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Abstract

Biomedicine is an area in which computers have long been expected to play a significant
role. Although many of the early claims have proved unrealistic, computers are gradually
becoming accepted in the biomedical, clinical and research environment. Within these
application areas, expert systems appear to have met with the most resistance, especially
when applied to image interpretation.

In order to improve the acceptance of computerised decision support systems it is
necessary to provide the information needed to make rational judgements concerning
the inferences the system has made. This entails an explanation of what inferences
were made, how the inferences were made and how the results of the inference are to
be interpreted. Furthermore there must be a consistent approach to the combining of
information from low level computational processes through to high level expert analyses.

Until recently ad hoc formalisms were seen as the only tractable approach to reasoning
under uncertainty. A review of some of these formalisms suggests that they are less
than ideal for the purposes of decision making. Belief networks provide a tractable way
of utilising probability theory as an inference formalism by combining the theoretical
consistency of probability for inference and decision making, with the ability to use the
knowledge of domain experts.

The potential of belief networks in biomedical applications has already been recog¬
nised and there has been substantial research into the use of belief networks for medical

diagnosis and methods for handling large, interconnected networks. In this thesis the use
of belief networks is extended to include detailed image model matching to show how,
in principle, feature measurement can be undertaken in a fully probabilistic way. The
belief networks employed are usually cyclic and have strong influences between adjacent
nodes, so new techniques for probabilistic updating based on a model of the matching
process have been developed.

An object-orientated inference shell called FLAPNet has been implemented and used
to apply the belief network formalism to two application domains. The first application is
model-based matching in fetal ultrasound images. The imaging modality and biological
variation in the subject make model matching a highly uncertain process. A dynamic,
deformable model, similar to active contour models, is used. A belief network combines
constraints derived from local evidence in the image, with global constraints derived from
trained models, to control the iterative refinement of an initial model cue.

In the second application a belief network is used for the incremental aggregation of
evidence occurring during the classification of objects on a cervical smear slide as part of
an automated pre-screening system. A belief network provides both an explicit domain
model and a mechanism for the incremental aggregation of evidence, two attributes
important in pre-screening systems.

Overall it is argued that belief networks combine the necessary quantitative features
required of a decision support system with desirable qualitative features that will lead
to improved acceptability of expert systems in the biomedical domain.
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Chapter 1

Introduction

In this thesis we consider the application of computers in the biomedical domain. In

particular we focus on issues concerning the use of expert systems technology in the area

of computer assisted decision making. One of the most important issues is the ability to

present the results of uncertain computerised inference in a way that allows a rational

decision maker to make choices based on, and regarding the validity of, those inference
results. We review some expert systems topics that are relevant to the presentation

of inference results, particularly the nature of the inference itself. A number of ad

hoc uncertain inference formalisms are examined in order to demonstrate some of the

pitfalls of ad hoc approaches. As an alternative to these approaches the belief network
formalism is outlined and discussed. This formalism is referred to by a variety of names

in the technical literature including, Bayesian networks, probabilistic inference diagrams,
causal networks, causal probabilistic networks, Bayesian belief networks and, in a more

general sense, influence diagrams. Belief networks have the advantage of a statistically
sound axiomatic foundation, namely probability theory. We argue that belief networks
are capable of supporting many of the additional functions of expert systems, such as

the generation of explanations, the selection of action plans, and so on. Belief networks
are already being applied to a variety of biomedical applications, we present a gazetteer

of some of these as an appendix.

Having presented a case for the use of belief networks and provided a review of a

number of biomedical belief network systems, we apply belief networks to two tasks.

The intention is to demonstrate the use of probability theory to drive inference in image

processing, from the lowest levels of data manipulation, to the highest level of image in-
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terpretation, diagnosis. Diagnosis has been investigated by other researchers, so we have
concentrated principally on low-level data assessment, but we also consider intermediate

level diagnosis.

The first of these tasks is examined in the context of fetal ultrasound image interpre¬

tation, via a trainable model matching system that utilises both local image data and

global shape constraints to refine an initial image cue. This problem was selected as an

example of the type of low-level task undertaken in medical image interpretation that
must be integrated into the inference system.

The second task uses the domain of cervical screening as a typical diagnostic prob¬
lem. Generally there is a wide variety of different information sources that should be

considered during diagnosis. A belief network provides a mechanism for the principled
incremental aggregation of this information, whilst simultaneously possessing an easily
understandable and explicit inference structure.

Both applications are implemented in FLAPNet, a general-purpose network-based
inference shell. FLAPNet was developed by the author in order to investigate belief
network applications and the use of other network based inference methods.

In Chapter 2 we provide an overview of the field loosely described as computing

in medicine (CIM1). The potential of CIM is assessed and contrasted with the appar¬

ent lack of success of certain CIM applications, particularly those using expert systems

technology. Some of the reasons for the relatively poor acceptance of such systems are

discussed.

Chapter 3 examines more closely the expert systems field, with particular emphasis
on mechanisms for handling uncertainty. Various expert systems themes are explored
with a view to the requirements of CIM applications.

Chapter 4 briefly introduces a particular formalism for uncertain reasoning, namely

belief networks. Trends in the development of belief networks are outlined, suggesting
how the belief network approach is capable of supporting the facilities that will be re¬

quired of future expert systems if such technology is to become common place in the
biomedical domain.

'This acronym is also used to denote Computers In Manufacturing.
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An overview of the two medical applications used is presented in Chapter 5, along
with a brief analysis of the concept of the belief network solutions.

Chapter 6 describes the FLAPNet tool in some detail, illustrating the assumptions
and principles underlying its design. The implementation of particular types of inference

strategy is also discussed.

In Chapter 7 an application in the area of fetal ultrasound imaging is described in
some detail with particular reference to the characteristics of ultrasound images that
makes image processing so difficult.

The application in cervical screening is presented in Chapter 8.

Chapter 9 draws together the various threads that run through this thesis, analysing
the failures of CIM and discussing whether or not belief networks have anything to offer
above and beyond that offered by more traditional expert system technologies.

The gazetteer of biomedical applications of belief networks is presented in Appendix A.
This is intended to illustrate the breadth of potential applications as well as indicating

the amount of research being conducted in this field. A more comprehensive list of ref¬
erences to work on belief networks and uncertain inference in general, can be found in
the bibliography which includes many not directly cited in the text.
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Chapter 2

Computers in Medicine

People's expectations of the role of computers in medicine (CIM) range from mundane
clerical tools, such as patient databases, through to fully autonomous robot surgeons.

Thirty years of piecemeal research has resulted in a variety of successes and failures.

Computers have definitely established themselves in the medical domain, and few can

doubt that they will become increasingly important as the technology develops.

In this chapter we examine the need for CIM, its potential, and reasons for its vari¬

able success. Some factors that could lead to improved acceptability in the future are

identified.

2.1 Potential

Advocates of CIM can see a role for computers in almost every aspect of medical practice,

whilst even the cynics acknowledge some role. Possibly because of this, there has been
little formal justification for the continuing research into CIM. Informally, many different

justifications are possible:

« To improve the accuracy, consistency and reproducibility of clinical diagnoses

through the perceived superiority of computerised decision making methods over

human decision makers [Shortliffe et al 84, Hand 87].

• To improve the cost effectiveness of tests and therapy plans [Shortliffe et al 84].

• To provide tools that enable physicians to cope with the complexity of modern
medicine and the rapid rate of change [Anderson & Kettel 82, Hand 87].
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• To alleviate the scarcity of able, qualified physicians and specialists [Schwartz 70,

Hand 87] and reduce local variation of health standards due to increased availability
of electronic medical information [Hafner et al 89, Laxminarayan L Kristol 92].

• To increase our understanding of medical decision making in order to improve it
and to improve the design of medical computer systems [Shortliffe et al 84].

• To improve medical record keeping and enable more effective and novel methods
for generating and using the information contained therein.

• To provide new types of medical information (perhaps previously considered im¬

practical or impossible) and to identify gaps in current knowledge [Shortliffe et al 84,
Holmes 94].

• To provide more effective medical education through simulation technology, such
as virtual reality, and other teaching aids.

This variety of interrelated and overlapping aims has led to a fragmentation of the
CIM field, with applications addressing different needs and different opportunities within

the medical domain. These aims are linked by one common purpose, to improve the

clinical care a patient receives, whilst efficiently using the resources available.

2.2 Application Types

The success of CIM applications is typically dependent on the role the computer is

intended to fulfil and the degree to which the underlying computer technology is perceived
to be proven technology.

A popular application is the provision of on-line literature databases such as MED¬

LINE. The vast increase in medical knowledge has been identified as one of the two

dominant characteristics of current medical practice [Barnett 90]. Writing in 1990, Bar-

nett says,

If the most conscientious physician were to attempt to keep up with the

[biomedical] literature [published each year] by reading two articles per day,
in 1 year even this individual would be more than 800 years behind.

5



The importance of a physician keeping abreast of the literature should not be underes¬

timated, either from the patients' viewpoint or the physicians'. An assessment of the

liability issues of CIM [Hafner et al 89], suggests that failure to properly conduct a lit¬
erature search, even if such technology is not widespread, may be considered negligence
and may constitute malpractice.

Hospital information systems have become an almost indispensable management tool
for many modern hospitals [Hasman 87, Dasta et al 92]. These systems are used for a

variety of administrative and management tasks, such as patient admissions, accounting

and stock control.

Pharmacological systems are used to check drug dosages and to test for adverse drug
interactions [Engelbrecht et al 87].

Some authors have suggested that image processing is probably the most successful

application of computers in medical care [Batson 84]. Computers have not only been
used to enhance existing imaging modalities, but they have also led to the development
of new modalities, giving the physician access to information about the patient that was

only previously available using invasive methods, if at all.

Patient monitoring systems have also been introduced successfully into medical care.

Such systems are used to provide a constant analysis of certain patient data, possibly

triggering alarms when the data deviate from predicted norms [Osborn 82].

Computers have the potential to enhance medical education in a number of ways

[Hand 87, Henry 90]. Unlike many educational media, the computer is interactive, which
makes it an ideal tool for simulation. As simulation technology becomes more advanced,
with the development of virtual reality tools, so the level of simulation will increase,

allowing, for instance, virtual surgery. Even with current technologies, such as hyper¬

media, it is possible to combine disparate teaching resources into a single interactive

package. Other benefits include the accessibility of information through bulletin boards,

newsgroups, the World Wide Web, and so on.

Probably the least successful and most controversial CIM application is that of de¬

cision support systems and expert systems [Kulikowski 84, Shortliffe et al 84]. These

systems are often considered to be a distinct research area, usually termed artificial in-
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telligence in medicine (AIM1)- AIM systems are designed to emulate certain diagnostic
and decision making tasks usually carried out by the physician. Such systems could
contribute greatly to fulfilling some of the aims of CIM, but despite decades of research

they have probably made the least medical impact of all CIM applications.

2.3 Failure of AIM

Many reasons have been suggested for the limited success of AIM systems. Early AIM

systems in the 1960s were held back by technical problems with the hardware and poor

project management, resulting in inadequate systems [Young 84]. The field has now

matured, hardware is more reliable, more powerful and far less costly, yet AIM systems

are still failing to make an impact [Heathfield & Wyatt 93, Marquardt, Jr 93].

As several authors have noted [Teach fc Shortliffe 81, Shortliffe et al 84, Young 84],
the principal obstacle to improved acceptance of AIM systems is the continued failure
to focus on the needs of the physician. Surveys of physician attitudes towards com¬

puters [Teach k Shortliffe 81, Knapp et al 87, Al-Hajjaj & Bamgboye 92] report overall

positive attitudes to the introduction of computers into the medical field, patients also

appear to be generally in favour [Cruickshank 84]. Whilst a number of physicians and
students in surveys [Jones et al 91, Al-Hajjaj &: Bamgboye 92] have indicated a lack of

familiarity with computers, it is unlikely that this is a major factor in the slow introduc¬

tion of AIM systems.

It would appear that whilst AIM is providing interesting research problems for the
Al community, there has been relatively little emphasis on providing usable tools for the
medical community. As one article [Cooper & Musen 90] puts it, "Although it is clear
the AIM community has contributed substantively to Al, the contributions to medicine

are far less palpable." The situation is schematically illustrated in figure 2.1, where
medical acceptance and human control are shown to increase as the system moves from

knowledge based reasoning to data processing, as the Al research interest diminishes.

The true picture is, of course, more complex than this and it is likely that as more

knowledge based reasoning systems are adopted in non-medical domains so they will

gradually become more accepted within the medical domain. There are several ways in
'In certain contexts this acronym is used for Advanced Informatics in Medicine.
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Human Control

Knowledge Data
• Al Research Interest nReasoning Processing

Medical Acceptance

Figure 2.1: Reasoning with knowledge versus data processing

which this process of assimilation could be assisted.

2.3.1 Perspective

One of the problems with AIM systems is that they are designed and 'marketed' in the

wrong way. The evidence suggests that physicians are well disposed towards systems that

they perceive of as clinical tools or assistants [Teach k Shortliffe 81, Young 84], On the
other hand they are, perhaps understandably, not well disposed towards systems claiming
to be autonomous physicians, what Suermondt and Cooper [Suermondt k Cooper 93,

page 242] describe as "the doc-in-a-box". From an AI perspective this distinction may

seem unimportant or even false. This may be partially due to the different viewpoint

AI researchers and physicians take of the patient/physician relationship. It has been

suggested [Collste 92] that there are two ways to view this relationship:

1. The patient visits the physician with a complaint, the physician assesses the symp¬

toms, forms a diagnosis and determines a therapy. This is an asymmetrical rela¬

tionship with the physician assuming the role of repairing a broken object.

2. In addition to the assessment of symptoms, diagnosis and therapy, the medical

consulation is an encounter between two human beings, who attempt to arrive

at mutual understanding through full communication, including a shared set of

values, empathy, and an understanding of the patient as a whole.

Much of the AIM research seems to have followed the first model of the relationship,

viewing medical diagnosis are merely a subset of a wider field of diagnostic tasks. This

8



is perfectly adequate for research purposes, but is liable to prove inappropriate for real-

world systems.

Under the second model the physician's humanity is recognised as an important
factor in the role they play. It suggests that there are skills beyond those strictly defined
as medical expertise, which form part of the complete diagnostic process. Some people

might use this observation to prove that the concept of useful diagnostic computers is

fatally flawed, a more profitable approach being to define more clearly the relationship
between the computer and physician. Rather than placing the computer in the role of

physician, the computer is assigned a role more akin to that of a fellow consultant. It

offers advice and opinions, with explanations, leaving the physician free to make their
own decisions about the management of their patient. The central role of the physician
is recognised and preserved, and the physician/patient relationship remains undisturbed.

2.3.2 Communication

If an AIM system is to act in a similar way to a human consultant then its means

of communication must be familiar to the physician. This is not to suggest that the

medium need be the same (typically it will not), rather that the form of communica¬

tion is appropriate. In order to achieve this the computer must be able to adapt its

communication to the clinical situation and the needs and knowledge of the physician

[Shortliffe & Clancey 84, Preece 90]. It must be able to provide appropriate justification
of its decisions, constructing a diagnostic argument rather than simply stating its diag¬
nosis. In some situations the ability to produce a reasoned argument will be as important

as arriving at an appropriate diagnosis. This argument should be based on reasoning
from first principles only when appropriate. A simple restatement of the diagnostic steps

will not usually be sufficient as the reasoning mechanism will often be unfamiliar to the

physician [Young 84]. Interactive dialogue should be supported whenever possible, al¬

lowing the physician to suggest alternative diagnoses, counter-supportive evidence, and
so on with the computer arguing for or revising its initial diagnosis. The system could
also be expanded to suggest medication regimes and appropriate test programmes, again
with the ability to provide interactive justifications.

Ideally the knowledge base will also be accessible to the physician in order that

9



they can examine the underlying clinical model the system is using. This requires that
the knowledge base either is easily understood by a non-technical user or an appropriate
interface is provided. The knowledge base should be easily maintained, possibly including
a facility to learn, either from experience or from tuition. In conjunction with this,

knowledge acquisition should be improved, and checks for consistency and completeness
included [Shortliffe k Clancey 84].

2.3.3 Assimilation

Physicians usually practice according to a set clinical routine. Any system that is in¬

tended to be incorporated into such a routine must be designed with that routine in

mind. If a system requires a large deviation from the accepted routine or increases the
time a physician spends on a task without a significant and demonstrable benefit, then
the system is unlikely to be used [Teach k Shortliffe 81, Preece 90].

2.3.4 Evaluation

It is important not only to be able to demonstrate to a physician that a systems works,
but also to quantify its accuracy and, if possible, define the limits of its expertise. Part
of this process will be to measure the accuracy of the physicians themselves. In many

cases this will in itself be problematic. It will also be useful to evaluate the success of

the system in a real-world environment for the purposes of improving system design.

There are severed different aspects in the evaluation of an AIM system

[Nykanen et al 91], those presented here are largely from the reviews of Miller [Miller 86]
and Shortliffe and Clancey [Shortliffe k Clancey 84], a more AI orientated perspective
is presented by Cohen and Howe [Cohen k Howe 88]. The terms of reference for the
evaluation of an AIM system are:

• Is the knowledge-base sufficiently complete and consistent for operational use? In

general, the more restricted the problem domain is, the easier it is to define, but

proving completeness and consistency is difficult for any reasonably sized knowledge
base. Does the system perform reasonably at the limits of its expertise? There

is a well-known phenomenon called the plateau effect, which describes the way in

which systems tend to work consistently whilst on their knowledge-base plateau,
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but suddenly fail when they reach the edge of their knowledge. The behaviour of
the system at the edge of the plateau is therefore important.

• Is the performance acceptable, what is the 'gold standard' against which it should
be measured? In many cases there has been little study to determine the accuracy

of physicians, making comparisons even more difficult. There is also a 'superhuman'
bias that says that a system must outperform the physician before it is considered

to be of use. What should count as a correct response? If a system produces, for

instance, a list of ranked alternative diagnoses, is membership of that list sufficient,
or must the correct diagnosis be ranked highest? In some cases the only measure of
correctness is agreement with the physician, but if we wish to create a system that

outperforms the physician, then at some point in the evaluation process it will be

necessary to accept the system diagnosis in preference to the physician diagnosis
and monitor the condition of the patient. Clearly this kind of experimentation

raises important ethical issues.

• Is there a demonstrable need for the system and is the system usable in a clinical

environment, with respect to response times, disruption of clinical routine and so

on? Do physicians alter their behaviour based on a system's advice and do they

continue to use and maintain the system once it has been introduced?

• Is cost/benefit analysis possible? If so what quantities should be measured? How

should qualitative factors be measured?

2.3.5 Ethics and Liability

Ethical considerations have always been important within the medical domain. The

introduction of computers has raised new ethical problems for physicians as well as

focusing attention on some traditional ones, for example confidentiality [Sieghart 84,
de Dombal 87].

As computer systems gradually assume a greater decision taking role, so it becomes

more difficult to establish the locus of responsibility within the complete clinical process

[Hollnagel 90], In order for the physician to assume responsibility the physician's auton¬

omy must be maintained and the physician must be in possession of enough knowledge
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to foresee the consequences of their action [Coilste 92], This requires that the physician
is able to make informed judgements about the advice offered by an AIM system so that

they may accept or reject that advice. To facilitate such judgements the system must be
able to communicate, its limitations and effectiveness must be quantified. In addition to

this the legal implications of a physician either not consulting, or ignoring the advice of
a decision support system must be clarified [de Dombal 87].

