1,114 research outputs found

    Unmanned Aerial Systems for Wildland and Forest Fires

    Full text link
    Wildfires represent an important natural risk causing economic losses, human death and important environmental damage. In recent years, we witness an increase in fire intensity and frequency. Research has been conducted towards the development of dedicated solutions for wildland and forest fire assistance and fighting. Systems were proposed for the remote detection and tracking of fires. These systems have shown improvements in the area of efficient data collection and fire characterization within small scale environments. However, wildfires cover large areas making some of the proposed ground-based systems unsuitable for optimal coverage. To tackle this limitation, Unmanned Aerial Systems (UAS) were proposed. UAS have proven to be useful due to their maneuverability, allowing for the implementation of remote sensing, allocation strategies and task planning. They can provide a low-cost alternative for the prevention, detection and real-time support of firefighting. In this paper we review previous work related to the use of UAS in wildfires. Onboard sensor instruments, fire perception algorithms and coordination strategies are considered. In addition, we present some of the recent frameworks proposing the use of both aerial vehicles and Unmanned Ground Vehicles (UV) for a more efficient wildland firefighting strategy at a larger scale.Comment: A recent published version of this paper is available at: https://doi.org/10.3390/drones501001

    Comprehensive review on controller for leader-follower robotic system

    Get PDF
    985-1007This paper presents a comprehensive review of the leader-follower robotics system. The aim of this paper is to find and elaborate on the current trends in the swarm robotic system, leader-follower, and multi-agent system. Another part of this review will focus on finding the trend of controller utilized by previous researchers in the leader-follower system. The controller that is commonly applied by the researchers is mostly adaptive and non-linear controllers. The paper also explores the subject of study or system used during the research which normally employs multi-robot, multi-agent, space flying, reconfigurable system, multi-legs system or unmanned system. Another aspect of this paper concentrates on the topology employed by the researchers when they conducted simulation or experimental studies

    A Survey and Analysis of Cooperative Multi-Agent Robot Systems: Challenges and Directions

    Get PDF
    Research in the area of cooperative multi-agent robot systems has received wide attention among researchers in recent years. The main concern is to find the effective coordination among autonomous agents to perform the task in order to achieve a high quality of overall performance. Therefore, this paper reviewed various selected literatures primarily from recent conference proceedings and journals related to cooperation and coordination of multi-agent robot systems (MARS). The problems, issues, and directions of MARS research have been investigated in the literature reviews. Three main elements of MARS which are the type of agents, control architectures, and communications were discussed thoroughly in the beginning of this paper. A series of problems together with the issues were analyzed and reviewed, which included centralized and decentralized control, consensus, containment, formation, task allocation, intelligences, optimization and communications of multi-agent robots. Since the research in the field of multi-agent robot research is expanding, some issues and future challenges in MARS are recalled, discussed and clarified with future directions. Finally, the paper is concluded with some recommendations with respect to multi-agent systems

    Managing power amongst a group of networked embedded fpgas using dynamic reconfiguration and task migration

    Get PDF
    Small unpiloted aircraft (UAVs) each have limited power budgets. If a group (swarm) of small UAVs is organized to perform a common task such as geo-location then it is possible to share the total power across the group by introducing task mobility inside the group supported by an ad hoc wireless network (where the communication encoding/decodeing is also done on fpgas). In this presentation I will describe research into the construction of a distributed operating system where partial dynamic reconfiguration and network mobility are combined so that fpga tasks can be moved to make the best use of the total power available in a swarm of UAVs

    Research on improving maritime emergency management based on AI and VR in Tianjin Port

    Get PDF
    corecore