3 research outputs found

    Fuzzy Preferences in the Graph Model for Conflict Resolution

    Get PDF
    A Fuzzy Preference Framework for the Graph Model for Conflict Resolution (FGM) is developed so that real-world conflicts in which decision makers (DMs) have uncertain preferences can be modeled and analyzed mathematically in order to gain strategic insights. The graph model methodology constitutes both a formal representation of a multiple participant-multiple objective decision problem and a set of analysis procedures that provide insights into them. Because crisp or definite preference is a special case of fuzzy preference, the new framework of the graph model can include---and integrate into the analysis---both certain and uncertain information about DMs' preferences. In this sense, the FGM is an important generalization of the existing graph model for conflict resolution. One key contribution of this study is to extend the four basic graph model stability definitions to models with fuzzy preferences. Together, fuzzy Nash stability, fuzzy general metarationality, fuzzy symmetric metarationality, and fuzzy sequential stability provide a realistic description of human behavior under conflict in the face of uncertainty. A state is fuzzy stable for a DM if a move to any other state is not sufficiently likely to yield an outcome the DM prefers, where sufficiency is measured according to a fuzzy satisficing threshold that is characteristic of the DM. A fuzzy equilibrium, an outcome that is fuzzy stable for all DMs, therefore represents a possible resolution of the conflict. To demonstrate their applicability, the fuzzy stability definitions are applied to a generic two-DM sustainable development conflict, in which a developer plans to build or operate a project inspected by an environmental agency. This application identifies stable outcomes, and thus clarifies the necessary conditions for sustainability. The methodology is then applied to an actual dispute with more than two DMs concerning groundwater contamination that took place in Elmira, Ontario, Canada, again uncovering valuable strategic insights. To investigate how DMs with fuzzy preferences can cooperate in a strategic conflict, coalition fuzzy stability concepts are developed within FGM. In particular, coalition fuzzy Nash stability, coalition fuzzy general metarationality, coalition fuzzy symmetric metarationality, and coalition fuzzy sequential stability are defined, for both a coalition and a single DM. These concepts constitute a natural generalization of the corresponding non-cooperative fuzzy preference-based definitions for Nash stability, general metarationality, symmetric metarationality, and sequential stability, respectively. As a follow-up analysis of the non-cooperative fuzzy stability results and to demonstrate their applicability, the coalition fuzzy stability definitions are applied to the aforementioned Elmira groundwater contamination conflict. These new concepts can be conveniently utilized in the study of practical problems in order to gain strategic insights and to compare conclusions derived from both cooperative and non-cooperative stability notions. A fuzzy option prioritization technique is developed within the FGM so that uncertain preferences of DMs in strategic conflicts can be efficiently modeled as fuzzy preferences by using the fuzzy truth values they assign to preference statements about feasible states. The preference statements of a DM express desirable combinations of options or courses of action, and are listed in order of importance. A fuzzy truth value is a truth degree, expressed as a number between 0 and 1, capturing uncertainty in the truth of a preference statement at a feasible state. It is established that the output of a fuzzy preference formula, developed based on the fuzzy truth values of preference statements, is always a fuzzy preference relation. The fuzzy option prioritization methodology can also be employed when the truth values of preference statements at feasible states are formally based on Boolean logic, thereby generating a crisp preference over feasible states that is the same as would be found using the existing crisp option prioritization approach. Therefore, crisp option prioritization is a special case of fuzzy option prioritization. To demonstrate how this methodology can be used to represent fuzzy preferences in real-world problems, the new fuzzy option prioritization technique is applied to the Elmira aquifer contamination conflict. It is observed that the fuzzy preferences obtained by employing this technique are very close to those found using the rather complicated and tedious pairwise comparison approach

    Facilitating Brownfield Redevelopment Projects: Evaluation, Negotiation, and Policy