Similarly the liability issues of a system that misdiagnoses or that advocates an

inappropriate treatment require investigation. It is important to determine whether
an AIM system constitutes a tool or a qualified colleague, as physicians are generally

protected from liability in the case of a negligent colleague, but not in the case of a

defective tool or negligent subordinate [Hafner et al 89]. In cases where the system makes
an inappropriate diagnosis and is held responsible, assigning liability will still prove

problematical as the final system will typically be the product of several different people
each providing expertise in a different field. The very definition of an inappropriate

response from a system that is not claiming 100% accuracy is also problematic.

Until the ethical and legal implications of AIM systems are fully understood it is

unlikely that physicians will be enthusiastic about using them and AI researchers may

be uncomfortable about placing products in the real world.

2.4 Summary

Computers are already playing a significant role in medical care. The extent of this
role in the future critically depends on the recognition of the importance of physician

acceptance. In the biomedical domain, probably more than any other, it is not sufficient
to ask the user to accept a system either on trust or on solely on the basis of its output.

The concerns that physicians have can only be allayed by presenting them with systems

in which the process by which a result is achieved can be explained as clearly as the

result itself.

AIM systems must consider the physician at all stages of the design, from the

knowledge-base, through the reasoning mechanism and interface, to deployment in a

clinical environment. As part of this process, additional psychological studies should

be conducted, both into the diagnostic and communicative behaviour of physicians
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[Shortliffe k Clancey 84], and effective mechanisms for human/computer interaction. If
AIM systems fully embrace the concept of physician orientated support systems and the

design challenges raised by such systems, then we can expect an increased acceptance

on the part of physicians.
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Chapter 3

Expert Systems

The archetypal medical task is diagnosis, the determination of the disease state of the

patient, given a set of symptoms, background medical and patient knowledge, and a set

of tests that can be performed. The purpose of diagnosis is to facilitate therapy planning.

Therapy planning is based on a patient diagnosis, knowledge of the available therapies
and their effects, background medical and patient knowledge, and a set of therapeutic

goals. Typically both diagnosis and therapy planning are resource bounded.

There are a number of questions a decision maker may want to ask of a diagnostic
result before taking any action based on that result:

• What diagnoses are possible?

• What are the relative probabilities of those diagnoses?

• How has the available evidence influenced the diagnoses?

• How has the background knowledge influenced the diagnoses?

• How could the expenditure of resources influence the diagnoses?

Therapy planning adds a further level of questions:

• What therapies are possible?

• What are the relative utilities of the therapies?

• How has the available evidence influenced the therapy plan?
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• How has the background knowledge influenced the therapy plan?

• How have the diagnoses influenced the therapy plan?

• How could the expenditure of resources influence the therapy plan?

We have suggested that the ability of a medical expert system to answer these types

of questions will have an important role to play in improving acceptance. Answers to

questions such as these will, almost without exception, involve some degree of uncertainty.

Part of the task of understanding these answers lies in being able to interpret the terms

used to quantify uncertainty. Expert systems have used a variety of different terms to

quantify uncertainty and a corresponding variety of mechanisms for drawing inferences
from uncertain information. In this chapter we examine both the potential sources of

uncertainty and several mechanisms for handling it.

We will also examine the problems of control and resource allocation which depend

upon being able to answer questions similar to those above.

The final area we will examine is that of interface design and communication. We
have already stressed that the central task for many medical expert systems will be to

explain and justify the decisions it has reached. Indeed the entire concept of the medical
decision support system rests on the assumption that the physician will act on, or at

least consider, the recommendations of the system.

3.1 Sources of Uncertainty

It lias been recognised that in almost any complex domain there will be some element
of uncertainty. Areas which can give rise to uncertainty are the real world, the experts'

testimony regarding the domain, the instrumentation used, and the design of the expert

system itself. Each of these areas must be examined to determine the possible effects of
the uncertainty and the most appropriate ways of representing and handling it.

3.1.1 Domain Experts

Whilst human expertise is often the primary or sole knowledge source consulted when

creating the knowledge base, it is important to realise that it potentially contains in-
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accuracies, errors and omissions. This is particularly true in cases where only a single

expert source is consulted. It has been suggested [Cheeseman 84] that where possible
an expert system should be based on empirical data rather than expert testimony. In

many domains this is not possible or is simply impractical, though expert systems could
be designed to modify initial expert knowledge on the basis of experience in the domain.

Perhaps the most obvious source of uncertainty in an expert testimony is the estima¬

tion of probabilities. There are many parts to the problem, including the assignment of
a precise numerical probability, the use of non-numerical probability terms, the violation

of statistical techniques, and inter-expert variation.

It appears that the assessment of probabilities, even by trained people, is often prone

to severe and systematic errors. In an investigation by Tversky and Kahneman into the
mechanisms used by humans, a number of heuristic techniques and biases were identified

[Tversky &; Kahneman 90a]. These fall into three main categories, representativeness,

availability, and adjustment and anchoring.

Representativeness occurs when people are asked to answer questions of the type,

what is the probability that object A belongs to class B, what is the probability that event

A originates from process B, what is the probability that process B will generate event

A, and so on. According to Tversky and Kahneman, people employ a representativeness
heuristic by which the probability is assessed on the degree of similarity between A and B.
The effects of using this heuristic include insensitivity to prior probabilities, insensitivity
to sample size, misconceptions of chance (people expect long term probabilities to be

manifested in small samples), insensitivity to predictability, illusions of validity and

misconceptions about regression.

The availability heuristic refers to situations in which people assess the probability

of an event or the frequency of a class based on the ease with which an instance can be

brought to mind. The effects of this include biases due to the retrievability of instances,
biases due to the effectiveness of the search set, biases of imaginability, and illusionary

correlation.

Adjustment and anchoring errors are observed when people are asked to make esti¬

mates by starting from an initial value and adjusting it to find the final answer. Errors

include insufficient adjustment, biases in the evaluation of conjunctive and disjunctive
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events, and the incorrect construction of probability distributions.

When eliciting measures of probability from experts it is often the case that such
measures are expressed in linguistic rather than numeric terms. There are two approaches
to handling such linguistic terms in expert systems. The first is simply to convert the

linguistic term into a numeric probability. The second is to design an expert system that
uses linguistic measures. Both approaches are fraught with difficulties as there is great

variability in the way linguistic uncertainty terms are used. Different people will use

the same term to refer to different levels of probability and people also rank uncertainty
terms differently [Buxton 89]. ft is also not clear that a person uses linguistic terms in
a consistent manner, hence if an expert says that A is "likely", and then in a different

context says that B is "likely", it is not necessarily true that A and B are equally probable.

Fuzzy terms represent a special kind of uncertainty in which non-probabilistic terms

convey concepts which are not well defined, e.g. small, soft, fast, and so on [Dutta 85].
Such terms are typically both relative and subjective, therefore, when attempting to

define a fuzzy term, it is important to consider the context in which the term is being
used.

Another source of linguistic uncertainty is lexical imprecision [Henkind 88]. All prob¬
lem domains have a special-purpose vocabulary, called an explananda [Pylyshyn 86],
which describes concepts within the domain. The explananda therefore is a valuable

expression of the entities and situations that should be considered when modelling the
domain. Lexical imprecision refers to the situation where a particular term in the ex¬

plananda has multiple, though similar, definitions (hence it is different from a fuzzy term

where the definitions themselves are imprecise). A good example of lexical imprecision,
taken from the fetal ultrasound domain, is the definition of intrauterine growth retar¬

dation. As has been pointed out by Jeanty and Romero [Jeanty & Romero 83], "Some
authors use the 3rd percentile, while others the 10th percentile, or 2 standard devia¬

tions below the mean, of the birth weight." In fact other definitions are also in use,

for instance the fifth percentile [Beischer et al 84]. In view of the fact that intrauter¬
ine growth retardation is outranked only by prematurity and major malformations as a

cause of perinatal death [Beischer et al 84], the variation in the definition could be seen

as cause for concern.
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Whilst the most satisfactory solution to the problem of lexical imprecision would be
the standardisation of definitions within an explananda, it is unlikely to happen, though
the development of expert systems could prove to be a catalyst. Techniques for handling
lexical imprecision include the direct input of data rather than the expert's interpretation
and the incorporation of definitions into the system which can then be used to guide the
user.

3.1.2 Real World

Uncertainty in the real world comes principally from two sources, randomness and vari¬
ation. Randomness refers to genuinely random events, e.g. the results of spinning a fair
coin. Variation refers to natural distributions, for instance, where some process produces

artifacts of a nominal length, or biological variation, e.g. in height. Both randomness
and variation may be expressible in terms of a distribution function. In both these cases

a true description of the randomness or variation (and hence the uncertainty) can only
be obtained through repeated observations. In practice this data may not be available
and it may be necessary to use a subjective estimate of the underlying frequencies which

may in itself introduce further uncertainty. For instance it is common to assume that

distributions approximate some well understood and easily modelled distribution, such
as the normal distribution, the worse the approximation the greater the uncertainty.

3.1.3 Instrumentation

It has long been acknowledged that certain types of instrument are prone to introduce

errors, known as noise, into signals [Gonzalez & Wintz 87). In some cases the noise

component of the signal is relatively low and can effectively be ignored, in other cases

noise can introduce uncertainty into later processes. In the majority of situations the

noise will be randomly distributed. In some it will be highly structured noise which

is often hard to distinguish from genuine signals [Kremkau & Taylor 86]. Where noise
cannot be dealt with by simple procedures it may be necessary to allow for noise at a

higher level within the system.

Other sources of instrument uncertainty involve features of the equipment, such as

the resolution of a camera. Such features cannot generally be changed so their impact
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should be assessed with reference to subsequent processing. Typically the system will

simply be designed to work within the limits of the available instrumentation.

3.1.4 Expert System

When analysing sources of uncertainty it is important to consider the design of the expert

system itself. Whilst some of the uncertainty may be due to features of the system, others

may be due to the way in which the system handles uncertainty.

If the mapping between terms in the explananda and the expert system's internal

representation is poor, uncertainty will result. A poor mapping may mean that entities
are assigned to one class when they actually belong to another, unmodelled class. Also
numeric values may be truncated, or represented to unrealistic accuracy, both of which

can lead to results with inaccuracies.

The use of so called 'magic numbers' within the system may also introduce un¬

certainty. Such numbers arc usually embedded within procedures rather than being

explicitly represented within the system.

If the control element of the expert system involves some degree of choice, then
the system will benefit from knowledge of its own evidence gathering capabilities. This
would give the system the potential for reducing overall uncertainty by directed evidence

gathering. For instance, a system may have a number of processes for finding low level

image features, such as lines or arcs, from image data. If it is known that process A is

susceptible to noise but process B isn't, and that the image data is noisy, it is possible
for the system to keep uncertainty low by selecting process B. Similarly, where time
is an important constraint the system may be able to trade off a fast process which

produces limited or unreliable (uncertain) information, against more time consuming

processes which produce higher quality results. This again requires that the system have

knowledge of its own procedures and that some measure of uncertainty can be associated
with the results of a process based on the appropriateness of applying that process to

the data under interpretation. We will discuss this further in section 3.3.

There are several problems in handling uncertain information that will also bear on

the uncertainty in an expert system. In the propagation and aggregation of measures

of uncertainty, whether numeric or linguistic, the context io always liable to play an
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important role. Perhaps the principal role is in determining what interdependences
exist between the various pieces of evidence. It is, for instance, important to make sure

that a particular piece of evidence is counted only once and that the inference is not

cyclic. Other factors should also be taken into account when assessing support from a

body of evidence, including the degree of compatibility between the evidence and the

hypothesis, the amount of evidence, the variety of the evidence and what to do in cases

where the evidence is incomplete [Buxton 89]. It is therefore important to analyse the
structure of inference within a domain and attempt to represent this structure within
the expert system.

3.2 Formalisms

Many formalisms for modelling uncertainty have been developed. It has been sug¬

gested that the choice of formalism should be mediated by several factors in addition
to the merits of the formalism itself. Among these factors are the difficulty of acquir¬

ing the initial uncertainty estimates, the computational complexity of inference, the
semantics which guide the acquisition of the original estimates and guide the interpreta¬
tion of computed results, and how the chosen representation is used in decision making

[Lemmer & Kanal 88]. Indeed, it has been argued that the problem domain itself will,
at least to some degree, influence the choice of formalism and problem solving strategy

that should be used [Chandrasekaran & Tanner 86],

It has been shown, for example by Cox [Cox 61, Cox 90], that from a small set of
intuitive properties a measure of belief should possess, a set of axioms can be defined.
This set of axioms provides a normative basis for theories of uncertain reasoning. These

axioms are precisely those of probability theory, which has led some authors to express

strong opinions about probability theory [Lindley 87, page 17],

Our thesis is simply stated: the only satisfactory description of uncertainty

is probability. By this is meant that every uncertainty statement must be in

the form of a probability; that several uncertainties must be combined using

the rules of probability; and that the calculus of probabilities is adequate

to handle all situations involving uncertainty. In particular, alternative de¬

scriptions of uncertainty are unnecessary ... We speak of "the inevitability of
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probability."

Given this inevitability of probability it is perhaps surprising that so many alterna¬
tive formalisms have been proposed. There appear to be three main motivations for
the development of alternative formalisms, firstly the belief that complete probabilistic
models are infeasible and inference on such models is intractable, secondly that there

are particular types of uncertainty that are either poorly represented by probabilities or

cannot be represented by probabilities at all, thirdly that probabilities are not cognitively
valid. Good overviews of the objections to probability theory with counter arguments

are presented by Cheeseman [Cheeseman 85] and Henrion [Henrion 87].

In the next chapter we will discuss a particular formalism, belief networks, which
answer some, if not all of the objections to probability theory, and offer a tractable
mechanism for normative probabilistic inference in complex domains. In the remainder
of this section we give a brief overview of several alternative formalisms that have been

proposed.

3.2.1 Certainty Factors

MYCIN was one of the ground-breaking expert systems, developed in the 1970s to assist
in the diagnosis of bacteremia, and later applied to meningitis [Shortliffe fc Fagan 82,
Shortliffe & Buchanan 90]. A domain independent expert system shell EMYCIN (Es¬
sential MYCIN), based on MYCIN, was used to develop several medical applications,

including PUFF [Aikins et al 84], an expert system for interpreting pulmonary (lung)
function data.

MYCIN is a goal-driven, rule-based system which uses certainty factor (CF) calculus
to measure support for hypotheses. The CF approach is interesting as it was specifically

developed within the context of expert systems, rather than being introduced from an¬

other field. It was also designed to reflect the way in which physicians in the domain
tended to approach the diagnostic task.

21



The general format of a MYCIN rule is:

IF <premise assertions are true>

THEN <consequent assertions are true> <with confidence weight W>

The assertions can be Boolean combinations of clauses, each of which consists of a predi¬
cate statement about an <attribute - object - value> triple. The triple represents medical
facts and hypotheses about the patient and related objects or contexts, such as infections,
cultures or organisms. For example, a paraphrased rule (after [Shortliffe Buchanan 90,

page 201]):

IF (1) the stain of the organism is gram positive,

AND (2) the morphology of the organism is coccus,

AND (3) the growth conformation of the organism is chains

THEN there is suggestive evidence (0.7) that the identity

of the organism is streptococcus

The quantification of the suggestive evidence is a domain expert rating of the confi¬
dence in the rule (normalised to lie in the range [0, 1]). These values cannot be strictly
treated as probabilities as they do not satisfy the additivity axiom. This reflects the

physician's domain model in which evidence that only partially confirms an hypothesis
is not also considered to partially disconfirm that hypothesis1. In the rule above, the

complementary inference not-streptococcus is not confirmed to degree 0.3 by the nega¬

tion of the antecedents of the rule. It was observed that the physicians tended to gather

confirming evidence and disconfirming evidence independently. The formalism reflects
this by maintaining a separate measure of belief (MB) and disbelief (MD). MYCIN treats

both rules and data as uncertain, so both rules and hypotheses have either an MB or

MD associated with it, depending on whether the truth of the antecedents provided

confirmation or disconfirmation of the consequents.

Given P(h) is the prior probability of hypothesis h, and P(h \ e) is the posterior

probability given evidence e, MD, MB and CF are defined by the following relationships

[Clark 90]:
'See [Cheeseman 85, page 1006] for an interesting perspective on this.
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If c favours h then MB increases, MB = (P(/t | e) - P(A))/1 - P(/i)

If e counts against h then MD increases, MD = (P(h) - P(h \ e))/P(li)

The CF of an hypothesis determined by, CF = MB - MD

In EMYCIN the CF definition was changed in order to prevent a single strong piece of

disconfirmatory evidence outweighing the impact of several weaker pieces of confirmatory
evidence. The EMYCIN CF definition is:

CF = (MB- MD)/(\ - min(MB,MD))

Thus the value of a CF lies in the range [-1, 1], with -1 representing certain falsehood
and 1 representing certain truth. The two definitions of CF differ only when both MB

and MD are non-zero.

Uncertainty in the input data, as indicated by the physician, is combined with the

uncertain rules by use of three functions [Clark 90]:

1. Determine a pooled CF for the set of antecedents of a rule. For a conjunctive set of

premises the pooled MB is the individual minimum MB and the pooled MD is the
individual maximum MD. For a disjunctive set the pooled MB is the maximum of
the MBs and the pooled MD is the minimum of the MDs.

2. Combine the pooled CF of a set on antecedents with the MB or MD of a rule to

propagate an MB or MD to the consequents of a rule when it fires. When a rule is
fired the MBs or MDs of the consequents are the product of the MDs or MBs of

the rule and the pooled CF of the premises.

3. Pool evidence from different rules to produce an overall CF for each proposition.

New evidence is pooled with existing evidence in proportion to the outstanding

uncertainty:

if (both X, Y > 0) then combined CF(X, >') =X + Y(1 - X)

if (either X,Y < 0) then combined CF(X,Y) = (X + Y)/(l - min(| X |,| Y |))

if (both X, Y < 0) then combined CF(X, V) = A* + V'(l + X)

MYCIN uses a very simple control strategy [Kulikowski 84], goal-directed backwards

chaining. This process starts with the rule containing the highest level goal — select
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treatments for all the infections of the patient. An the infections are usually unknown
this will generate subgoals directed at the identification of the infections, which in turn

will generate further subgoals. This process of goal refinement eventually results in an

assertion that can only be confirmed by iniormation irom the user. The system Can

then begin to work backwards satisfying subgoals. A hierarchical context tree (patient
- infections - cultures - organisms) is used to constrain the order in which rules are

invoked. The final goal, selection of a therapy, is carried out by a specialised algorithm

using the deduced knowledge of the patient's infections and the causative organisms, and
the ranking of drugs by sensitivity and effectiveness.

The CF formalism has several useful attributes:

• (Clark 90] The separation of MD and MB makes it possible to distinguish between
situations of ignorance MB = MD = 0 and equivocation MB = MD ^ 0, though
neither MYCIN nor EMYCIN have made use of this.

• [Clark 90] The CF formalism appears to provide a method for botli formalising
heuristic reasoning as rules whilst simultaneously allowing uncertainty to be quan¬

tified and combined with a formal calculus.

• MYCIN'S formalism was developed on the basis of observed physician behaviour,
and can therefore be considered to be based, at least in part, on natural reasoning

strategies.

On the other hand, and in spite of its good diagnostic performance, MYCIN has been
criticised on a number of important points:

• [Bonissone 87, Clark 90] The CF formalism attempts to provide quantification
based on relative changes in belief rather than absolute probability.

• [Heckerman & Horvitz 88, Clark 90] The CF formalism lias syntactic modularity
but lacks semantic modularity. This implies that the strengtli of association be¬

tween the antecedents and consequents in a non-categorical rule (MD or MB yt 0)

will change when other rules are added to or deleted from the knowledge base.

• [Clark 90] The MDs and MBs attached to rules were used to represent utility
considerations as well as probabilities. This was done by assigning higher CFs to

24



rules with serious consequences. This is a criticism of the application rather than
the formalism itself.

