the pharmaceutical industry

    Get PDF
    New Product Development (NPD) constitutes a challenging problem in the pharmaceutical industry, due to the characteristics of the development pipeline. Formally, the NPD problem can be stated as follows: select a set of R&D projects from a pool of candidate projects in order to satisfy several criteria (economic profitability, time to market) while coping with the uncertain nature of the projects. More precisely, the recurrent key issues are to determine the projects to develop once target molecules have been identified, their order and the level of resources to assign. In this context, the proposed approach combines discrete event stochastic simulation (Monte Carlo approach) with multiobjective genetic algorithms (NSGAII type, Non-Sorted Genetic Algorithm II) to optimize the highly combinatorial portfolio management problem. In that context, Genetic Algorithms (GAs) are particularly attractive for treating this kind of problem, due to their ability to directly lead to the so-called Pareto front and to account for the combinatorial aspect. This work is illustrated with a study case involving nine interdependent new product candidates targeting three diseases. An analysis is performed for this test bench on the different pairs of criteria both for the bi- and tricriteria optimization: large portfolios cause resource queues and delays time to launch and are eliminated by the bi- and tricriteria optimization strategy. The optimization strategy is thus interesting to detect the sequence candidates. Time is an important criterion to consider simultaneously with NPV and risk criteria. The order in which drugs are released in the pipeline is of great importance as with scheduling problems

    Multiobjective strategies for New Product Development in the pharmaceutical industry

    Get PDF
    New Product Development (NPD) constitutes a challenging problem in the pharmaceutical industry, due to the characteristics of the development pipeline. Formally, the NPD problem can be stated as follows: select a set of R&D projects from a pool of candidate projects in order to satisfy several criteria (economic profitability, time to market) while coping with the uncertain nature of the projects. More precisely, the recurrent key issues are to determine the projects to develop once target molecules have been identified, their order and the level of resources to assign. In this context, the proposed approach combines discrete event stochastic simulation (Monte Carlo approach) with multiobjective genetic algorithms (NSGAII type, Non-Sorted Genetic Algorithm II) to optimize the highly combinatorial portfolio management problem. In that context, Genetic Algorithms (GAs) are particularly attractive for treating this kind of problem, due to their ability to directly lead to the so-called Pareto front and to account for the combinatorial aspect. This work is illustrated with a study case involving nine interdependent new product candidates targeting three diseases. An analysis is performed for this test bench on the different pairs of criteria both for the bi- and tricriteria optimization: large portfolios cause resource queues and delays time to launch and are eliminated by the bi- and tricriteria optimization strategy. The optimization strategy is thus interesting to detect the sequence candidates. Time is an important criterion to consider simultaneously with NPV and risk criteria. The order in which drugs are released in the pipeline is of great importance as with scheduling problems

    Fuzzy clustering of univariate and multivariate time series by genetic multiobjective optimization

    Get PDF
    Given a set of time series, it is of interest to discover subsets that share similar properties. For instance, this may be useful for identifying and estimating a single model that may fit conveniently several time series, instead of performing the usual identification and estimation steps for each one. On the other hand time series in the same cluster are related with respect to the measures assumed for cluster analysis and are suitable for building multivariate time series models. Though many approaches to clustering time series exist, in this view the most effective method seems to have to rely on choosing some features relevant for the problem at hand and seeking for clusters according to their measurements, for instance the autoregressive coe±cients, spectral measures or the eigenvectors of the covariance matrix. Some new indexes based on goodnessof-fit criteria will be proposed in this paper for fuzzy clustering of multivariate time series. A general purpose fuzzy clustering algorithm may be used to estimate the proper cluster structure according to some internal criteria of cluster validity. Such indexes are known to measure actually definite often conflicting cluster properties, compactness or connectedness, for instance, or distribution, orientation, size and shape. It is argued that the multiobjective optimization supported by genetic algorithms is a most effective choice in such a di±cult context. In this paper we use the Xie-Beni index and the C-means functional as objective functions to evaluate the cluster validity in a multiobjective optimization framework. The concept of Pareto optimality in multiobjective genetic algorithms is used to evolve a set of potential solutions towards a set of optimal non-dominated solutions. Genetic algorithms are well suited for implementing di±cult optimization problems where objective functions do not usually have good mathematical properties such as continuity, differentiability or convexity. In addition the genetic algorithms, as population based methods, may yield a complete Pareto front at each step of the iterative evolutionary procedure. The method is illustrated by means of a set of real data and an artificial multivariate time series data set.Fuzzy clustering, Internal criteria of cluster validity, Genetic algorithms, Multiobjective optimization, Time series, Pareto optimality

    Short Software Descriptions

    Get PDF
    This paper briefly presents the software for interactive decision support that was developed in 1990-1991 within the Contracted Study Agreement between the System and Decision Sciences Program at IIASA and several Polish scientific institutions, namely: Institute of Automatic Control (Warsaw University of Technology); Institute of Computing Science (Technical University of Poznaii); Institute of Informatics (Warsaw University); and Systems Research Institute of the Polish Academy of Sciences. This Contracted Study Agreement has been a continuation of the same type of activity conducted since 1985. Therefore many of the software packages are actually improved versions of the programs developed in 1985-1989. The theoretical part of the results developed within this scientific activity is presented in the IIASA Collaborative Paper CP-90-008 by A. Ruszczynski, T. Rogowski and A.P. Wierzbicki entitled "Contributions to Methodology and Techniques of Decision Analysis (First Stage)." Detailed descriptions of the methodology and the user guide for each particular software package are published in separate Collaborative Papers. Each software package described here is available in executable form for non-profit educational and scientific purposes, however, any profit-oriented or commercial application requires a written agreement with IIASA. Inquires about the software should be directed to the System and Decision Sciences Program at IIASA, Methodology of Decisions Analysis Project

    Evolutionary multiobjective optimization in engineering management: an empirical study on bridge deck rehabilitation

    Full text link
    There exist multiple objectives in engineering management such as minimum cost and maximum service capacity. Although solution methods of multiobjective optimization problems have undergone continual development over the past several decades, the methods available to date are not particularly robust, and none of them performs well on the broad classes. Because genetic algorithms work with a population of points, they can capture a number of solutions simultaneously, and easily incorporate the concept of Pareto optimal set in their optimization process. In this paper, a genetic algorithm is modified to deal with the rehabilitation planning of bridge decks at a network level by minimizing the rehabilitation cost and deterioration degree simultaneously
    corecore