    Get PDF
    A risky project evaluation technique called the fuzzy real options analysis is developed to evaluate brownfield redevelopment projects. Other decision making techniques, such as multiple criteria analysis and conflict analysis, can be incorporated into fuzzy real options analysis to facilitate negotiations on brownfield redevelopment among decision makers (DMs). The value of managerial flexibility, which is important in negotiations and policy making for brownfield redevelopment, is overlooked when the traditional evaluation method, net present value (NPV), is employed. Findings of this thesis can be used to promote brownfield redevelopment, thereby helping to eliminate environmental threats and enhance regional sustainability. A brownfield is an abandoned or underutilized property that contains, or may contain, pollutants, hazardous substances, or contaminants from previous usage, typically industrial activity. Brownfields often occur when the local economy transits from industrial to service-oriented seeking more profit. Governments actively promote brownfield redevelopment to eliminate public health threats, help economic transition, and enhance sustainability. However, developers are reluctant to participate in brownfield redevelopment because they often regard these projects as unprofitable when using classic evaluation techniques. On the other hand, case studies show that brownfield redevelopment projects can be good business opportunities for developers. An improved evaluation method is developed in order to estimate the value of a brownfield more accurately. The main reason that makes the difference between estimates and ''actual'' values lies in the failure of the deterministic project evaluation tool to price the value of uncertainty, which leads to efforts to enhance the decision making under uncertainty. Real options modelling, which extends the ability of option pricing models in real asset evaluation, is employed in risky project evaluation because of its capacity to handle uncertainties. However, brownfield redevelopment projects contain uncertain factors that have no market price, thus violating the assumption of option pricing models for which all risks have been reflected in the market. This problem, called private risk, is addressed by incorporating fuzzy numbers into real options in this thesis, which can be called fuzzy real options. Fuzzy real options are shown to generalize the original model to deal with additional kinds of uncertainties, making them more suitable for project evaluation. A numerical technique based on hybrid variables is developed to price fuzzy real options. We proposed an extension of Least Squares Monte-Carlo simulation (LSM) that produces numerical evaluations of options. A major advantage of this methodology lies in its ability to produce results regardless of whether or not an analytic solution exists. Tests show that the generalized LSM produces similar results to the analytic valuation of fuzzy real options, when this is possible. To facilitate parameter estimation for the fuzzy real options model, another numerical method is proposed to represent the likelihood of contamination of a brownfield using fuzzy boundaries. Linguistic quantifiers and ordered weighted averaging (OWA) techniques are utilized to determine the likelihood of pollution at sample locations based on multiple environmental indicators, acting as a fuzzy deduction rule to calculate the triangle membership functions of the fuzzy parameters. Risk preferences of DMs are expressed as different ''ORness'' levels of OWA operators, which affect likelihood estimates. When the fuzzy boundaries of a brownfield are generated by interpolation of sample points, the parameters of fuzzy real options, drift rate and volatility, can be calculated as fuzzy numbers. Hence, this proposed method can act as an intermediary between DMs and the fuzzy real options models, making this model much easier to apply. The values of DMs to a brownfield can be input to the graph model for conflict resolution (GMCR) to identify possible resolutions during brownfield redevelopment negotiation among all possible states, or combinations of DMs' choices. Major redevelopment policies are studied using a brownfield redevelopment case, Ralgreen Community in Kitchener, Ontario, Canada. The fuzzy preference framework and probability-based comparison method to rank fuzzy variables are employed to integrate fuzzy real options and GMCR. Insights into this conflict and general policy suggestions are provided. A potential negotiation support system (NSS) implementing these numerical methods is discussed in the context of negotiating brownfield redevelopment projects. The NSS combines the computational modules, decision support system (DSS) prototypes, and geographic information systems (GIS), and message systems. A public-private partnership (PPP) will be enhanced through information sharing, scenario generation, and conflict analysis provided by the NSS, encouraging more efficient brownfield redevelopment and leading to greater regional sustainability. The integrated usage of fuzzy real options, OWA, and GMCR takes advantage of fuzziness and randomness, making better evaluation technique available in a multiple DMs negotiation setting. Decision techniques expand their range from decision analysis, multiple criteria analysis, to a game-theoretic approach, contributing to a big picture on decision making under uncertainty. When these methods are used to study brownfield redevelopment, we found that creating better business opportunities, such as allowing land use change to raise net income, are more important in determining equilibria than remediation cost refunding. Better redevelopment policies can be proposed to aid negotiations among stakeholders

    Strategische Verschlechterungen in dynamischen Konflikten: Eine empirische Untersuchung im Rahmen der Konfliktanalyse

    Get PDF
    Die Arbeit befasst sich mit dem Spieltheorie-basierten Modell der Konfliktanalyse nach Fraser und Hipel (1979, 1984). In diesem Kontext untersucht sie das empirische Auftreten strategisch-motivierter Verschlechterungshandlungen in dynamischen Konflikten. Das zentrale konfliktanalyti-sche Lösungskonzept SEQ schließt unmittelbare Verschlechterungshandlungen für die modellierten Parteien aus. Die Arbeit greift die theoretische Diskussion um das Auftreten von strategisch-motivierten Verschlechterungen aus empirischer Perspektive auf und identifiziert Strukturmerkale von Situationen unter denen strategische Verschlechterungen vermehrt beobachtet werden können. Im Zentrum der Untersuchung stehen drei Struktureigenschaften, für die eine Wahl von Ver-schlechterungshandlungen erwartet wird: (1) Der Status quo einer Situation wird von der handeln-den Partei weniger präferiert als der von ihr im schlechtesten Fall erwartete Konfliktausgang (auch Minimalpunkt), (2) es existiert ein Gleichgewicht, das gegenüber dem Status quo Pareto-superior ist, und (3) die aktive Partei kann ein gegenüber dem Status quo präferiertes Gleichgewicht induzieren, indem sie die Gegenpartei durch eine Verschlechterung zu einer Reaktion zwingt. Zur Untersu-chung der Assoziation dieser Struktureigenschaften mit der Wahl von Verschlechterungen wird ein dynamisches spieltheoretisches Laborexperiment auf Basis von 3x3 Matrixspielen durchgeführt. Die empirischen Ergebnisse zeigen, dass Konfliktparteien keine grundsätzliche Vermeidung von Verschlechterungshandlungen forcieren. Verschlechterungen werden insbesondere durchgeführt, sofern auf Basis strategischer Überlegungen eine präferierte Konfliktlösung erreichbar scheint. Ins-besondere für zwei Konstellationen kann dies signifikant und robust gezeigt werden: Einerseits für Nash-stabilen Status quo, in denen sich die handelnde Partei in ihrem Minimalpunkt, also dem im schlechtesten Fall erwarteten Konfliktausgang, befindet. Und andererseits für (rein) SEQ-stabilen Status quo, aus denen die handelnde Partei ein präferiertes (reines) SEQ-Gleichgewicht über eine Verschlechterung induzieren kann. Besteht also die Wahl zwischen Verbesserungs- und Verschlechterungshandlungen, kann nur eine Induzierbarkeit die explizite Wahl einer Verschlechterungshandlung begünstigen
    corecore