[Buxton 89] The use of MB and MD suggests that the quantities P(h) and P(h | e)
contained in their definitions cannot be ordinary probabilities. If this is correct then
it is not clear how particular numerical values should be interpreted. On the other
hand if they are treated as probabilities, then MYCIN appears to be equivalent

(or similar [llcnkind &: Harrison 88]) to a system of Bayecian updating with highly
restrictive independence assumptions.

[Ilenrion 87, Buxton 89, Langlotz 89] MYCIN does not explicitly represent prior

probabilities, effectively assuming that the priors are equal. Any background in¬
formation is presumed to be represented by MBs and MDs. In the application

domain this i3 not entirely unreasonable as the organisms considered all had small,
similar prior probabilities. Any errors could be corrected by adjusting the number
and character of rules that concluded a particular organism or by including some

prevalence information in the CFs associated with the rules.

[Buxton 89] Any interrelationships or dependencies among hypotheses seem to be

ignored both in the assessment of MB and MD and also in the rulec for calculating
the support for a conjunction or disjunction.

[Buxton 89] MYCIN fails to take into proper account the interrelationships among

evidence, which can lead to unrealistic assessments of the support provided by a

new piece of evidence.

[Bonissone 87, Buxton 89] The CFs calculated do not appear to have a simple

interpretation. In particular they cannot be interpreted in the same way as the

measure of belief and disbelief that are assessed by the experts.

[Henkind & Harrison 88] The nature of the combining functions causes the MBs
and MDs to converge quickly to 1, whilst the CFs stay near 0. Therefore the CF
calculus is not suited to situations where there are large quantities of evidence to

combine.
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• [Shortliffe ki Fagan 82] MYCIN-like rules need substantial modification in order to

analyse temporal trends and rapid parameter changes.

• [Saffiotti 87) The hypothesis with the highest CF is not guaranteed to be the most

probable one.

• [SafFiotti 87, Heckerman 90a] The unexplained insensitivity of MYCIN to a change
in the CFs of its rules. This may in part be explained by the small number of rules
that are typically applied to reach a conclusion.

3.2.2 Dempster-Shafer Theory

Dempster-Shafer (DS) theory, or the theory of belief functions, was developed in the

1960s by A. P. Dempster and extended in the 1970s by G. Shafer [Gordon &c Shortliffe 85,

Shafer & Srivastava 90]. Unlike MYCIN, DS theory is known more for the formalism
than its applications, which include, by way of examples, GERTIS, a prototype system

for diagnosing rheumatoid arthritis [Yen 89], and a system for knowledge-based computer

vision [Wesley 86].

Two of DS theory's more distinctive features are the use of an interval representation

of belief as opposed to point values, and the ability to assign belief to sets of hypotheses
rather than an individual hypothesis.

The basics of DS theory are as follows [Clark 90, Lowrance et al 90]:

1. A set of mutually exclusive and exhaustive base elements forms the frame of dis¬

cernment, {0}. The impact of evidence is defined over the power set (set of all

subsets) 2s.

2. A mass probability function assigns a value [0, l] to every disjunctive subset of

hypotheses, so that the sum (or total probability mass) is 1 and the probability

assigned to the empty set is 0, i.e. m(0) = 0. m(0) will be the probability mass

that cannot be committed to any smaller subset of 0, it represents ignorance.

3. The certainty of a particular proposition or hypothesis A is represented by the

evidential interval [Spt(A), Pls(A)] where (for subsets B of A)

Spt(A) = T.bca m(b)
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Pls(A) = 1 - Spt(-^A)

Spt is a measure of the belief in A given the evidence, while Pis represents the

degree to which the evidence fails to refute A. The difference between the two

values is a measure of ignorance, the belief that is committed to neither A nor -*A.

Some interpretations of interval values are offered by Wesley [Wesley 86]:

• Completely true proposition — [1, 1]

• Completely false proposition — [0, 0]

• Completely ignorant about proposition — [0, 1]

• Tends to support proposition — [Spt, 1] (0 < Spt < 1)

• Tends to refute the proposition [0, Pis] (0 < Pis < 1)

• Tends to support and refute the proposition [Spt, Pis] (0 < Spt < Pis < 1)

4. Evidence is combined using Dempster's rule of combination:

for two pieces of evidence 1 and 2 where A represents hypothesis subsets that are

supported by 1 and B represents hypothesis subsets supported by 2. The new belief

in subset C that is supported by both 1 and 2, is defined as the sum of the products

of the masses assigned to subsets A and B whose intersection is C, divided by a

normalisation factor equal to 1 minus the sum of the products of belief masses of

subsets A and B whose intersection is the empty set {0}.

Probability mass is assigned to the empty set whenever 1 and 2 assign mass to two

disjoint sets. This would violate one of the axioms, so a normalisation factor is

used to redistribute the unassigned mass.

The use of DS theory is strongly advocated by many researchers. Among its positive

points are:

• [Gordon k Shortliffe 85] The ability to model the narrowing of the hypothesis set

with accumulation of evidence, recognised as being a natural reasoning strategy

characterising diagnostic reasoning in medicine and expert reasoning in general.
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• [Bonissone 87, Stephanou & Sage 87, Clark 90] The representation of ignorance

through the use of belief intervals rather than point values, the assignment of non¬

zero values to the base element set and the use of subsets.

• [Saffiotti 87] The ability to specify domains of discourse to suit the model informa¬
tion available.

There are, however, also problems associated with it:

• [Bonissone 87, Henkind & Harrison 88, Clark 90] One of the major criticisms is the

computational complexity involved when large sets of hypotheses are considered,

though the introduction of some restrictions can reduce this.

• [Clark 90] When a large probability mass would be assigned to the empty set, the
normalisation procedure used to redistribute this unassigned mass can produce
counter-intuitive results.

• [Henkind & Harrison 88] DS theory assumes independence of evidence.

• [Gordon & Shortliffe 85, Henkind L Harrison 88] The combination rule has no the¬
oretical justification, it is based on intuitions about the pooling of evidence.

• [Thompson 85, Saffiotti 87] The design of the structure of domain of discourse is
non-trivial as it must ensure inclusion of subsets that can serve as recipients of

mass from each and every report that may be received during processing. The
translation of a piece of information into a mass distribution over the domain of

discourse may be a burden both from computational and design points of view.

• [Thompson 85, Wesley 86, Saffiotti 87, Clark 90] DS theory lacks a decision mecha¬
nism and the design of decision mechanisms for intervals is still a research problem.

• [Saffiotti 87, Black L Laskey 90] DS theory only defines probability updates due
to evidence acquisition; propagation through local constraints must be defined in

the application.
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3.2.3 Fuzzy Set Theory

The concept of a fuzzy set was first presented in 1965 by L. Zadeh [Zadeh 65]. It was

originally developed in response to certain types of paradox that arise in classical set

theory [Ilenkind & Harrison 88], consider:

1. A heap containing one stone is small.

2. If you add one stone to a small heap it remains small.

3. Therefore (by induction), every heap is small.

When it was initially proposed, fuzzy set (FS) theory was considered highly contro¬

versial in the field of mathematical systems theory which Zadeh worked. Gaines and

Shaw [Gaines & Shaw 85], present an interesting historical and philosophical view of FS

theory which includes the following quotation from a paper by Kalman, published in

1974:

His [Zadeh's] proposals could be severely, ferociously, even brutally criticised
from a technical point of view. ... No doubt Professor Zadeh's enthusiasm

for fuzzy sets has been reinforced by the prevailing political climate in the

U.S.: one of unprecedented permissiveness.

It is not clear, given that the quotation is taken out of context, whether Kalman intended
this to be tongue-in-cheek or not. More recently FS theory has prompted a great deal
of mathematical work exploring the properties of fuzzy sets, along with the application
of FS theory to expert systems.

FS theory is closely related to natural language expressions of 'fuzzy' concepts

[Zadeh 86], for example

• Fuzzy predicates: small, large, young, safe, much larger than, soon ...

• Fuzzy quantifiers: most, many, few ...

• Fuzzy probabilities: likely, unlikely, not very likely ...

• Fuzzy truth values: very true, quite true, mostly true ...
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The basics of FS theory are as follows [Henkind L Harrison 88]: in classical set theory
the proposition of set membership is categorical. Let X denote a universe of objects,
and x denote an individual element from that universe. Let A be a subset of X. pA is
the characteristic function or membership function of .4 if:

FS theory calls the set {0, 1} the valuation set and the value assigned by the function
for a given x the degree of membership. From the above definition, in classical theory
the degree of membership is either 0 or 1 (it is categorical).

In fuzzy set theory the valuation set is expanded to the interval [0,1], so the degree
of membership can range between 0 and 1. Intuitively the larger the value of fiA(x) the

more x € A, i.e. the better x satisfies the definition of .4.

For example: let A" be the set of all people and T be the set of tall people. Choose
x to be Tom, who is 7 feet tall, then Pt(x) — '> intuitively Tom is tall. Now choose x to

be Dick who is 6 feet tall, then pj(x) — 0-5, intuitively Dick is 'somewhat tall'. Finally
choose Harry who is 5 foot tall then pj(x) = 0, Harry is not tall.

In FS theory it is necessary to provide a characteristic function (or definition) for
each set of interest, so a function for 'tall' based on a person's height h might be:

The values assigned by the characteristic function are chosen by the person who
defines the function and are therefore subjective (Henkind who provides the above ex¬

ample is 6'4"). The definition of a characteristic function may also be context dependent,
consider the definitions of 'tall' for basketball players and pygmies, for example. It has

been suggested [Cayrol el al 80] that it is the general shape of the characteristic function
that is important rather than its precise determination. Fuzzy membership functions for

natural language are prototypically characterised as single peaked, or monotonic with a

maximum of 1 [Clark 90], for example in figure 3.1, 'tall' (note the different characteristic

function) has a monotonic function while 'middle aged' is single peaked.

The concept of a fuzzy set can be broadened to that of a linguistic variable [Zadeh 75a,

Zadeh 75b, Zadeh 75c]. A linguistic variable, such as 'age' is composed of a set of fuzzy
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Characteristic function for 'tall'

1

Characteristic function for 'middle aged'

1 -

membership
value

membership
value

0 -- 0

1.6 1.8 2.0 40 60 80

height in metres age in years

Figure 3.1: Monotonic and single peaked characteristic functions [Clark 90, page 125]

sets, such as {'very young', 'young', ...,'old', 'very old'), each of which is defined over

the set of values of years lived since birth [Zimmermann 90].

Techniques for using FS theory in expert systems fall broadly into two typos, fuzzy

logics and possibility theory. The term 'fuzzy logic' has several interpretations in the

literature, 3omc treat it as meaning multivalued logics whilst others see it as a logic for

manipulating fuzzy sets. Dubois and Prade [Dubois & Prade 90a] give an introduction
to possibilistic and fuzzy logics. The fuzzy logic approach presented here as an example,
is taken from Thompson [Thompson 85]:

Zadeh defines the axioms of fuzzy logic as:

• 0 < fi(x) < 1

• /i(—ur) = 1 - n(x)

• fi(x AND y) = min[fi(x),n(y)]

• y(x OR y) = max[y(x), /i(y)]

• M* => V) = m«'n[l,(l - fi(x) + /i(y))]

• /'(* = y) = rnin[(l - fi(x) + /i(t/)),(l +fi(x) - fi(y))]

Suppose the following statements define the characteristic function of the fuzzy pred

icate 'low reflectance' (LR):

11.0, r = 0.00.6, r - 1.0
0.1, r = 2.0
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This can be represented as the fuzzy set, LR = {0 | 1.0, 1 | 0.6, 2 | 0.1}.

Suppose we wish to classify an object into one of n classes, c, c„, given some

evidence, ..., £t. Based on evidence £j we can develop characteristic membership
functions /ru,..., fjln to form a fuzzy set:

= {ci I Mn, c2 | fi 12l... ,c„ | /i,„}

similarly for evidence E2:

^2 = {C1 | 1^211 c2 I /*22i ■ • ' > cn I ll2n }

i sets of evidence can be combined to give:

B(k) = {c, | p(fc),, c2 I /i(k)2,...,c„ | /r(*)n)

where /r(fc)i,... ,/r(fc)„ are integrated membership functions for each of the n classes,
these are obtained using:

H(k)j = Dxxx(nljt n2l iikj)

where Dxxx is one of several alternative fuzzy decision functions:

= min()iij,..., /rnJ)

Dproi^lj, ■ ■ ■ iVnj) = nf=l V,j

Ocon(/ijj,... = E,l=i (E?=,a.j = 1)

The use of Dm, suggests that £} and £2 interact in a more or less independent fashion
and that the presence of a smaller /r should be preserved. The use of Dpr0 suggests Ex
and E2 act like identical independent trials so that repetitive observations cause marked

changes in relative values of membership. The use of Dcon suggests that £, and E2 act in
a reinforcing fashion so that membership is intermediate between the two input values.
There is no generally accepted criterion for selecting a particular Dxxx.

Fuzzy logic lacks a well defined decision model. One approach is that described by

Thompson [Thompson 85], which follows from the explanation of fuzzy logic above. This

approach combines a fuzzy set of goals and a fuzzy set of constraints to form a fuzzy

set, known as the confluence set. The combination is achieved through one of the Dxxx

methods above or some other suitably defined mechanism. This confluence set can then

be used in the decision making process. There is no generally accepted method for using

this set, though suggestions include:
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1. Choose action having greatest degree of membership

2. Choose action that is a mixture of all actions weighted by their degree of member¬

ship

3. Choose an action that is an equal mixture of the two actions having the minimum
and maximum degree of membership

Possibility theory is a theory of approximate reasoning based on the concept of a

possibility distribution. A possibility distribution measures the degree to which some¬

thing is feasible, for example, considering the definition of 'tall' given earlier, if Tom is
a tall person then it is quite possible (0.75) that he is,6'6" high, it is less possible that
he is 5'6" high (0.25). The possibility of an event is not the same as its probability, the

probability that Tom is 6'6" is not 0.75. There is also no requirement that possibilities

sum to one. A related notion is that of necessity, the degree to which something must

be true. These values can then be used to represent a degree of certainty. Bonissone

[Bonissone 83, Bonissone 87] proposes a method based on fuzzy intervals with neces¬

sity as the lower bound and possibility as the upper, similar to DS theory. Function

evaluations based on triangular norms and co-norms are used in the weighting and ag¬

gregation of conclusions. A mapping between fuzzy intervals and linguistic labels is used
to convert between internal representations and external, user-based expressions. Some
work on using possibility and necessity in pattern-matching is reported by Cayrol et al

[Cayrol et al 80].

One of the fundamental tools in approximate reasoning is the rule of compositional
inference. The classical inference rule is modus ponens:

1. X is A implies Y is B

2. X is A

3. Conclude Y is B

The rule of compositional inference extends this definition to a generalised modus ponens:
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1. X is A implies Y is B

2. X is A'

3. Conclude Y is B'

where A and A' and B and B' are 'similar' fuzzy sets. For example [Zimmermann 90]:

1. If a tomato is red then the tomato is ripe

2. This tomato is very red

3. Conclude this tomato is very ripe.

There are several different formulations of this inference rule, generally based on min
and max compositions. A schematic illustration of the reasoning process taken from
Dutta [Dutta 85] is shown in figure 3.2. Henkind and Harrison [Henkind & Harrison 88,

Imprecise
propositions in

! natural language

Approximately valid i
conclusions in

natural language

Translate Retranslate

,

i

Possibility
equations

Approximately
valid conclusions

Apply
compositional

inference

Figure 3.2: Approximate reasoning process [Dutta 85, page 22]

page 707] explain the difference between fuzzy logics and approximate reasoning in the

following way:

... fuzzy logics deal with propositions of the form "x € A," where A is a fuzzy

set and the truth of the proposition is given by /t^(x). Approximate reason¬

ing, on the other hand, deals with propositions of the form "x is A" where A

is a fuzzy set. Thus fuzzy logics manipulate numerical values (acquired from

a fuzzy membership function), whereas approximate reasoning manipulates

fuzzy sets.
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FS theory's main strength lies in the fact that it was developed in response to a

particular class of problem. This means that it is generally strong on representing certain

types of concept, and in relating to natural language:

• [Dutta 85] FS theory is intrinsically linked to natural language, which makes fuzzy
sets a natural form of representation.

• [Henkind & Harrison 88] FS may provide a solution to some problems arising from
lexical imprecision.

• [Ilenkind & Harrison 88] FS theory is flexible as many possible operator definitions
are possible.

• [Zadeh 65] FS theory is a natural way to model imprecisely defined classes which

play an important role in human thinking, particularly in the domains of pattern

recognition, communication and abstraction.

However, whilst it has strengths in terms of representation, it is less good at reasoning

with those representations:

• [Cayrol el al 80] A grade of possibility has only an indicative value because it is
more or less subjectively assessed.

• [Dutta 85] Validity in fuzzy logic is approximate rather than exact.

• [Dutta 85] It is not clear that natural language is the most appropriate general

knowledge representation technique.

• [Saffiotti 87, Stephanou & Sage 87] The definition of characteristic membership
functions is both subjective and context dependent.

• [Clark 90] Empirical derivation of characteristic membership functions is hard.

• [Ilcnkind & Harrison 88] It is not always clear how to construct reasonable mem

bership functions, no completely general technique exists.

• [Henkind k Harrison 88] The choice of operator definitions can bo problematical
and different definitions may be needed in different situations. Some definitions
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with nice mathematical properties perform poorly in the real worhl. whilst oth¬
ers which perform well are ad hoc and lack mathematical rigour. There is little

guidance as to which methods should be used for a given problem.

• [Thompson 85] FS theory lacks a well defined decision mechanism.

3.2.4 Numerical and Non-numerical Formalisms

The above formalisms can loosely be categorised as numerical, they represent belief

by a numerical value or range of values. The alternative approach, based on symbolic

representations, argues that numerical techniques are inappropriate and inadequate for
a variety of reasons. The four principal arguments for non-numerical representations are

summarised by Buxton [Buxton 89]:

1. Most people find it difficult to express, or think about, uncertainty in numerical
terms.

2. The use of an exclusively numerical approach may restrict the knowledge that a

person uses in arriving at assessments of support or belief.

3. Numerical approaches to uncertainty are representationally inadequate — they fail
to capture ail aspects of uncertainty that are relevant to subsequent reasoning.

4. Numerical assessments of uncertainty may hide more specific knowledge which we

could specify or collect if we took the trouble.

People recognise levels of belief associated with many of the rules they use, but
these are not routinely expressed in numerical terms, nor are they used in any formal

statistical manner [Shortliffe & Clancey 84]. When people discuss uncertain events they
will typically quantify the uncertainty through the use of imprecise terms, such as 'likely',

•fairly unlikely' and so on. These natural terms lack any precise definition and tend to

be highly context sensitive even within the usage of a particular individual. Whilst

people are often able to express associations, e.g. causes, with confidence, the precise

quantification of that association is often problematic [Pearl 88b, pages 20 and 79]. When

people are asked to express uncertainty in numerical terms the reliability and meaning of
the resulting numbers is questionable [Cohen 86]. As was noted earlier, people generally
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use ad hoc techniques in determining and using numerical representations of uncertainty

[Tversky & Kahneman 90a].

It has been suggested [Buxton 89] that the use of numerical representations may

change the cognitive structure of a problem and hence the expert system derived from
that cognitive structure.

Whether or not a number is an adequate representation of uncertainty, or how many

numbers are required, and so on, has long been a subject of debate. Cohen [Cohen 89]
argues that it is necessary to represent uncertainty about different kinds of evidence in

different wayc. Numerical approaches are often criticised for using point values rather
than ranges, requiring an unfeasible degree of accuracy which in turn leads to conclusions
that are deceptively precise. The use of numerical measures when generating explana¬
tions has also been questioned [Cohen 86], as has their psychological meaningfulness

[Pearl 88b, page 78].

