1,490 research outputs found

    Biomedical applications of belief networks

    Get PDF
    Biomedicine is an area in which computers have long been expected to play a significant role. Although many of the early claims have proved unrealistic, computers are gradually becoming accepted in the biomedical, clinical and research environment. Within these application areas, expert systems appear to have met with the most resistance, especially when applied to image interpretation.In order to improve the acceptance of computerised decision support systems it is necessary to provide the information needed to make rational judgements concerning the inferences the system has made. This entails an explanation of what inferences were made, how the inferences were made and how the results of the inference are to be interpreted. Furthermore there must be a consistent approach to the combining of information from low level computational processes through to high level expert analyses.nformation from low level computational processes through to high level expert analyses. Until recently ad hoc formalisms were seen as the only tractable approach to reasoning under uncertainty. A review of some of these formalisms suggests that they are less than ideal for the purposes of decision making. Belief networks provide a tractable way of utilising probability theory as an inference formalism by combining the theoretical consistency of probability for inference and decision making, with the ability to use the knowledge of domain experts.nowledge of domain experts. The potential of belief networks in biomedical applications has already been recog¬ nised and there has been substantial research into the use of belief networks for medical diagnosis and methods for handling large, interconnected networks. In this thesis the use of belief networks is extended to include detailed image model matching to show how, in principle, feature measurement can be undertaken in a fully probabilistic way. The belief networks employed are usually cyclic and have strong influences between adjacent nodes, so new techniques for probabilistic updating based on a model of the matching process have been developed.An object-orientated inference shell called FLAPNet has been implemented and used to apply the belief network formalism to two application domains. The first application is model-based matching in fetal ultrasound images. The imaging modality and biological variation in the subject make model matching a highly uncertain process. A dynamic, deformable model, similar to active contour models, is used. A belief network combines constraints derived from local evidence in the image, with global constraints derived from trained models, to control the iterative refinement of an initial model cue.In the second application a belief network is used for the incremental aggregation of evidence occurring during the classification of objects on a cervical smear slide as part of an automated pre-screening system. A belief network provides both an explicit domain model and a mechanism for the incremental aggregation of evidence, two attributes important in pre-screening systems.Overall it is argued that belief networks combine the necessary quantitative features required of a decision support system with desirable qualitative features that will lead to improved acceptability of expert systems in the biomedical domain

    On "full" twisted Poincare' symmetry and QFT on Moyal-Weyl spaces

    Full text link
    We explore some general consequences of a proper, full enforcement of the "twisted Poincare'" covariance of Chaichian et al. [14], Wess [50], Koch et al. [34], Oeckl [41] upon many-particle quantum mechanics and field quantization on a Moyal-Weyl noncommutative space(time). This entails the associated braided tensor product with an involutive braiding (or ⋆\star-tensor product in the parlance of Aschieri et al. [3,4]) prescription for any coordinates pair of x,yx,y generating two different copies of the space(time); the associated nontrivial commutation relations between them imply that x−yx-y is central and its Poincar\'e transformation properties remain undeformed. As a consequence, in QFT (even with space-time noncommutativity) one can reproduce notions (like space-like separation, time- and normal-ordering, Wightman or Green's functions, etc), impose constraints (Wightman axioms), and construct free or interacting theories which essentially coincide with the undeformed ones, since the only observable quantities involve coordinate differences. In other words, one may thus well realize QM and QFT's where the effect of space(time) noncommutativity amounts to a practically unobservable common noncommutative translation of all reference frames.Comment: Latex file, 24 pages. Final version to appear in PR

    Report of Meeting: The Fifteenth Katowice–Debrecen Winter Seminar Będlewo (Poland), January 28–31, 2015

    Get PDF
    Sprawozdanie z konferencji: The Fifteenth Katowice–Debrecen Winter Seminar Będlewo (Poland), January 28–31, 2015
    • …
    corecore