It has further been argued that a numerical quantification is often used in cases where

a more complex relationship is in fact true [Saffiotti 87]. The ability to abstract what is

perhaps a poorly understood relationship into a single number is seductive.

Clark [Clark 90] summarises the difference between quantitative and symbolic ap

proaches:

1. Symbolic techniques derive inspiration more from patterns of competent human

reasoning.

2. Symbolic techniques make fewer and weaker assumptions about independence and

exclusivity and are therefore more robust in some circumstances. However, by

making stronger assumptions, quantitative approaches achieve greater precision in

the combination of evidence.

3. Symbolic techniques arc more amenable to implementation of metalcvcl control.

3.2.5 Endorsement Theory

Endorsement-based reasoning (ER) or endorsement theory is a method of symbolic rea¬

soning about uncertainty developed by P. R. Cohen and co-workers. The emphasis of the
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theory is on actively managing uncertainty rather than cimply measuring it [Cohen 86]
Precise quantification of uncertainty io chunncd and an approach that recognise? differ^
cnt typcc of uncertainty and different methods of combining evidence proposed This

qualitative theory centres on the explicit recording of the justifications for a proposition.
These justifications are tagged with endorsements which classify them according to the

type of evidence and the possible actions required to colvo uncertainty relating to that
evidence [Bonissone 87]. Endorsements are attached to inference rules, program tasks,

data, conclusions and so on [Saffiotti 87].

The meaning of particular endorsements is determined by the way in which they
are used during the reasoning process, they can be said to have operational semantics

[Cohen h Grinberg 83]. The mnemonic labelling of an endorsement, i.e. corroboration
is chosen to reflect those operational semantics. The meaning of an endorsement is

made up of three parts, the situations under which the endorsement can be applied to

an interaction between evidence, how the endorsement affects the relative ranking of

propositions that carry it, and how the endorsement interacts with other endorsements.

As an example, consider the following rule taken from SOLOMON, a system for

giving investment advice [Cohen Sz Grinberg 83, Cohen 86]:

IF age > 65 THEN risk-tolerance = low

This rule could carry the endorsement ovcrgcneralisation, indicating that for some in¬

dividual the conclusion conld be false even though the promise were true. ER suggest?

searching for another rule with the same conclusion but a different premise, i.e. a cor¬

roborating rule. If such a rule were found then the conclusion that risk-tolerance is low

could be endorsed as corroborated.

The endorsements and a set of operational methods are used to reason over an

inference net, which includes data nodes, intermediate nodes and conclusion nodes.

Each domain may have its own characteristic set of endorsements and methods. En¬

dorsements are propagated over the inference net in a manner that is sensitive to the

context of the inference. Uncertain conclusions can be resolved in one of four ways

[Cohen &; Grinberg 83]:

38



1. A node's endorsements can be judged sufficient for the goal under consideration.
This is not equivalent to saying that the value of the node is certain, only that it
is not uncertain enough to warrant further action.

2. An endorsement of an earlier node, although sufficient for some previous goal, is

judged to be insufficient for the current goal. The earlier value is retrieved and
reconsidered in the current context and another endorsement is assigned. This will
involve backtracking.

3. There is uncertainty about the value of the current node but it is discounted by (a)

picking the value that has the highest endorsement or (b) generating a now value

according to some heuristic method.

1. The uncertainty of the current node cannot be resolved in a way that preserves a

minimum endorsement so the multiple values of the current node are propagated
on to the next node.

ER concepts have been applied in several experimental systems in order to explore
the applicability of the approach [Cohen 86). The first of these was SOLOMON, which
used endorsements in place of numeric degrees of belief. SOLOMON'g inforonco ruloo

used three main types of endorsement [Bhatnagar & Kanal 86]:

1. Model based when it is possible to provide a principled explanation of why the

state in the condition leads one to believe the state in the conclusion.

2. CausaJ — when the state described in the condition of the rules causes the state

described in the rule's action.

3. Correlational when the state in the condition is associated with the state in the

conclusion but no definite causal link can be established.

Some of the rule endorsements used are [Clark 90]:

• Maybe too general — more cases satisfy the condition than merit the conclusion.

• Maybe-too-specific — fewer cases satisfy the condition than merit the conclusion.

• Exact — neither too general, nor too specific, nor a negation.
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• Supportive — increases the confidence if true, but does not cast doubt on the

conclusion if false.

• Necessary — conceptually the converse of supportive.

• Hard_not — not(X) must be adequately endorsed.

• CJwa_not — closed-world-assumption, not(X) appears in the database, or attempts

to prove (X) fail.

• Ostrich_not — (X) does not currently appear in the database.

• Flexible — believable if a proposition is found that is approximately equal.

• Inflexible — values must be precisely met.

SOLOMON uses a goal driven control strategy directed by a task agenda [Clark 90].
When the goal driven strategy fails to produce a conclusion with sufficient endorsements
to satisfy a task goal, a new task is created that will attempt to resolve or discount

uncertainty. Uncertainty can be discounted by selecting a very general course of action

that covers all possible outcomes. Uncertainty can be resolved by collecting further

information, corroborating conclusions with weak endorsements, or by attempting to

resolve conflicts by reducing or removing the endorsements of conflicting propositions.

Tasks placed on the agenda also carry endorsements [Bhatnagar &: Kanal 86]:

• P-corroborate — the conclusion of the task corroborates the conclusion of another

task already on the agenda.

• P-conflict — the conclusion of the task conflicts with the conclusion of another

task on the agenda.

• P-potential-conflict — the conclusion of the task may conflict with the conclusion

of another task on the agenda.

• P-redundant — the conclusion of the task is identical to the conclusion of another

task that was derived from the same rule and that has the same rule endorsement.

The conclusions resulting from these tasks carry endorsements that generally mirror their

corresponding task endorsements, e.g. corroborate, conflict, etc..
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The endorsements are combined by straight forward inheritance. For example, if the

endorsements of P are EP and P => Q is endorsed by EP->q then the endorsements of Q,
are the set {Ep, Ep^q, E0} where E0 are the endorsements on other conclusions relat¬
ing to Q. Clearly SOLOMON has the potential to construct large sots of endorsements
after only relatively few inferences.

The second system, HMMM, was developed to explore the way in which reasons arc

adjusted in the context of new evidence [Sullivan & Cohen 90]. The domain concerned

reasoning about simple devices that execute plans consisting of a sequence of 3teps:

plan 1: A B C

plan 2: B D E

The questions HMMM addressed were of the form "if the endorsement of the plan

1 interpretation of step A is may-be-a-mistake, what happens when more evidence in

the form of subsequent plan steps, becomes available?" It was argued that answering

questions of this type is analogous to finding a function for the combination of numerical
measures of uncertainty. A set of combining schema was developed that "captured the
flux of our reasons for uncertainty in the plan recognition problem" [Cohen 86, page

•421]. For instance, if the first step in a sequence of operations has the endorsement
MAY-BE-A-MISTAKE (perhaps some other sequence of operations was expected to be

chosen), then ovidonco in the form of the second step in the sequence suggests that this
endorsement is incorrect and that the first step was indeed intentional [Cohen 86, page

422]:

IF step i IS-UNIQUE-TO plan N

AND step j IS-UNIQUE-TO plan N

AND j FOLLOWS-IN-THE-PLAN step i

AND the plan N interpretation of step i is endorsed by MAY-BE-A-MISTAKE

THEN erase the endorsement

This provides a framework for subjectively combining endorsements, though a more

realistic method might involve changing the weights of endorsements rather than deleting

them [Sullivan Cohen 90].

Cohen and his colleagues then moved on to consider the source of domain endorse-

41



ments [Cohen 86]. They recognised that for a complex domain a large number of en¬

dorsements and combination methods would be required and that ideally these should
be derived directly from other knowledge of the domain. They developed a theory of

path endorsements, embodied in a system called GRANT. Path endorsements were used
to describe typical patterns of association between evidence and conclusions, derived

directly from inference rules. Consider the example in figure 3.3: there is only a single
causal link to Nap, so given Nap, Fatigue can be credibly inferred. On the other

Nap Body

f ' "k
cause ! part-of pari-of

Fatigue ' Limbs Head
Skip lunch
Y V

cause cause cause

Nausea < Busy 1 Diet

Figure 3.3: Inference rules from a semantic network [Cohen 86, page 427]

hand the inference of Nausea from Skip lunch is far less credible due to the number

of potential alternate causes. Similarly the sibling relation between Head and Limbs
is a poor inference path, as something that is true of an object is not necessarily true of
that object's sibling. The endorsements, at least in some cases, can therefore be derived

directly from the associations present in a semantic network.

The emphasis in MUM [Cohen 89] was on the use of uncertainty to constrain action
in control problems. The argument was that problem solving under uncertainty is doubly

constrained, actions must be selected both for their domain effects and for their effects

on uncertainty. For example, if the treatments for disease 1 are A, B and C and for
disease 2 are B, D, and E, and it is not possible to decide between diseases 1 and 2, then

treatment B is the only course of action available. MUM was designed to create work¬

ups (a diagnostic sequence of questions, tests and treatments) for diseases that manifest
themselves through chest and abdominal pain. Its goal is to create a work-up that

conforms to that produced by a physician. It uses a large inference net with disease nodes

at the top, data nodes at the bottom, and intermediate clusters of clinically significant

groupings in between. Data provides support for, or detracts support from clusters which



in turn support, or detract from disease hypotheses. MUM recognises seven levels of
belief — confirmed, strongly supported, supported, unknown, detracted, strongly detracted
and disconfirmed. The objects in the inference net are linked by endorsed paths which

specify the role the evidence plays with respect to the conclusion. Endorsements include

potentially-confirming and potentially-detracting which enable MUM to reason about the

utility of nodes in confirming or disconfirming nodes above them in the net. Each node
has a local evidence combining function, which makes explicit the dependence of the belief
of a node on the levels of belief of its supporting and detracting nodes as illustrated in

figure 3.4. These combining functions also support reasoning about evidence gathering,
for instance by allowing MUM to select discriminatory clusters. MUM's control cycle

esophageal-spasm: a disease cluster

combining function:
if confirmed-p (postprandial) then supported

angina: a disease cluster

combining function:
if supported-p (risk-factors) then supported
if confirmed-p (ekg) and
confirmed-p (substemal-pain) then confirmed
if confirmed-p (treatment) then strongly-supported
if confirmed-p (postprandial^ then detracted

I cluster: ekg
potentially-
detracting

potentialty-
supporling

cluster: risk-factors

cluster: treatment

cluster: postprandial
if confirmed-p (substernal) and
confirmed-p (after-eating)
then confirmed
if disconfirmed-p (after-eating)
then disconfirmed

substernal after-eating

ask: 'is the pain substernal?" ask: "Does eating bring on the pain?"
if yes then confirmed if yes then confirmed
if no then disconfirmed if no then disconfirmed

Figure 3.4: Internal structure of inference net clusters [Cohen 89, page 266]

followed the processing loop — establish the focus of attention, decide which question,

test or treatment to invoke, given the current state of the net. Propagate the result

through the net, updating the parameters on which control decisions depend in the next

cycle.

MUM was later generalised to a domain independent tool MU which, among other

features, allowed the user to define new control parameters in terms of those already
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defined, e.g. critical could be defined as at-leasl-supported and dangerous, which could
then be associated with all nodes of a particular type, e.g. disease nodes. MU was able
to answer five classes of question about the value of control parameters [Cohen 89]:

1. Questions about the current state — e.g. what is the monetary cost of a particular

test?

2. Questions about how to change features — e.g. how can I increase the level of
belief in angina?

3. Focusing questions — e.g. what set of diseases are both triggered and dangerous?

4. Affect questions — e.g. for what diseases does age affect the level of belief?

5. Questions about multiple feature changes — e.g. what discriminates between

angina and esophageal-spasm?

It is difficult to identify specific positive features of ER which are not also features
of other qualitative approaches:

• [Cohen & Grinberg 83] The propagation of inference is dependent on the local con¬

text.

• [Cohen & Grinberg 83] ER is able to represent domain specific heuristic approaches
for handling uncertainty.

• [Bonissone 87] Endorsements provide a good mechanism for explanation as they ex¬

plicitly maintain the entire history of justification and relevance of any proposition

with respect to a given goal.

• [Clark 90] ER is useful as a declarative representation of uncertainty.

« [Sullivan & Cohen 90] ER does not preclude the use of numerical quantifications.

• ER is potentially a very natural reasoning mechanism.

Similarly many concerns about ER are concerns about non-numeric techniques gener¬

ally. The major concerns about ER relate to its applicability to real-world applications:
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• [Bliatnagar fc Kanal 86, Saffiotti 87] No well defined mechanism for selecting be¬
tween two competing hypotheses supported by different bodies of endorsements.

• [Saffiotti 87, Clark 90] Method of endorsement combination is inefficient.

• [Bonissone 87, Clark 90] Endorsement propagation methods are ill defined.

• An expert system based on ER may be highly expert dependent.

3.3 Control

Ideally the knowledge-base and inference mechanism are separate and distinct. In prac¬

tice the inference mechanism is to a large extent constrained by the design of the knowl¬

edge base and in some cases the knowledge-base contains implicit control information.
In this section the control of inference in an uncertain environment will be considered.

The formalism selected for representing uncertainty should not influence the selection

of strategies for reasoning under uncertainty (though in many situations it will act as

a constraint in the same way as it may constrain, or be constrained by, the knowledge
base design). A control strategy specifies three main behaviours [Cohen 90]:

1. Selection of focus of attention — the sub-part of the overall problem that should

be considered next. If the focus is constantly shifting, no coherent diagnostic path
will be followed. If the focus is too fixed, too many resources may be expended on

an incorrect diagnosis.

2. The control of actions — the collection of evidence etc.. A balance between the

cost of an action and the diagnostic importance of the action must be struck.

3. The control of inference — the selection of reasoning methods to apply to the

focus of attention. If the propagation of inference is uncontrolled the system may

become overburdened with the number of possibilities. If it is too restrictive, then

important possibilities may be missed.

These mechanisms are illustrated in the following example [Cohen 90, page 178]:

A patient walks into the doctor's office with a high temperature. The findings
are consistent with dozens if not hundreds of disease and ailments. The
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doctor must control the inferences that can be made from the finding of high

temperature, or else be swamped by hypotheses about what is wrong with the

patient. Control of inference implies that not all possible inferences are made.
Of those that are made, the doctor will recognise one or two possibilities as

especially likely, or serious, or worthy of attention. One will become the focus
of attention, and the doctor will formulate a goal to confirm it or rule it out.

Now the doctor must decide which actions will obtain more information at an

acceptable cost — which questions, tests, or treatments will provide needed
evidence. Once obtained, evidence will enable further inferences, and perhaps

a revised focus of attention and other goals.

If the primary goal is to reduce uncertainty, then actions (such as performing a test)
are the means by which uncertainty is reduced. The selection of an action must therefore
be based on its domain effects and its effect on reducing uncertainty. This suggests that
the representation of uncertainty will play an important role in determining the control
of problem solving, as a means for selecting a focus, selecting an action and controlling
inference. In order to achieve this, three control features are required [Cohen 90]:

1. A measure of the current degree of belief in a hypothesis.

2. The prior probability of the hypothesis.

3. The potential change of belief given some action.

Other domain level control features, such as dangerousness can also be used to guide

control reasoning. Given control features such as these a variety of problem solving

strategies are possible, e.g. select actions that potentially confirm the current most likely

hypothesis. General strategies of this sort often have direct parallels in human problem

solving methods, and may constitute natural strategies. Some general strategies, taken
from Hearsay-II by Cohen [Cohen 90] are:

• Efficiency: reliable and inexpensive knowledge sources should be executed before

less reliable or more expensive ones.

• Validity: knowledge sources operating on the most valid data should be executed

first.
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• Significance: some knowledge sources are defined a priori to be more significant
than others.

• Goal satisfaction: knowledge sources that satisfy goals are preferred to those that
do not.

• Competition: given a choice among several actions pick the 'best'.

There are many different approaches to control (see [Szolovits & Pauker 78] for some

examples), two complementary approaches to control are described below. The first
of these, exemplified by Protos, investigates computational models of control for agents

acting under real-world constraints. The second, represented by ONYX and TA, performs

analysis of a cognitive task in order to derive a computational model.

3.3.1 Computational Approaches

The Protos project [Horvitz 88, Horvitz 89, Horvitz et al 89a, Horvitz et al 89b,
Horvitz 90, Horvitz & Rutledge 91] concerns the development of computerised agents

that perform rationally under resource constraints. Typically every action incurs some

cost, perhaps financial, or in terms of patient inconvenience, or time taken before the

results are known. Because of this, the management of uncertainty through control in¬
volves a compromise between certainty and cost. In a domain where there are no cost

considerations, control strategies are irrelevant. The tradeoff between cost and certainty

provides a metric for judging the efficiency of problem solving, a more efficient solution
maximises certainty with respect to cost.

The task of uncertain reasoning is composed of three elements [Horvitz 89]:

• Problem formulation — the task of modelling or constructing the reasoning prob¬

lem, this often involves enumeration of relevant hypotheses and dependence among

hypotheses.

• Belief entailment or inference — process of updating measures of truth assigned to

to alternative hypotheses as new evidence becomes available.

• Decision making — process of selecting the best action to take, an irrevocable

allocation of resources.
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The implicit assumption of normative approaches to decision making (i.e. those
consistent with the axioms of decision theory) is that sufficient resources exist to enable
the determination of an optimal action. In many real world situations this assumption
is false. This has led to an emphasis on non-normative, heuristic approaches to the
control of uncertain reasoning. Horvitz and his co-workers are interested in normative

reasoning under resource constraints and argue that this will lead to solutions that are

more optimal.

Protos initially focussed on the notion of a partial or approximate result [Horvitz 88]
under time constraints, concentrating on the question of how good a result can be
achieved given the time available. A measure of computational utility was defined. This is
a measure of the net value associated with the commitment to a particular computational

strategy. It is composed of two parts, an object level utility which measures the benefit
attributed to acquiring the result regardless of the computational cost, and an inference
related utility which measures the cost of reasoning, e.g. in time used. The relationship
between partial results and prototypical time constraints, e.g. deadline, urgency, etc.,

was investigated using these measures. It was shown that in situations of uncertain re¬

source constraints, a strategy that is less optimal in the absence of constraints but which

continuously refines its results may be preferred to one that only generates a complete
solution after a set resource expenditure.

The project then moved on to consider the broader question of a rational control

strategy with decision-theory as a normative basis [Horvitz 90], using the term bounded

optirnality to distinguish their approach. Such systems must reason about the solution

methodologies available, the costs of reasoning resources and the expected challenges
that will be faced in the environment during the problem solving process. All these
considerations will involve elements of uncertainty. The task is not to determine the

ideal result but to generate the best possible result given the resources.

Traditional normative applications of decision theory define rationality in terms of

a model, the goal being then to select an action that has the greatest utility according
to that model. The selection of an action generally assumes unconstrained resources

though the creation of a model and inference within the model are resource intensive.
The Protos project explores ways of extending normative rationality into domains of
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uncertain, varying and restricted resources. This has focussed on the use of decision
theoretic modeta to reason about the utility of problem solving strategies as well as

domain level utilities, and on partial results as mentioned above.

Strategies identified as being particularly relevant are those that provide partial re¬

sults that have domain level value which increases monotonically with increasing re¬

source expenditure, finally converging on the ideal result after consuming some quantity
of resources. Several promising strategies for probabilistic inference have been identified

[Ilorvitz 89]:

• Bounded calculation and propagation — the use of bounds on probability rather
than point probabilities. These bounds can be refined as additional constraints are

considered.

• Simulation — approximation strategies that report a probability distribution or

partial characterisation of a distribution over probabilities of interest through a

process of weighted random sampling which converge to true probabilities.

• Completeness modulation — simplification of model by deletion of classes or rela¬

tionships based, for example, on a measure of importance.

• Abstraction modulation — it may be more useful to do complete normative rea¬

soning on an abstracted model than to do approximate reasoning on a complete

model. In many domains, models at higher levels of abstraction are more tractable.

• Local reformulation — use of local approximations in otherwise complete models

for normative reasoning in cases where local complexity renders a full solution

intractable.

• Default reasoning and compilation — under severe time pressure default beliefs and

policies may be of more value than computed results. This may be particularly true

when concerned with actions of great importance, high frequency or time-criticality.

A multilevel approach is proposed, whereby metareasoners use attributes of reason¬

ing problems and of reasoning that can serve as indications about the value of future

computations. These attributes serve to partially characterise the nature of reasoning
at lower mctalevcls and and the domain level. The aim of motaroasoning is to optimise
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the utility of a decision. In order to do this it may be necessary to expend a proportion

of the reasoning resources to deliberate how best to optimise utility. The primary task
of metareasoning about decision making is the determination of the expected value of
computation for the available strategies. A simple, approximate, myopic measure, the

expected value of computation, defined as the difference between the current value and
the sum over expected future utility of states weighted by the probability of achieving
that state under a particular strategy, is developed. The EVC does not consider all

possible combinations of strategies in an attempt to find a global optimisation as this
could introduce undesirable, resource intensive complexity into the metareasoning task.
The applicability of metareasoning depends on the existence of approximation strategies
that allow a trade off in quality of an ideal (precise) analysis against more tractable, less

precise results to be made. Decision-analytic metaknowledge must include knowledge
about model construction, inference, metareasoning and interactions among these three.

• Model construction metaknowledge captures attributes useful in reasoning about
the value of continuing to employ strategies for generating and refining distinctions
and relations in a decision model.

• Inference metaknowledge includes distinctions useful in estimating the value of
future inference.

• Metareasoning metaknowledge is information about distinctions that are used to

characterise the expected values of increasing the fraction of time dedicated to

metareasoning or moving to a higher metalevel.

• Interaction metaknowledge captures knowledge about the interaction between model

building, inference and metalevel deliberation, such as the relationship between
models of higher quality and the growth of complexity of inference.

The research also suggests that pre-compiled knowledge, i.e. pre-computed com¬

plete or partial results, will have an important role to play in reasoning under resource

constraints. Three general classes of compiled rules are identified [Horvitz 90):

• Situation-action rules — observed situation linked directly to final action without

deliberation.

50



• Platform rules — used in conjunction with deliberation to make deliberation more

efficient and reduce computational burden. Includes cached partial results for gen

eral classes of problem that can be refined with additional computation.

• Resource rules — situation-action rules and platform rules are both means of in¬

creasing efficiency of decision making. Resource rules are compiled behaviours that

generate additional resources, for example by reducing the coGt of a delay, or by

extending a deadline. These are typically knowledge intensive and highly domain

specific. For instance, if a patient's blood pressure is falling rapidly, a blood trans¬

fusion may be used as a temporary remedy, buying time to investigate the cause

of the blood loss.

The question of higher levels of mctarcasoning, where 3uch knowledge i3 available,
was also considered. A balance needs to be made between the value associated with the

flexibility gained from being able to reason about existing levels of analysis, and the costs

incurred because of the additional complexity. Regardless of the level of metarcasoning

employed it was suggested that appropriate situation-action rules acting at the domain
level should always be available and built, for example, into a compiled metareasoning

policy — IF an object level situation action rule is available THEN act ELSE deliberate
for a time dictated by the metareasoning model.

Other interesting suggestions are the use of quiet-time during reasoning for expectar-

tion driven creation of partial solutions and the use of idle time for the refinement and

learning of behaviours. This short term and long term learning are valuable compilation

strategies.

3.3.2 Cognitive Approaches

In the pact, much of the emphasis on control strategies was focusscd on the achieving
of a specific task, e.g. diagnosis of a particular disease. Recently there has been a move

towards the development of control strategies for more general classes of task, such as

diagnosis, therapy planning and patient monitoring. This approach uses the general
control strategy in conjunction with a domain specific world model. It acknowledges
that strategies for managing uncertainty arc part of the domain expertise and should

therefore be acquired from domain experts [Cohen 90]. Two examples of this approach,
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both concerned with therapy planning, are outlined briefly below. Therapy planning can

be defined as [Quaglini el al 92, page 208] .. the task of selecting the best action to

improve a patient's condition given the available clinical information."

ONYX is a prototype system designed to plan therapies for use in the treatment

of cancer [Langlotz et al 87]. The basic therapy planning task involves a representation
of the current state, a desired goal state and a set of operators (actions) which can be
executed. The task is to select a sequenced subset of operators on the basis of the current

state, that results in the optimal satisfaction of the goal state. Four major difficulties in

therapy planning in this domain were identified:

1. Explicit guidelines for plan selection are not available.

2. The current state is not known with certainty.

3. The consequences of an action cannot be predicted with certainty.

4. The planning goals cannot be satisfied completely as they are inherently contra¬

dictory.

Clearly these concerns are equally true of other therapy planning domains and other
classes of planning problem.

The ONYX control strategy was based on observations of domain experts, who ex¬

hibited a consistent problem solving approach:

1. Develop a set of possible therapy plans.

2. Envision the possible consequences of applying each plan.

3. Assess the predicted outcomes against the therapeutic goals.

ONYX translates these cognitive tasks into processes which closely reflect the interme¬
diate solution steps listed above:

1. Plan generation — general treatment strategies are used to create a small set of

reasonable plans by selecting combinations of appropriate treatment components

given the current state of the patient.
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2. Plan prediction — simulations based on the structure and behaviour of the human

body are used to predict future states of the patient under each suggested therapy

plan.

3. Plan evaluation — decision analysis is used to rank the plans according to how
well they are predicted to satisfy the therapeutic goals for the patient.

The plan generation phase involves the traversal of a hierarchical therapy generation
model under the control of heuristic strategies embodied in production rules. These rules
fall into two main categories, control rules such as (paraphrased):

IF: a problem is encountered with a treatment

THEN: try to eliminate the least significant component of the

treatment that might be causing the problem

or

IF: The patient is being treated according to a protocol

AND

The protocol requests drug treatment for this visit

OR

The patient's tumour is sensitive to drug treatment

THEN: Consider drug treatment

and generation rules:

IF: a drug can exacerbate a toxicity already being experienced by the

patient

THEN: Propose reducing the dosage of that drug

The plan generation process starts at the most general node in the hierarchy, the
control rules associated with a node are used to determine which descendant node should

be examined next. When a terminal node is reached, the generation rules are used to

create a set of plan steps. A complete plan is formed from a consistent set of proposed

plan steps. A small set of plans forms the input to the next phase of the system.
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The plan simulation phase predicts the behaviour of important patient variables un¬

der each of the proposed therapeutic plans. ONYX uses a qualitative simulation to

embody the oncologist's knowledge which is itself often qualitative and uncertain. The
simulation models physiological entities and behaviour in an object-orientated frame¬
work. The behaviour of an entity is described by three sets of rules:

1. Describes how object model parameters change with respect to incoming messages.

2. Contains knowledge including symbolic information on object state based on recent

internal changes.

3. Determines how new object state will be transmitted to neighbouring objects.

The simulation is used to predict the outcomes of the proposed therapeutic plans. These

predictions are then used in a decision theory based ranker to calculate a quality adjusted

life-years utility value for each plan. This utility model considers the utilities associated

with four treatment goals:

1. Decrease the risk of death.

2. Decrease need for supportive care and hospitalisation.

3. Decrease the discomfort for the patient.

4. Remain close to treatment guidelines.

In the second example, Therapy Advisor (TA), an epistemological model of the ther¬

apy planning task is developed, figure 3.5, that defines the relationship between the

domain knowledge and task knowledge. According to this analysis, therapy planning
is performed on the basis of a diagnosis. The diagnostic process is typically concerned
with producing a qualitative description of the state of a patient. Therapy planning

requires more exact quantitative information, so the first step may be to gather further
information. Once all the necessary information is available, abstraction is used to de¬

rive a restricted set of critical attributes of the patient's state. This set of attributes

can be interpreted immediately as a set of crucial therapy targets which compose ther¬

apeutic problems. Therapeutic problems fall into two classes — simple and complex.
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Figure 3.5: An epistemological model of therapeutic reasoning
[Quaglini et al 92, page 208]

Simple problems admit an immediate well-accepted solution without further delibera¬

tion. These are sometimes referred to as categorical decisions [Szolovits & Pauker 78];
such decisions depend on relatively few facts, their appropriateness is easy to judge and
their result is unambiguous. There is a clear connection between the notion of a simple

problem, a categorical decision, and the compiled behaviours and stimulus-action rules
of Protos. Complex problems may involve several different therapeutic actions and their

appropriateness is not easily established due to uncertainty regarding their outcomes and
the decision maker's preferences. These problems require further deliberation.

The therapeutic problems serve as the basis for the abduction of a set of therapies.
The set of therapies consists of those that arc potentially relevant to the problems under

consideration. Depending on the number and complexity of the therapeutic problems,
a therapy can be adopted at this point, or will form a hypothesis. If a hypothesis is

formed then therapy evaluation must be performed to determine which of the competing

hypotheses is to be selected.

This task model underlies TA, a system concerned with the general task of therapy

planning, though applied to the specific domain of anemia [Quaglini et al 92]. TA is part

of NEOANEMIA [Quaglini et al 89], which provides the patient diagnosis that forms part

of TA's input. TA's domain knowledge uses a mixture of representations including tax-
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onomies of medical entities, production rules and hand-crafted anemia-specific influence

diagrams. The control knowledge is in the form of metarules, such as:

IF abduction has been performed

THEN perform evaluate-therapies

where abduction and evaluate-therapies are operators that execute the appropri¬
ate reasoning steps. A taxonomy of subtasks that make up the complete epistemolog-
ical model is used to guide the control process which is based on a blackboard sys¬

tem [Hayes-Roth 85, Nii 86a, Nii 86b]. Different inference steps are achieved by specific

knowledge sources acting over the blackboard.

A possible criticism of these approaches is the difficulty of obtaining reliable models
from human experts, this is touched on by Szolovits [Szolovits 79].

3.4 Communication

In the previous chapter the importance of the physician-system interface was identified.

In many early expert systems the significance of the interface was not fully appreciated
and in several cases it was added almost as an afterthought, once the knowledge base
and inference mechanism were designed. Furthermore the interface design tended to be
carried out without reference to the user, resulting in interfaces which were perfectly

adequate from the point of view of the system's designer, whose understanding of the

system was good, but less than adequate for the user, whose understanding and rationale
for interaction were very different. As result of this these interfaces generally failed to

meet user expectations and later work to use the knowledge base for a different mode of

explanation often proved problematic [Clancey 83]. There is now a greater realisation of
the importance of the interface and the fact that interface design is intrinsically linked
to the design of the knowledge base and inference engine.

When designing an interface it is necessary to compromise between the need to pro¬

vide the user with as natural and flexible an interface as possible, and the fact that

computer cognition is impoverished, inflexible and qualitatively different from human

cognition [Dodson 90]. The earliest interfaces relied heavily on being able to anticipate
user queries by constraining the range of questions that could be asked; the answer to
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each query could simply be stored. This could be extended by generating text which
included blanks which were filled depending on the context. This canned-text may be

practical for a very limited type of expert system, where the domain of discourse is small
and a single level of inflexible responses is adequate.

The second type of early interface relied on describing the processing steps of the
inference engine. This type of interface may be acceptable for system designers who are

essentially interested in how the system works, but they are generally not able to give

explanations in terms familiar to the domain expert.

Both these approaches relied on tightly restricted user input and providing expla¬
nations that were closely related to the design of the expert system. More recently it

has been recognised that what ia actually required is interactive dialogue based on the

domain explananda, with the user and the system sharing the locus of understanding.
This i3 particularly true in cases where the patient is involved in tho interaction as thoy

arc liable to need a greater degree of support and explanation than a physician who
uses the system on a regular basis [Jimison 90, Jimison et al 92]. In order to be able
to support this kind of dialogue it is necessary to have a clear separation between tho

knowledge base, defined in terms of the domain explananda, and the inference engine,
defined in terms of domain independent problem solving strategies. By representing do¬
main knowledge and inference strategies separately, it becomes easier to answer different

types of question, for instance about causal relationships between domain ontitios or

the definition of domain terms, in addition to describing the problem solving strategics

employed.

It has been recognised [Clancey 83] that in some expert systems a certain amount

of the domain knowledge is stored implicitly, either in the knowledge base or in the
inference engine itself, or has been 'compiled out' [Swartout 81]. Such implicit knowledge

may be necessary in an explanation, and must therefore be represented explicitly in the

knowledge base. In order to do this it will often be necessary to have a very rich knowledge

base, breaking down the high level associative relationships typically used for reasoning
into a hierarchy of causal relationships that describe the underlying domain processes.

This hierarchy of knowledge can then be used to generate explanations at different levels

of detail.
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There are many different knowledge representation schemes (for an overview see

[Brachman &; Levesque 85]), the one we discuss here is structured object schemes. The
phrase structured object schemes is intended to define those knowledge representation
schemes that rely fundamentally on a network or graph structure. The essence of such
schemes is the representation of entities as nodes within a network, where the links in the
network are indicative of some form of relationship between the entities they connect.

Clearly this class of representations is large and includes traditional representations such
as semantic networks [Woods 75] and frames [Kuipers 75, Minsky 80] as well as more

recent ones, such as belief networks [Pearl 88b] and neural networks [Rumelhart et al 86].

In such representations the form that a node takes is as varied as the entities rep¬

resented. In some cases, for example frames, a node can be a highly complex object,

containing both declarative and procedural knowledge. In other cases, such as belief
networks and neural networks, knowledge is limited to input/output relationships.

One of the strengths (and indeed weaknesses) of the network based approach is the

variety of meanings that can be ascribed to a link. In some representations only a single

type of link is used, for instance causal links in belief networks. Others, such as semantic

networks, have many different types of link denoting particular types of relationship, see

for example figures 3.3 and 3.4.

Networks that contain certain types of links have the advantage of being cognitively

meaningful. By this we mean that certain network models form an analogue repre¬

sentation of the way in which people think about or communicate about the domain.

Examples of this include belief networks and a number of hierarchical models, such as

IS-A networks. Semantic networks and neural networks do not fall into this category as

the meaning of their structure is generally opaque with respect to the domain.

Cognitively meaningful networks can have several desirable features, including:

• An explicit, meaningful structure that is easily modified and verified.

• The structure can be used as a basis for the generation of meaningful explanations.

• A structure that should be easy to elicit from domain experts.

• A structure that should be fairly stable between domain experts.
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The use of a network representation typically does not place any constraint upon the

types of inference that may be made, assuming the network contains all the necessary

information.

Some authors [Ben-Bassat & Teeni 84, Horvitz et al 86] have argued that in certain
cases the problem solving strategies employed by inference engines are themselves opaque

to users. Natural reasoning strategies, i.e. those that humans perceive as simple and

intuitive, are constrained by human cognitive ability and are often less than optimal, for
instance in diagnosis physicians will often traverse a class hierarchy of possible causes

rather than consider the entire set of possible causes. Humans often select a natural

reasoning strategy designed to satisfy their own strategic goals, such as the collection
of supportive information for the most plausible alternatives. In cases where the ability
to explain the strategy is paramount, it may be desirable to adopt a less optimal, but

more natural reasoning strategy. Wherever possible the inference engine should use

strategies defined in terms, such as find or avoid, that can be appropriately and intuitively

understood by the user [Swartout & Smoliar 88].

In addition to this it will be necessary to handle dialogue in an intelligent way which
will involve a degree of user modelling and role behaviour on behalf of the system.

This would allow the system to tailor its interaction to suit the needs and experience

of the user, by selecting different levels of explanations and different modes of discourse

(interrogative, tutorial, etc.). This technology is still very much a research topic. Though
some work [Worden et al 87] has been done on defining appropriate behaviours for expert

systems performing as assistants and some on dialogue heuristics is cited by Langlotz et

al [Langlotz et al 88b], it is likely to be some time before user modelling and computer

role filling with dialogue handling is developed enough to be in routine use.

As well as the changing perspectives on interface design, there is the development
of new interface technologies to consider. Early interfaces were text based but the

widening availability of low priced graphics hardware is leading to an increased use

of graphics within interface design. Some interfaces use graphic facilities to replicate

existing paper based interfaces [Lane et al 86, Marin et al 93]. These interfaces are al¬

ready familiar to the user and are therefore readily accepted. Other researchers have

suggested that new forms of mixed graphical/textual languages should be developed,
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allowing the user to interact with a graphical analogue representation of some aspects

of the domain [Hayes 87, Dodson 90]. Beyond this lies Hypermedia technologies, de¬
signed to integrate text, still pictures, animated pictures and sound, and beyond that
virtual reality (VR) where interactive 3-dimensional simulated worlds can be created,

adding touch to the interface senses. Even though VR is cutting edge technology peo¬

ple are already experimenting with its use in medicine in applications such as virtual

surgery [Rubenstein 94, Wright 94] and the simulation of brain cell function [Holmes 94].
Whether VR and graphical languages can be successfully combined to provide interfaces
to applications that are essentially non-visual remains an intriguing question.

3.5 Conclusion

In this chapter we have examined some of the issues that are involved in expert systems

design. The unifying thread has been the notion that the choice of uncertainty formalism

fundamentally affects the control of the expert system, the ability of the system to make

decisions, and the ease with with the decisions and results of the reasoning process can

be explained to an external observer. As we have stated several times, it is precisely the

reasoning process that must act as the context for communication between the system

and the physician.

All of the formalisms discussed are modelled on largely ad-hoc cognitive theories of
human problem solving, they are based on cognitive axioms. The developers of such

systems typically claim that this makes them more amenable to communication and this

is certainly true to some degree. On the other hand, the use of an ad-hoc cognitive

formalism places the rational decision maker in a difficult situation. There are two main

reasons for this. Firstly any uncertain reasoning formalism that does not conform to the
normative axioms will, in certain circumstances, make invalid inferences. As a result of

this the measure of belief assigned to a proposition may be incorrect. Secondly these

ad-hoc formalisms typically have an ad-hoc decision mechanism, if they have one at all.

This implies that not only must the assigned measures of belief be treated with suspicion

but so must any utilities assigned to actions.

How can the assertion that the results of ad-hoc formalisms are unreliable be rec¬

onciled with the demonstrable success of some of these formalisms? It is important to
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distinguish between a successful application and a successful formalism. MYCIN, for ex¬

ample, is often cited as an example of a successful expert system, yet the CF formalism
is ad-hoc. For instance, the implicit assumption of equal priors was largely true given
the domain. It could also be justified on cognitive grounds, as human problem solvers
are typically insensitive to prior probabilities. It is possible that even if the assumption
of equal priors had been false, MYCIN could produce correct results as the domain ex¬

perts might subconsciously include this information in their assessment of the CF values

[Horvitz & Ileckerman 86). The implication of this is that the CF formalism may be
successful for a particular class of problem, but outwith that class its results will be

meaningless.

The difficulties in a formalism based on cognitive axioms are many, including:

« The precise definition of the axioms.

• The proof of validity of the axioms.

• Does a single axiomatic framework apply to all problems?

• Do the axioms guarantee rational results?

• Do the axioms provide a sound basis for decision making?

• On what basis are propositions assigned a measure of belief?

• Is it possible to empirically derive the measure of belief for a proposition?

• Can a tractable computational system be constructed on the basis of these axioms?

Unless a cognitive formalism can address these difficulties it is impossible to conduct a

meaningful comparison between competing cognitive formalisms and between cognitive
formalisms and formalisms based on the axioms of probability.
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Chapter 4

Belief Networks

In the previous chapter we saw that whilst cognitively based formalisms may possess

certain attractive features, they are unable to provide a general purpose mechanism

for decision support. Probability theory, despite its axiomatic foundations, was until

recently, largely unused in expert systems due to the perceived intractability of inference
and the complexity of model creation. The major breakthrough as far as the application

of probability theory in expert systems was concerned, has been the development of
network representations that embody independence and causal relations. These belief
networks provide a mechanism for tractable inference using probability theory, but also
make use of expert knowledge in the construction of the network model. They facilitate
the combination of the statistical power of probability theory with domain expertise.

The expression of complex probabilistic relationships in the form of a directed graph and
the development of an efficient inference algorithm have resulted in research into both
the theory and applications of probability theory and decision theory, and raised the

possibility of a normative formalism for handling uncertainty in expert systems.

Different authors have explained and introduced belief networks in a number of

different ways. In this chapter we present an introduction starting from a considera¬
tion of the nature of causality and probabilistic independence. More rigorous math¬

ematical introductions are given by Pearl [Pearl 88b] and Neapolitan [Neapolitan 90].
A less formal introduction may be found in Morawski [Morawski 89a, Morawski 89b],
Charniak [Charniak 91] or Jensen [Jensen 93]. An introductory discussion of the more

complex issues, such as decision making and learning, is given by Andreassen et al

[Andreassen et al 91b]. This formalism is referred to by a variety of names in addition
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to belief networks, including, Bayesian networks, probabilistic inference diagrams, causal

networks, causal probabilistic networks, Bayesian belief networks and, in a more general

sense, influence diagrams.

4.1 Probability Theory

Probability theory provides a mechanism for reasoning about propositions, given uncer¬

tain evidence and noncategorical relationships between the evidence and the propositions.
In probability theory the probability of a proposition A, is denoted by P(A), and the

probability of a proposition A given some evidence K, by P(A \ K).

The three rules of Bayesian probability specify that:

0 < P(A) < 1 (4.1)

P(certainty) = 1 (4.2)

P(A or B) = P(A) + P(B) if A and B are mutually exclusive (4.3)

From the above rules it can be seen that:

P(A) + PhA) = 1

The basic mechanism for updating the probability of a proposition, H, given new evi¬

dence, e, is Bayes' Rule, which states:

=™ (4.4)

We can ignore the denominator, P(e), as it can be regarded as a normalising constant,

determined from the condition P(Hi I e) = 1- This results in equation 4.5, which
states that the belief in H after receiving evidence e is the product of the prior probability
of H (how probable we considered H before we received e) multiplied by the probability

that e would have been encountered given that H is true (how indicative e is of H).

P(H | e) = P(e | H)P(H) (4.5)

We can restate this relationship in terms of odds and likelihoods. The odds of a propo¬

sition are given by:

0(H) = P(//)Phff)
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To define equation 4.5 in terms of odds we divide it by the complementary form for

P(~>H I e), giving:
P(II | e) P(e | H) P(H)

P(^H | e) P{c | -.//) P(-Tf)
We can define the prior odds on II (the odds before e is considered) to be:

mm- P(H)°{H)-PFH)
and the likelihood ratio of e given H as:

P(e | H)
He | H) = -P(e | ^H)

then the posterior odds (the odds on H after considering e) are given by:

0(H\e)= P{("Hl')e)=L(e\H)0(H) (4.6)
Formulated in this way, Bayes' Rule states that the posterior odds on hypothesis H,

given evidence e, is the product of the prior odds on H and the likelihood ratio of e

given II.

This is in essence the inference algorithm for probability theory, but in the tradi¬
tional expression of probability theory the specification and calculation of inference in

a probabilistic model is intractable. The reason for this lies with the definition of the

probability of a proposition, P(A), or more correctly P(A | A"), where A' is the body of

background knowledge against which P(A) is being assessed. Conditional probabilities

require that the probabilistic relations between propositions within the event space be

quantified in some way. This can be done in terms of a joint distribution function, that

is a function which assigns a probability to every possible combination of propositions in

the event space. Whilst this approach may be applicable in cases where the event space

is small and the joint distribution function is easily available, in any complex domain it

becomes impractical.

Pearl's approach, now taken up by others [Henrion 89, Spiegelhalter & Lauritzen 90a,

Andreassen e( al 91b], is to reduce A", for a given proposition A, to only those propo¬

sitions which impact directly on A. By representing independencies explicitly through
the use of a network, the calculation of P(A | A") can be expressed locally in terms of

P(A | L), where L is the set of propositions which impact directly on A and which will
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typically be smaller than K, thereby rendering the calculations tractable. These lower
order relationships are implicitly represented within the joint distribution function but
it can be difficult to identify them unless is possible beforehand to state L for a given
A [Cheeseman 84]. Belief networks rely on experts to identify local causal relationships
between propositions, thereby determining the relevant lower order relationships. It
should be noted that the causal relationships identified by the expert are intended to be
real causal relationships inherent in the domain itself as opposed to ad-hoc structures

imposed on the domain for the sake of computational convenience.

4.2 Causality and Independence

The twin notions of causality and independence arc central to belief network approaches

to uncertainty management. Essentially probabilistic dependencies in the world, identi¬
fied by the existence of direct causal relationships between propositions, are represented

explicitly in the form of a network. This network serves both as a model of the domain
and as a mechanism for reasoning within the domain. This mechanism is derived from
the rules of probability theory and the independence relationships represented in the
network.

The identification of independencies in the domain to be modelled is essential for

the effective application of belief networks. By using these independencies it is possible
to express the joint distribution function over all states of all propositions in the do¬

main in terms of local conditional probabilities between neighbouring propositions in the

network. This greatly reduces the number of probabilities that have to be directly spec¬

ified and leads to a simple and elegant method for the propagation of evidence between

propositions.

Pearl refers to the links in his belief network as being causal links. This terminology
has not been universally accepted by others as they argue that the notion of causality is a

vague one. This is largely an issue of semantics and the links can be interpreted in a vari¬

ety of ways depending on the application [Lauritzen & Spiegelhalter 90, Neapolitan 90].
The underlying principle of independence remains the common factor. The notion of

causality is often useful in the analysis of a problem when establishing an appropriate

network model. A representation based on causation is attractive from the point of view
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of expert systems development as people often find it convenient and natural to express

relationships between events in causal terms. They are able to say that event A caused
event B or that event C was irrelevant to events B's happening, and so on, even though

they may not understand the mechanism underlying the causal connection. The sophis¬
tication of the concept of causality is belied by the apparent ease with which we use it.

The ability to abstract from the intricacies of a relationship to a simple notion of causal¬

ity is a powerful cognitive tool. At least part of its power derived from the observation
that causality allows one to to reason not only from cause to effect, but also from effect
to cause. This is particularly important when a diagnosis is to be made solely on the
basis of some observed evidence, for instance if we know that measles causes spots, and

we observe spots then we can identify measles as a possible cause of those spots. Our
belief that a cause is or was present can therefore be increased by the observation of its

effect, even though we may be unable to directly prove that the cause is or was present.

Because the notion of causality is so fundamental to the way people experience the

world, it is an ideal language to communicate knowledge both to and from an expert

system. This communication is further enhanced if the internal representation of the ex¬

pert system is itself expressed in terms of causal relationships. Nowhere is this more ably
demonstrated than in the process of knowledge acquisition. It is generally acknowledged
that people are poor estimators of probabilities [Tversky & Kahneman 90a], but they
are typically able to identify independence between propositions and causal orderings

among propositions.

4.3 Belief Networks

Belief networks use the notion of causality as the primary relationship in both the design
of the knowledge base and in the implementation of its reasoning mechanisms, which
makes them an ideal tool for expert systems.

A belief network represents propositions as nodes in a network. Each node, for

example measles, consists of a number of states, for example [present, absent}. These
states are exhaustive (there are no other states of measles that lie outwith the states

encompassed by present and absent) and mutually exclusive. This is not to suggest

that in the measles case we can only state that measles is present or absent, it merely
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means that the probability of measles must sum to one over the states present and

absent, so if measles was suspected then P(measles — present) might equal 0.7 in which
case P(measlcs = absent) = 0.3. One of the criticisms levelled at probability theory
is the relationship between the probability of a proposition and the negation of that

proposition.

There is no requirement that a node have binary states, so we could redefine the
states of measles to be {severe, moderate, mild, absent], the probability at the node
must still sum to one across the states. We can then introduce some evidence nodes —

that is symptoms that could be caused by measles. We will consider fever and spots.

In a belief network causality is represented by a directed link from cause to effect, as

shown in figure 4.1. Even this very simple network can be used to illustrate some of

I measles I

A

fever ) I spots

Figure 4.1: Diverging causal influences

the implications of causality. If we know nothing other than that spots are present this

will increase our belief that fever will also be found, as the presence of spots is evidence

for the presence of measles which in turn is known to cause fever. If, however we knew

that measles was present, then the presence or absence of spots has no bearing upon our

belief in fever. This relationship is termed conditional independence, spots and fever are

conditionally independent given measles. This causal influence is described as diverging.

Suppose we introduce another disease into our model, flu, which is known to cause

fever. This can be incorporated into our network, shown in figure 4.2. We now have

competing potential causes: if fever is observed, it could be due to flu or measles. If
we observe fever then our belief in both flu and measles will increase. However, if we

observe both fever and spots then our belief in measles will increase, but our belief in
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measles

v > <

fever spots

Figure 4.2: Diverging and converging causal influences

flu will decrease. Measles provides an explanation for the observed fever and explains

away the observation, making flu less likely. When nothing is known about fever, flu
and measles are independent, the occurrence of spots by itself should not change our

belief in flu. When evidence about fever is available then the notion of explaining away

becomes relevant. We say that flu and measles are conditionally dependent given fever.
The influence is described as converging.

Consider the model shown in figure 4.3, where fever is a cause of sweating. If flu is

( flu ) I measles )

*.—£ *.

fever ) I spots )

,»

( sweating

Figure 4.3: Diverging, converging and linear causal influences

known to be present then our belief in sweating will be increased as fever causes sweating

and flu is a cause of fever. If the state of fever is known with certainty then flu and

sweating are separated and our belief in flu cannot influence our belief in sweating and
vice versa. Flu and sweating are conditionally independent given fever. The influence
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is described as linear. It should be noted that this holds true only if the state of fever

is known with certainty. This is also the case with conditional independence between

diverging causal influences. Conditional dependence in converging causal influences holds
true in the absence of certain knowledge.

These relationships are the basic building blocks of belief networks and are formalised
in the work of Kim and Pearl [Kim & Pearl 83]. The proof that a directed acyclic graph
can properly embody independence relationships is complex and is not presented in full
here. The interested reader is referred to Pearl [Pearl 88b, chapter 3].

Pearl identifies five axiomatic conditions that must be satisfied by the relation "X is

independent of Y given Z", where X, Y and Z are three disjoint sets of variables taken
from a finite set of discrete random variables U. These axioms are labelled symmetry,

decomposition, weak union, contraction and intersection1. The intuitive interpretations

given to these axioms by Pearl, illustrated in figure 4.4 (where unshaded sets are inde¬

pendent of each other if they are separated by a given shaded set), are as follows:

Symmetry: if X io independent of Y given Z, then Y ic independent of X given Z.

Decomposition: if X is independent of Y and W together given Z, then X is inde¬

pendent of Y and W individually given Z.

Weak Union: if X is independent of Y given Z, and X is independent of W given

Z, then X is independent of Y given W and Z together.

Contraction: if X is independent of W given Y and Z together, and X is independent

of Y given Z, then X is independent of W given Z.

Intersection: if X is independent of Y when W is held constant, and X is independent
of W when Y is held constant, then X is independent of Y and W individually and Y
and W together.

From these axioms Pearl shows that directed acyclic graphs (DAGs) can embody

independence relationships based on the criterion of d-separation. If X, Y and Z are

three disjoint subsets of nodes from a DAG, then X is independent of Y given Z if Z

d-3cparate3 X from Y. This io true if for every node n on every path from a node in X to

a node in Y the following conditions hold (following the explanation given by Charniak
'The intersection axiom only holds under certain conditions.
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Figure 4.4: Graphical interpretation of axioms [Pearl 88b, page 86]

[Charniak 91]):

1. The relationship is linear or diverging and n is a member of Z.

2. The relationship is converging and neither n nor any of its descendants are in Z.

For example, in figure 4.5, where the paths indicate probabilistic dependence and the
arrows the direction of causality, if X = {2} and Y = {3} then they are d-separated by
Z = {1} as the path 2 <— 1 —♦ 3 is blocked by 1 6 Z, and the path 2 —> 4 <— 3 is blocked
because 4 and all its descendants are outwith Z. If Z = {1, 5} then path 2 —► 4 <— 3

would become active.

A belief network uses a DAG as its underlying representation, with the links repre¬

senting direct causal relationships. So far we have made no mention of the strength of
a causal link, for instance measles may cause fever only rarely, whereas flu may often

cause it. Given that our network model shows precisely which relationships must be

considered, e.g. flu and fever, and those which can be ignored e.g. flu and spots, we can

see that a considerable reduction in the number of probabilities that must be specified
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Figure 4.5: A DAG illustrating d-separation [Pearl 88b, page 118]

has been achieved.

The links are quantified with conditional probability matrices that specify the prob
abilistie relationship between the states of the child given the states of the parent. Each
node can calculate the belief across its states by combining the causal and diagnostic
evidence from its direct neighbours and the matrices that specify the relationship. Root
nodes of the network require prior probabilities in order to complete the probabilistic
model.

Having specified both the qualitative network structure and the quantitative prob
abilistic relationships, the network can now be used for inference. Consider again our

simple network model shown in figure 4.3. Evidence of sweating will be propagated to

fever, which must then propagate its updated belief to it3 direct neighbours. Clearly
the message propagated to sweating should not result in any change in belief at sweating

as no new evidence has been made available. The messages to flu and measles should

similarly not reflect any evidence back to the nodes they came from. The local prop¬

agation from a node to its direct neighbours, whenever it receives a message from one

of those neighbours (or a direct observation is made), can be performed asynchronously
and will result in a consistent, correct probability distribution across the network in a

time proportional to the length of the longest path. The only restriction is that there be
no cyclic paths in the network.
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4.4 Extensions

Thus far we have described a theoretically sound inference mechanism that can be applied
to a restricted class of network model. Whilst the generation of sound probabilistic
inferences is undoubtedly of value, we have shown in Chapter 2 that this is not in itself
sufficient for a medical expert system. Belief networks are relatively new on the expert

systems scene and so many of the important design issues are still to be resolved. In some

areas, such as widening the class of network models to which the inference mechanisms
can be applied, there has been a great deal of both interest and progress. In the following
sections we examine trends in belief network development with reference to those facilities
that will be required of a medical expert system.

4.5 Inference Algorithms

The inference algorithm described earlier placed severe restrictions on the structure of
the underlying network. There are three important classes of belief network structure,

illustrated in figure 4.6:

1. Singly connected — where there is at most one path between any two nodes in the
network.

2. Multiply connected — where there is more than one path between a pair of nodes

within the network, but no node has a directed path to itself.

3. Cyclic — where a node has a directed path to itself.

Cyclic networks are generally accepted as failing outwith the domain of application
of belief networks [Pearl 88b, page 195], but at least one application has included cycles
in the model, resolving them via heuristic methods [Long 89] (see page 218). Our work,

presented in Chapter 7, also uses cyclic networks.

The algorithms for probabilistic inference so far described are only mathematically
correct when applied to singly connected networks. As many real world domains cannot

adequately be modelled within the singly connected restriction, algorithms are required

for the more complex multiply connected networks.
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Figure 4.6: Three classes of network topology

However, probabilistic inference in arbitrary belief networks has been shown to be

NP-hard (no general purpose, polynomial time algorithm exists) [Cooper 90]. This

suggests that research efforts should be directed towards the development of approxi¬

mate inference algorithms and more particularly, special-case algorithms, as the general
task of approximating inference in a belief network has also been shown to be NP-hard

[Dagum & Luby 93].

Due partly to the prevalence of domains requiring multiply connected networks, and

partially due to efficiency considerations, almost all complex belief network applications

rely on either a clique-tree or stochastic simulation method for inference. Stochastic

simulation methods are also attractive from the point of view of resource bounded com¬

putation as they produce partial solutions.

4.5.1 Multiply Connected Networks.

A multiply connected network is one in which there are cycles in the underlying, undi¬
rected network, i.e. there is more than one path between a particular pair of nodes.
These are distinct from cyclic networks in which a node can be one of its own causal

predecessors, i.e. there is a directed causal path between the node and itself. Undirected

cycles in multiply connected networks are referred to as loops. A network containing

loops causes problems on two accounts:
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Computational problem — in a communication scheme based on local computations

it is possible that a message could circle indefinitely around a loop.

Consistency problem — the Bayesian foundation of belief network algorithms re-

quires that each item of evidence be assimilated at a node only once. By permitting

loops we are providing alternative routes for an item of data to reach a node on

that loop (double counting). As a result of this, the calculations performed within
the network can lead to incorrect probability assignments at the nodes.

In some cases it may be possible to design out the loops at the network specifica¬
tion level by simplifying the underlying model. Often this will not be possible without

compromising the representational power of the model. It should be remembered that

any loops in the causal network are reflecting complexity that is inherent in the domain,

they are not a creation of causal network models per se.

Ideally any solution to this problem should attempt to retain the power of the existing

algorithms, i.e. local computations and message passing mechanism based on network
structure.

Three methods will be considered here; clustering; conditioning; and stochastic simu¬

lation. The first two of these methods break, or simulate the breaking of, loops within the

network, rendering it singly connected and allowing the existing algorithm to be applied
without modification. Clustering can also be used as a probabilistic inference mechanism

using algorithms developed by Lauritzen and Spiegelhalter [Lauritzen k Spiegelhalter 90].
Stochastic simulation uses the network to generate possible world states, the frequency

of occurrence of events can then be used to estimate probabilities of those events.

4.5.2 Clustering/Clique-tree Propagation.

Clustering is a method whereby nodes in the original belief network are combined to¬

gether into clusters, forming a new network devoid of loops. For a given belief network
there may be many possible sets of clusters that could be formed. The most popular

method for generating clusters is based on junction trees [Olesen el al 89, Jensen el al 90c,

Lauritzen & Spiegelhalter 90, Andreassen et al 91b],

A junction tree is formed by the following steps, as illustrated in figure 4.7:
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1. Form the "moral" graph. This is done by inserting a link between all parents in
the network with a common child, and dropping the directions from the links.

2. Triangulate the moral graph. All cycles of length greater than 3 are broken by the
insertion of new links.

3. Identify cliques in triangulated graph (a clique is a maximal set of nodes all of
which are pairwise linked)

4. Introduce links between the cliques such that a tree is formed with the property

that for all pairs of cliques that contain a common set of nodes, each clique on the

unique path between them also contains that set of nodes.

Once the junction tree is formed it can be used to propagate inference. There are

several ways that this can be achieved, for example using Pearl's algorithms [Pearl 88b],
Lauritzen and Spiegelhalter's [Lauritzen & Spiegelhalter 90], or those of Jensen et al

[Andreassen et al 87, Jensen et al 90a, Jensen et al 90c],

As an example clique-tree propagation algorithm, consider that described by An¬

dreassen et al [Andreassen et al 91b]. A simple, four node network shown on the left
of figure 4.8 is converted into the junction tree shown on the right. The junction

tree contains two cliques, CI and C2, and a separation set, S that contains the nodes

that are common to the cliques it separates. An initial belief table containing the

joint probability distribution over the states of the nodes in each clique is calculated

given the prior probabilities and the conditional probability tables, i.e. BEL(Cl) =

P(Flu) ■ P(Throat Infection) • P(Fever \ Flu, Throat Infection). The initial be¬
lief table for S can be calculated as the marginal distribution of either clique, e.g.

BEL(S) = J2Fevcr BEL(Cl). The junction tree is now consistent and the probability of
a node can be calculated by marginalising over any clique or separation set containing

that node, e.g. P(Fever) = ^,Flu Throal Inl,clion BEL(Cl).
If Fever is observed, the belief table of CI is multiplied by the evidence vector and the

resulting belief table is normalised. To propagate this evidence to C2 a new separation

set belief table, S' is calculated by marginalisation of CI with respect to Fever. The belief

table of C2 is updated by multiplying it by the ratio S'/S. At this point the network

is again consistent. Full details of this particular mechanism are given by Jensen et al
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Figure 4.7: The creation of a junction tree [Olesen et al 89, page 393]

Flu

Fever

Throat Infection I

Sore Throat

Flu
( Throat Infection )

Fever

Flu
Throat Infection

Flu

( Throat Infection i
Sore Throat C2

Figure 4.8: An example network and junction tree [Andreassen et al 91b]
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[Jensen et al 90a, Jensen et aI 90c].

The critical step in this method is the triangulation of the moral graph as the com¬

putational efficiency of the resultant junction tree depends on the quality of the trian¬

gulation. Different triangulations of the same graph can result in different numbers of

cliques and in cliques of different sizes. Efficient computation requires a triangulation
that results in the minimum overall table size. The table size for a clique is the product
of the number of 3tatc3 in the nodes of the clique. Therefore the size of the table grows

exponentially with the size of the clique [Olesen et al 89, page 310].

It has been proved that finding the triangulation with the minimum fill-in (that which

requires the minimum number of new links to be added) is NP-complete. Olesen et al

[Olesen el al 89] have conjectured that finding the triangulation with the minimum total
table size is also NP-complete. Researchers have come up with a variety of heuristic

techniques which result in minimal triangulations [Kjaerulff 90] and other methods for
node aggregation [Chang & Fung 89].

4.5.3 Conditioning.

This method is based on conditioning the values of a set of nodes called the loop cutset.

Conditioning a node simply involves fixing the value of that node such that one of its
states is certain. The loop cutset is a set of nodes such that conditioning the nodes renders

the network functionally singly connected. This is possible because of the blocking
conditions that are inherent in the belief network model. The blocking conditions arise

from the underlying formalism:

1. A fixed value node (i.e. a conditioned one) does not send information from its
children to its parents or from its parents to its children.

2. A fixed value node does not send information from one child to another

3. A node whose value is not fixed and that does not have any fixed value descendants

does not send information from one of its parents to any other parent.

If the value of a cutset node for a particular loop is fixed, then because of the blocking

conditions, that loop will be rendered singly connected and the the problems outlined
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earlier will no longer apply. In order to be able to apply Pearl's algorithm to a multiply

connected network we must satisfy the loop cutset condition, "Instantiate at least one

node from every loop in the belief network such that this node is child to no more than

one other node in the same loop" [Suermondt & Cooper 90].

Each unique set of conditioning values for the cutset nodes can be treated as a dis¬
tinct singly connected network and beliefs can be calculated using standard propagation

algorithms. The individual results must be weighted by the joint probability of the par¬

ticular conditioning values used, and then summed to obtain the total belief. The joint

probability of the conditioning values can be obtained during initialisation, and updated
as further evidence is collected [Suermondt & Cooper 89].

Because each possible combination of conditioning values for nodes in the loop cutset

must be considered, it is important to find a minimal loop cutset, defined as "the set of
nodes satisfying the requirements of the method of conditioning such that the product
of the number of values in these nodes is minimal" [Suermondt & Cooper 90]. Finding a

minimal loop cutset is is NP-hard and heuristic methods are used to find near minimal

cutsets [Stillman 91].

As each possible set of conditioning values must be processed, the task could be
executed in parallel, with each set represented by a separate network. Conditioning
is a method that is suitable for networks which are not highly connected and which
therefore have a small loop cutset. With increasing cutset size the method rapidly
becomes impractical as the computational time is exponential relative to the number of

nodes in the cutset.

4.5.4 Stochastic Simulation.

Stochastic simulation (or Monte Carlo Methods) uses the belief network as a model from
which possible scenarios can be generated. The probability of a particular set of events

occurring can be determined from the fraction of randomly generated scenarios that
contain that set of events.

Pearl [Pearl 86b, Pearl 88b], has developed a two phase stochastic simulation method
in order to efficiently handle cases where the values of some nodes are known prior to

the simulation.
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Given a belief network:

1. Fix observed nodes to their known states.

2. Assign arbitrary initial states to unobserved variables.

3. Let each variable in succession choose another state in accordance with the con¬

ditional probability of that variable given the state of the other variables in its

neighbourhood (defined below).

4. Once each non-fixed node has calculated a state for itself, a complete coherent

scenario has been generated.

5. Repeat from 2 until sufficient scenarios have been generated.

The probability of a given value at a node can be calculated cither as the fraction of
times the value occurred during simulation, or by taking the average of the conditional

probabilities computed for the occurrence of that value during the simulation. The
second of these normally yields faster convergence.

Due to the blocking conditions mentioned earlier, the neighbourhood of nodes that
need to be considered when performing step 3 (its Markov blanket), consists of those
variables who, once their statC3 were known, would render the node under examination

independent of the rest of the network.

The Markov blanket of a node X consists of:

1. The parents of X.

2. The children of X.

3. The parents of those children of X that are neither parents nor children of X

themselves.

The probabilities of a node conditioned on the states of its Markov blanket neighbours

can be calculated from the conditional probability matrices in the belief network and the

values of the instantiated neighbours. Typically many runs will be required before the

probabilities generated from the simulation converge on the true probabilities. Each
simulation run is composed of only N -I- L steps (where L is the number of links and
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N the number of nodes) and computation time is determined mainly by the degree of

accuracy required. This property makes stochastic simulation ideal in situations with

highly connected networks where an estimate of the probabilities is sufficient. Simulation

approaches must also ensure that the distributions generated correspond closely to the
true distribution and that a large enough set of trials is conducted so that sampling
errors are avoided [Chavez &: Cooper 90].

4.5.5 Discussion of Inference Algorithms

Of the three methods for avoiding the problem of loops in belief networks there is none

that stands out as the perfect solution. Both conditioning and clustering rely on heuristic

algorithms which can result in inefficient solutions. Stochastic simulation avoids this

problem but requires a large number of computations in order to converge on the true

probabilities. In a domain in which new information is continually arriving, stochastic
simulation will require an even larger number of simulations.

The choice of method clearly depends on the application domain which determines

the resource constraints and the required accuracy of the results. In some domains
a combination of methods may provide a better solution than any individual method.

A combination of conditioning and clique-tree propagation has been used with success

[Suermondt et al 91], due to the specific network structure. It may be that certain net¬

work structures will prove common across domains and that a set of standard approaches

may be appropriate.

4.6 Network Modelling

The most significant development in network models has been the move to multiply
connected networks, discussed in section 4.5. There have also been a number of relatively

minor developments which influence current network modelling.

It was recognised early in the development of belief networks, that the specification
of conditional probability matrices was potentially a major burden in network modelling.

This led to the introduction of canonical models of multicausal interactions (Pearl 88b,

page 184]. The most popular of these has proved to be the noisy-OR gate, which can

be found in many applications. The noisy-OR is a probabilistic generalisation of the
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standard Boolean OR, each cauoe having an independent probability of being sufficient to

cause the effect, [Horvitz et al 88, page 275]. The use of the noisy-AND gate is reported
less frequently (for example in BaRT [Booker et n/90]), perhaps suggesting that the

noisy OR is more general, or the current application domains have a common underlying
causal structure. Several variants of the noisy OR gate can be found in the literature,

probably the most sophisticated in modelling terms is the generalised noisy-OR gate

[Mention 89, Diez fc Mira 94]. This model can include leak probabilities which allow for
the probability of an effect occurring in the absence of any modelled cause. It can also
include multiple states across the effect variable. The use of canonical models greatly

reduces the number of probability assessments required when model building.

Another frequently reported approximation for the reduction of network model com¬

plexity, is the use of two Etate nodes. The question of the granularity of model reprecen

tations is indicative of the general need to compromise between detail and tractability.

Traditionally the granularity of the network was assumed to be static, but more recent

work has focussed on the possibility of dynamically adjusting the granularity of nodes

[Chang & Fung 91, Provan & Clarke 93]. It is suggested that the opportunistic refine¬
ment and coarsening of node states could improve both the accuracy and efficiency of
the inference procedure. A role is also posited in the knowledge acquisition task.

One of the limiting factors in belief network models is the use of nodes with discrete
states when modelling continuous variables. The moot common approach to this problem
is to divide the continuous range into discrete regions, typically grouping those parts of
the range that arc identical with respect to inference or decision making. A propagation
scheme solely for continuous variables, under limiting assumptions, is presented by Pearl

[Pearl 88b, pages 344 357] and a scheme for mixed networks, under similar limitations,
is discussed by Olesen [Olesen 93].

There is little research into temporal reasoning with belief networks [Berzuini 90,

page 16]. Moat of the current approaches rely on the implicit inclusion of temporal
relationships within the network structure. The most popular form of this is network

duplication, in which the temporal axis of the problem is discretised into a number of

time-slices or intervals. Each of these time-slices is represented by a distinct portion of the

belief network. The results of inference at a particular timedice A' are influenced only
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by those of time-slice A'-1 and influence those of time-slice A'+1. In some applications
the time-slice networks are identical, for example in SWAN (see page '246) as illustrated
in figure 4.9. In SWAN each time-slice contains a complete network that models glucose
metabolism over a period of one hour. The results of this network are then used as inputs
into an identical network representing the subsequent time-slice hour. Networks can be
linked together in this way to provide a model covering a period of several hours. In other
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Figure 4.9: SWAN — time-slice model for glucose metabolism [Andreassen 94, page 106]

systems the discretisation is defined not with respect to the temporal axis, but according
to the occurrence of events, as illustrated in figure 4.10. In these event-sliced networks,

partial duplication is supplemented by nodes representing the events by which the event-

slice is defined and events specific to that event-slice. Clearly these discrete network

duplication models will not be applicable in all domains. Typically this approach assumes

that the evidence is constant over the slice and that slices have definite transition points

[Provan & Clarke 93]. An alternative to the static duplication of network structure is a

dynamic approach. In the DYNASTY system [Provan & Clarke 93] influence diagrams
are dynamically created, replaced and refined over time. This is potentially more efficient

than wholesale duplication.
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[Andreassen et al 91b, page 6]

Work on continuous-time representations is presented by Berzuini [Berzuini 90]. Two
methods are discussed, the first includes nodes in the network that represent 'event-

occurrence times', and nodes that represent the 'state' of the system at these times. The

second method considers interactions between events occurring at certain 'dates'. Some

relationships (causal, inhibitive and competitive) are defined between dates and can be

coherently embedded within a belief network.

4.7 Network Creation

One of the criticisms often levelled against belief networks is their reliance on subjec¬

tive probabilities. Regardless of concerns over the use of subjective probabilities, belief

networks typically have to rely on them as the objective probabilities are unavailable

or inaccessible. Several different approaches for improving the probability distributions

used in network models have been investigated.

Some research into the generation of belief networks directly from databases of statis¬

tics has been conducted [Pearl & Dechter 89, Cooper & Herskovits 92], particularly in

the areas of ranking belief network structures according to their posterior probability

relative to a database of examples, and deriving numerical probabilities from a database,
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given the belief network structure. The ALARM system (see page 214) containing 46
arcs and 37 nodes of between two and four states has been used to test the K2 algorithm

[Cooper fe llerskovits 92). The ALARM network was used to generate 10,000 example
cases used by K2, along with a partial ordering among the nodes, to create a new net¬

work. The network created by K2 was identical to the ALARM network except for one

missing and one additional link. Whilst such approaches are still in the developmental

stage, the ability to generate belief networks directly from data would be a powerful one.

Testing and refinement of the network after creation is another option, typically

relying on experts to provide the initial structural and probabilistic model and us¬

ing subsequent data to refine the model [Sucar et al 93]. This relies on the availabil¬

ity of monitors to test the model during use. Some are presented by Cowell et al

[Cowell et al 93b). These monitors can then be used to refine the structural and/or

probabilistic models [Spiegelhalter & Lauritzen 90a, Spiegelhalter & Lauritzen 90b,

Spiegelhalter & Cowell 92, Cowell et al 93b, Sucar & Gillies 94).

Other research has concentrated on improving the way in which the models are ob¬
tained from the experts. Several tools for creating or eliciting decision structures have
been developed, including work described by Leal and Pearl [Leal & Pearl 77], KNET

[Chavez & Cooper 88], DAVID [Shachter 88], BaRT [Booker et al 90] and GAMEES

[Bellazzi et al 91a]. A method of decomposing the task of constructing a belief network
into the construction of small locally defined networks, based on the notion of similarity

networks is described by Ileckerman [Heckerman 90b],

4.8 Decision Making

Decision theory is a normative (though not descriptive) method for decision making
under uncertainty [North 90]. It is based jointly on the axioms of probability theory and

utility theory. It formalises the relationship between preferences, relative valuations for

possible world states, and decisions, irrevocable allocations of resources. The axioms of

utility theory are [Horvitz et al 88]:

Orderability — all outcomes can be compared, given outcomes x and y, a decision

maker either prefers outcome x to y, y to x, or is indifferent.
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Transitivity — if a decision maker prefers x to y and prefers y to ; then they also

prefer x to z.

Monotonicity — given two lotteries with the same outcomes but different probabilities,
a decision maker chooses the lottery with the higher probability of the preferred
outcome.

Decomposability — a decision maker is indifferent between two lotteries that have the

same outcomes with the same probabilities, regardless of differences in the internal
structure of the lotteries.

Substitutability — if a decision maker is indifferent between a lottery and some cer¬

tain outcome, then substituting one for the other as an outcome in another more

complex lottery will not affect the decision maker's preference for that lottery.

Continuity — if a decision maker prefers outcome x to y and y to z, then there is

some probability p for which the decision maker is indifferent between getting y

for certain and a lottery with a chance p of getting x, the most preferred outcome,

and a (1 - p) chance of getting z, the least preferred.

The axioms define a scalar utility function U(x,d) which assigns a number on a cardinal
scale to each outcome x and decision d, indicating its relative desirability. When x

is uncertain the preferred decisions are those that maximise the expected utility over

the probability distribution for x. Decision theory essentially states that given a set of

preference utilities, a set of probability distributions denoting beliefs, and a set of decision

alternatives, the decision maker should choose the course of action that maximises the

expected utility [Horvitz et al 88].

Belief networks and decision theory come together in the influence diagram approach

to decision modeling. An influence diagram is a graphical, network based representation
for decision making, as illustrated in figure 4.11.
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Figure 4.11: Influence diagram for a patient with heart disease
[Henrion et al 91, page 72]

The node types in an influence diagram are:

Decision nodes — rectangular nodes representing the actions available to the decision
maker.

Chance nodes — circular or oval nodes representing stochastic chance (single line) and
deterministic chance (double line). A stochastic node's outcome is a probabilistic
function of its predecessors. A deterministic node's outcome is determined with

certainty by its predecessors.

Value nodes — diamond nodes representing the decision maker's preferences.

A belief network is a special-case influence diagram containing only chance nodes. This

relationship between influence diagrams and belief networks allows the use of decision

theory as a decision making mechanism for belief networks. Many areas of research

into influence diagrams are applicable to belief networks, particularly those that embody

decision problems. Interesting topics include generating explanations of influence dia¬

grams [Langlotz et al 88b, Langlotz & Shortliffe 90, Jimison 90, Jimison et al 92], tools
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for automatic and manual influence diagram construction [Sonnenberg ci al 94] (see also
section 4.7), and the use of belief networks as influence diagrams [Cooper 88].

4.9 Control

There are two main aspects of control in belief networks, the specification of the network
model and the propagation of inference. The mathematical foundation of belief networks
means that control decisions can be taken and implemented in a principled manner, in

particular:

• A variety of exact and approximate inference mechanisms are available.

• Many approximate inference mechanisms produce partial results.

• Networks can be dynamically refined and coarsened.

• Networks can be created incrementally.

• Networks for classes of problems can be pregenerated and stored.

• The networks can contain influence diagrams.

• The results of network inference are sound for decision making purposes.

• Different types of inference are appropriate for different network models.

This gives belief networks a great deal of flexibility with respect to the control that can

be exerted.

The Protos system (see page 47) has been adapted to perform metareasoning about
the use of belief networks to solve problems under resource constraints [Horvitz 89,
Ilorvitz et al 89a, Horvitz et al 89b, Horvitz 90]. Belief networks are ideal inference
mechanisms for the Protos approach for the reasons given above.

The BaRT system [Musman et al 90] uses a hierarchical taxonomy of belief networks
in order to prune the search space. The transition between network models within the

taxonomy is made on the basis of the results of inference at the current level. Evidence

gathering is prioritised on the basis of its effects on the belief of a dynamic target node.
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The IDEAL system [Breese & Horvitz 91] considers the task of reformulating belief
networks into clique-trees under different value functions, figure 4.1*2. Evaluation using

1 Quadratic
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> |

Exponential
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Figure 4.12: Value/time functions used in the evaluation of IDEAL
[Breese fc Horvitz 91, page 141]

these different value functions, showed that under certain circumstances, time spent on

forming alternative clique-trees was more valuable than simply opting to use the first

clique-tree generated. The authors suggest that the kind of techniques they develop could
lead to optimal control of the dynamic construction and solution of belief networks.

The ADRIES/SUCCESSOR system [Levitt 88, Binford et al 89, Levitt et al 90a,
Levitt et al 90b] controls the dynamic creation of influence diagrams for efficient, oppor¬

tunistic reasoning and decision making. A similar approach is adopted in the DYNASTY

system [Provan & Clarke 93], which dynamically constructs pruned influence diagrams
over time using sensitivity analysis. This sensitivity is defined with respect to decision

equivalence, the degree to which the utilities of actions differ between models of adjacent

time intervals. It also makes use of refinement and coarsening of nodes states, which is

discussed in greater detail by Chang and Fung [Chang & Fung 91].

Network pruning can be applied in cases where it is possible to identify a subset of

nodes of interest, the query nodes, Q. Pruning the network involves finding the smallest

subgraphs that are computationally equivalent with respect to Q, given a particular
set of evidence. The condition for computational equivalence is that the probabilities
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calculated at Q from the subgraphs are identical to those calculated from the complete
network. A method based on d-separation (see page 69) and the recursive pruning
of leaf nodes has been proposed [Baker & Boult 91] and is illustrated in figure 4.13.
Pruning using d-separation involves finding the set of nodes d-separated from the query

nodes by the evidence nodes, providing the evidence is known with certainty. Leaf nodes
without evidence, so called barren nodes, can be recursively removed without altering the

computation at the query nodes, regardless of whether or not they are d-separated from
the query nodes. Propagation through these subgraphs is both necessary and sufficient

1 d-separalion l ) recursive pruning
based pruning of leaf nodes

Legend

# Query
^ Evidence

Figure 4.13: Pruning networks for efficient computation [Baker & Boult 91, page 227]

for the calculation of the query node probabilities, as the subgraphs are minimal with

respect to topological criteria. This method will be less efficient when evidence arrives

incrementally, unless efficient procedures for restoring pruned nodes to the subgraphs
can be devised.

A method conceptually related to network pruning is relevance-based propagation

[Pinto 86] in which the decision of whether or not to propagate a piece of evidence

through the network is based on its effect with respect to reducing uncertainty at some

pre-defined target node. This measure also allows priorities to be assigned to evidence

nodes and decisions to be made regarding the halting of evidence collection.

Somewhat further removed from the notion of pruning is that of precomputation

[Herskovits & Cooper 91a], In situations where a small number of typical cases (sets of

findings) account for a large proportion of the expected use of the system, efficiency can
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be improved by precomputing the results of these cases. When a query is made of the

network, if its details match those of a precomputed case, the result of that case can

be returned without further computation. Precomputation would be most applicable in
situations where standard sets of evidence were used in a time-critical application, for

example in patient monitoring. The selection of cases for precomputation can be made

according to a number of criteria, such as expected evidence patterns, utility, or combina¬
tions of criteria. A similar approach based on the incremental construction of an instance
of a prestored class of probabilistic model, specialised by parameters describing the cur¬

rent problem, has been proposed [Goldman &; Charniak 91, Goldman & Charniak 93].

Many of the above methods assume that the network contains a small set of nodes

in which the user is interested, and a larger number of nodes in which, aside from their
influence on inference, the user is disinterested. This assumption suggests that such
methods will be of particular use in medical applications where the number of diagnostic
nodes is generally small relative to the evidence and intermediate nodes. However, it

should aho be noted that in the medical domain it is often vitally important to identify

extremely rare cases and any form of pruning must ensure that rare events are not

removed on the basis of their low prior probabilities.

4.10 Interfaces

Although belief networks are being adopted into mainstream expert systems, the ma¬

jority of the work is still of a developmental nature. Perhaps as a result of this little
consideration has been paid to the design of interfaces for belief networks. In cases where
the belief network forms only a part of the expert system, the problem of interface design
for belief networks will be subsumed by the general task of interface design. Those belief
networks that have had some interface developed point towards a general approach that
can be expected to underlie many future belief network interfaces. The general approach
has two main guiding principles:

• The network structure is meaningful in domain terms and should therefore form

the qualitative aspect of the interface.
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• The network structure reflects probabilistic, causal relationships, therefore the

quantitative information presented to the user will be based on the probabilistic
and causal parameters in the network.

Assuming these principles hold true, and given the trends in graphical computing, belief
network interfaces are likely to be graphics based, using a representation of the belief
network as an interactive map of the domain.

MUNIN (see page 231) communicates with the user through what its authors describe
as a spread-sheet like graphical interface. This interface uses the network model for its
basic structure, with the nodes and links being represented graphically on the screen.

Each node is represented by a box containing a list of its states. The belief at each node
is represented as a bar chart across the states. When categorical evidence is entered into
the network, either from the user or directly from an automatic system, it is represented

by a broken bar, as illustrated in figure 4.14. The interface is also designed to provide

ANODE
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Figure 4.14: MUNIN — probabilistic and categorical node displays
[Jensen et al 87a, page 6]

some simple explanation facilities. One of these explanation facilities is illustrated in fig¬
ure 4.15. It shows the evidence that impacts upon the focal node, MUP.CONCLUSION,

from its direct neighbours. The evidence at these neighbours is expressed in terms of
the states of the focal node. In this way the user can see the relative contributions of

these neighbours. Another facility is illustrated in figure 4.16, in which the support that

each state in MUP.CONCLUSION gets from each state of MU.STRUCTURE is shown.

This allows the user to see the transformation of evidence between state sets. These

ANODE
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Figure 4.15: MUNIN — relative contributions of neighbouring nodes
[Jensen et al 87a, page 8]
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Figure 4.16: MUNIN — evidence transformation between state sets
[Jensen et al 87a, page 8]
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type of graphical tools allow the user to browse the network, examining the relationships
between the nodes. The use of a standard presentation format allows the user to swiftly
become familiar with the way that information is communicated by the interface. This

graphical interface allows the user to interact with the network by incrementally entering
and retracting evidence. In this way the user can examine different scenarios, using the
network as a tool for exploration.

In the GAMEES system [Bellazzi et al 91a], the authors view the network as a prob¬
abilistic knowledge base and believe that constructing the network is a knowledge elicita-
tion process which should ideally be executed jointly and interactively by the knowledge

engineer and the domain expert. In order to facilitate this type of interaction, GAMEES

incorporates a graphical interface which enables the user to interactively construct and
execute belief networks and influence diagrams. This allows easy modification of the

model, encouraging exploration of the model and incremental model development. The
user is also able to experiment with different propagation methods. The graphical in¬
terface allows network creation through a combination of predefined node formats and
menu and text-based format creation. Node types are arranged in a frame based system

which supports inheritance of format slots. Different node types are displayed as differ¬

ent shapes allowing easy identification. The beliefs at the nodes are not usually shown,
but the user can select target nodes' beliefs for display. The beliefs are displayed as both

a histogram across the states and as a numerical value. Part of the interface is shown in

figure 4.17.

The Angina Communication Tool [.Jimison 90, Jimison et al 92] is a decision theoretic

system with specific emphasis on the communication of information to the patient and

physician. Among other ideas, they suggest the use of three metrics that are used to

modify the graphical display:

• Value of Contribution in terms of the change in expected utility based on the

patient specific model over the generic model.

• Deviation of patient specific variable values from the mean of the generic model
distribution.
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Figure 4.17: GAMEES — graphical interface [Bellazzi et al 91a, page 188]

• Sensitivity of a decision based on changes within the patient specific distribution
for a variable.

On the bases of these metrics, the decision network can be collapsed and expanded to re¬

flect important aspects of the patient specific decision model. The display of the network

can be enhanced by including this information, and information about the strengths of

probabilistic dependencies. This is illustrated schematically in figure 4.18.

4.11 Key Points

• Belief networks embody the normative theory of probability. Traditionally proba¬

bility theory has not been used for uncertain reasoning in expert systems due to

its apparent intractability. Belief networks rely heavily on the existence of condi¬

tional independences within the domain as established by a domain expert. This

is exploited in order to reduce the number of probabilities that must be specified.

• Belief network inference is tractable because it is based on local information and

asynchronous message passing.
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[Jimison et al 92, page 200]

Belief networks are able to perform both diagnostic (symptoms to causes) and
causal (causes to effects) reasoning.

Decision theory is a normative method for decision making based on utility theory
and probability theory. It provides a powerful mechanism for decision making in

belief networks.

The use of probability theory facilitates the application of a wide range of statistical

techniques that cannot be applied to ad hoc formalisms.

For restricted classes of belief network model exact, efficient inference mechanisms

exist. The problem of inference in an arbitrary belief network is NP hard. A

variety of approximate inference techniques have been developed. The problem of

approximate inference in an arbitrary belief network is also NP hard.

The variety of exact and approximate inference algorithms, and the fact that many

of the approximate algorithms produce partial results, makes belief networks ideal
for use in resource bounded environments where complex metareasoning is appro¬

priate.

A belief network model's structure is often easily and intuitively expressed by a

domain expert. The causal structure is an intuitively meaningful representation,

making it an ideal communication tool.
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• The quantitative probabilistic data is often difficult for a domain expert to assess.

There are many reasons for doubting the accuracy of numerical estimates provided
by experts. The derivation of the required numbers directly from data, or refine¬
ment of initial subjective estimates in the light of experience address this concern

to a certain degree. Probabilities are not necessarily a meaningful tool for human
communication.

• Tools for verifying the qualitative and quantitative components of a belief network
model are being developed, lessening the potential effects of domain expert error.
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Chapter 5

Applications — Overview

Many of the developments discussed in the previous chapter have been application driven.

Belief networks are being applied to problems in a variety of domains, in Appendix A we

present a gazetteer of 21 projects that apply belief networks to the biomedical domain.
The most popular biomedical application is diagnosis, often combined with some decision

making task. The size of the networks used varies from five nodes to over a thousand,

indicating that the method scales to complex domains. In the less complex domains
there are a number of applications that use Pearl's algorithm for inference in singly con¬

nected networks. In multiply connected networks some form of clique-tree propagation

is typically employed.

Given the importance of imaging in the biomedical domain, a larger number of image-
based applications might have been expected. Some image-based work has been per¬

formed in other domains, the ADRIES/SUCCESSORsystem [Levitt 88, Binford et al 89,

Levitt et al 90a, Levitt et al 90b] for instance, is concerned with the development of a

system for model-based machine vision using influence diagrams. The influence diagram

is used both to control the processing actions as well as propagating the evidence on

which those actions are taken. Work along similar lines includes a system based on the

HUGIN shell [Jensen et al 90b] and the TEA-1 system [Rimey & Brown 92].

The challenges of biomedical image processing are as difficult as those faced in any

area of image interpretation. In the area of representation alone there are problems of
fundamental importance for image interpretation as a whole. Biological objects exhibit

a wide variety of forms both across classes of object (e.g. between teeth and hearts)
and within classes (e.g. biological variation between hearts). They are often flexible
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and deformable and of different structure at different levels of resolution. Objects of
interest may vary their shape with time, either due to function (e.g. the heart beating)
or development (e.g. growth or decay). There can be exceptions to the way an object

appears due to medical conditions and the same object may appear differently or may

not appear at all depending on the imaging modality used.

The interpretation of a biomedical image is almost always an expert task, requiring

knowledge of different domains to be used together in an appropriate way. In many cases

the interpretation involves more than simply instantiating a model within an image,

rather it involves making an assessment of how good the match is based on incomplete
evidence from the image, mediated by uncertain background information which may

determine possible alternative sub-models which account more satisfactorily for image

features, circumstances under which model features will not be in the image and how

likely this is, and so on. How knowledge of medical conditions, imaging modalities,

patient history and so on is to be represented and used in conjunction with object

representations to arrive at an interpretation for an image and to make judgements on

the basis of that interpretation are questions of great importance.

In a diagnosis process dependent on expert image interpretation the rewards of au¬

tomation are obvious. Due to the shortage of experts relative to the work load, the

interpretation task will tend to become a bottleneck in the diagnostic process both in

terms of time and money. An automated system could speed up the time between the

images being taken and the results being available, it could perform measurements not

normally performed due to time factors or the difficulty in taking the measurement accu¬

rately, and it could perform diagnostic tasks based on its own measurements. These types

of benefits could enhance current diagnostic practice and make a wider range of tests

economical. In practice though, it is likely to be many years before a computer-based

diagnosis system is fast enough and accurate enough to be used in a clinical environment.

Given that the domain of biomedical image interpretation is in itself vast and that

it is the general principles of the applicability of belief networks that is the main area

of interest, two specific applications have been selected. The first of these is the task

of locating the outline of the fetal head in a particular class of ultrasound scan that

is routinely taken. This task emphasises the use of belief networks at a relatively low
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level of the image interpretation process. The second application is the classification of
cervical smears as part of an automated pre-screening system. This task is concerned
with incremental decision making at a high level in the image interpretation process.

The biological background, clinical motivation and an outline of the concept behind the
belief network approach to each of these tasks is presented below.

5.1 Fetal Ultrasound

The task of fetal ultrasound interpretation is interesting for a number of reasons. Firstly,
it is very much an expert vision task, requiring the identification and accurate measure¬

ment of physiological structures. Secondly, if the process could be automated it would
make scanning more widely available. Lack of trained personnel, time and equipment

have been cited [Pearce & Campbell 84] as factors preventing all pregnant women from

having detailed ultrasound scans. Thirdly, fetal ultrasound is an important clinical tool

allowing a large number of fetal conditions to be detected. Current techniques often
involve taking accurate measurements from ultrasound scans but the type and accuracy

of the measurements is limited by time and repeatability constraints. Complex measure¬

ments, such as surface areas and volumes, could more easily and accurately be performed

by computers, which could also provide three-dimensional visualisation facilities. Such

developments could greatly enhance diagnosis based on ultrasound scans. Fourthly, it

raises a number of very hard problems in terms of how a computer can represent the re¬

quired uncertain expert knowledge and deploy it in a productive way. Finally the system

could be tested directly against human experts and its performance properly evaluated,

though it should be noted that clinical trials have not been conducted as part of this

project.

5.1.1 Physics of Ultrasound Images

An ultrasound image is a representation of the strength of echoes produced when a

beam of sound is directed into a medium [Campbell k Pearce 85]. The creation of an

ultrasound image is possible as echoes are reflected back when the beam crosses interfaces
between different tissues. These echoes are converted into electrical currents that can be

displayed as an image. The strength of the echo depends on a number of factors, one
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of which is the difference in acoustic impedance (a measure of tissue density) between
the tissues forming the interface. Bone and soft tissue, for instance, have very different
acoustic impedances and such an interface will produce a strong echo, however as much
of the sound wave is reflected back, visualisation of structures beyond this interface
becomes more difficult. Across some interfaces, such as air/soft tissue, the reflection is
almost total, making scanning through certain areas, e.g. the lungs, impossible. The size
of the echo depends also on the angle at which the beam crosses the interface, a right

angle producing a larger echo. However, as most interfaces will be irregular, the echoes
from crossing the interface will tend to be scattered rather than producing a strong echo.

Scattering of the beam also occurs within tissues as they are rarely homogeneous. This

produces a phenomenon known as speckle. The ultrasound beam is reduced in strength

(attenuated) as it is absorbed during its passage through a medium. Air is a particularly

strong attenuator which is why a coupling medium, typically a gel or oil, is used between
the transducer and the patient's skin.

The resolution in an ultrasound image is directly related to the wavelength of the
ultrasound beam. Structures smaller than the wavelength cannot generally be resolved.

Increasing the frequency will reduce the wavelength and thereby improve the resolution,
but higher frequencies are absorbed more readily, resulting in lack of depth, so some

compromise is necessary.

Ultrasound is a highly noisy imaging modality, the signal-to-noise ratio is of or¬

der two [Baldock & Towers 87]. There are two basic types of noise, speckle produced

by scattering, and highly structural artifacts. Such artifacts occur in the image as

data that are added, missing, or are of incorrect location, brightness, shape or size

[Kremkau fc Taylor 86]. Some of these artifacts are due to assumptions inherent in the
ultrasound equipment, others arise from incorrect use of that equipment. It is possible
that some artifacts and speckle are of diagnostic or interpretive use [Clarke 87].

There are three different types of ultrasound scan, A, B and M. A scans and M scans

produce a one-dimensional image through the body, M scans being used to scan moving

parts, such as the heart, by producing a series of scans along the same path. B scans

produce a two-dimensional plane through the body by means of oscillating or rotating

the transducer. It is these B scans which will be the focus of attention for this project.
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5.1.2 Obstetrical Ultrasoynd

Ultrasound is an important tool for the diagnosis of the fetal condition for a variety
of reasons. It is non-invasive, unlike fetoscopy or amniocentesis, it is relatively cheap,
and there is no evidence to show that it is not safe under normal use1. It provides

images of sufficient quality to enable a wide variety of diagnoses to be made, including
the detection of structural abnormalities, the demonstration of life, the estimation of

gestational age and the sexing of the fetus [Jeanty k Romero 83, Campbell k Pearce 85,

Chudleigh k Pearce 86, McNay 87, Manning et al 89].

The nature of the diagnoses fall into two main groups, qualitative and quantitative.

Qualitative assessments include the grading of the placenta as an aid to tho determination
of fetal maturity [Granum 79], the detection of multiple gestations and the assessment of
fetal anatomy [Garrett 79, Pearce k Campbell 84]. Quantitative assessments are based
on direct measurement of the ultrasound image using, for instance, map measurers or

calipers. Length or width is a common parameter to measure as it is simple and highly

reproducible. Area is also used though this is often estimated from lengths and some

simple formula, resulting in an approximation of the true value. More complex and

possibly more informative measures, such as volume or surface area are considered to be

unreliable and too time consuming to calculate. In both the qualitative and quantitative

assessments a high degree of skill in required to make a correct diagnosis or to take an

accurate measurement.

There are two diagnostic uses of fetal ultrasound that deserve special men¬

tion both because of their clinical importance and their relation to the particular

scans chosen as the test domain. These are the estimation of gestational age, and

the detection of intrauterine growth retardation [DeVore k bobbins 79, Sabbagha 79,
Bowie k Andreotti 83, Deter et al 83, Beischer et al 84]. The accurate estimation of ges¬

tational age is important for the mother oo that she can plan for tho child's arrival. For
the clinician it is critical to a whole range of disease detection and management decisions,

where a balance must be struck between the potential damage caused by the disease if

the fetus remains in utero and the risks associated with early delivery, primarily due to

'Following the completion of this section a number of reports have questioned the value of routine
ultrasound scans. A summary of this research is presented by Saul [Saul 94],
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immaturity of the infant's lungs and brain. It has been reported (Dowhurct, Boazlcy
and Campbell in [Sabbagha 79]) that there is a four fold increase in perinatal mortality
in cases where the gestational age is unknown. There are basically three methods for

estimating gestational age, clinical, biochemical and sonographic.

The most common and best single clinical estimator is based on the last menstrual

period (LMP or LNMP, last normal menstrual period), the estimated date of delivery be¬

ing calculated from this using Naegele's rule. Unfortunately this estimation is unreliable
under a number of circumstances [Chudleigh k Pearce 86]:

• When the date of the LMP is not accurately known.

• When the menstrual cycle is not 28 days long.

• When the menstrual cycle is irregular.

• When the patient only stopped taking the combined oral contraceptive (the pill)
within the last three months.

• When the patient bled early in pregnancy.

Some 20-40% of patients are unable to give accurate dates, there being a reported bias

(Zador, Hertz ct al in [Bowie & Andrcotti 83]) towards the first, fifth and fifteenth of the
month! In addition to this 20% of patients with apparently reliable dates have discrepan¬

cies of one to six weeks [McNay 87]. For these reasons estimates based on Naogelo's rule

generally lack the precision necessary when taking important clinical decisions. Another

popular clinical estimator is based on the physical examination of the uterine size which

is considered to be accurate to within one week during the first trimester of pregnancy.

Biochemical estimators are typically based on the analysis of amniotic fluid as an

indication of lung maturity. There appears to be some dispute as to how useful such

estimators are [Bowie & Andreotti 83].

Sonographic estimations are based on the measurement of some well behaved param¬

eter such as the width of the head (the biparietal diameter, BPD), for which a standard

growth curve exists. The measurement taken can be cross referenced to the growth
curve to obtain an estimation of gestational age. Such curves are available for a variety
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of parameters and have been in use long enough to verify and quantify the accuracy of
estimations based on them and to determine which parameters should be used under
different conditions. As fetal growth deviates little from the mean in the first 24 weeks
of gestation and pathological growth retardation is uncommon during this period, esti¬
mates during this time will have a high degree of accuracy. Ultrasound has now gained
wide acceptance as the preferred method for the estimation of gestational age.

Intrauterine growth retardation (IUGR) can be defined in lay terms as a condition
in which the growth of a fetus is slower than would be expected. The clinical definition
is based on measured parameters lying some distance (which varies) from the expected
mean for the fetal age. The evaluation of a fetus as growth retarded obviously is heavily

dependent on an accurate estimation of fetal age, a fetus which is average for 28 weeks

may be small for 32 weeks. Retarded fetal growth is recognised as one of the three major

contributors to perinatal deaths [Beischer et al 84] and has been associated with a variety
of medical conditions, continued slow growth after birth, educational difficulties and

possible neurological problems (Campbell reported in [Campbell & Pearce 85]). Many

growth deficiencies are a result of fetal malnutrition associated with maternal diseases
which interfere with the utero-placental blood flow. In the majority of cases however,

the cause is unknown. As IUGR generally develops late in pregnancy it is possible to

save many fetuses by early delivery. IUGR can be detected using the same parameters

as used in the estimation of gestational age, providing the gestational age has already
been determined. Some parameters are of less use depending on the type of retardation
which may result in some area of the fetus, typically the head, being spared.

5.1.3 Fetal Head and Associated Parameters

The fetal head is an important region to image, not only can it reveal a number of cranial

defects, but it can also provide a number of parameters useful for estimating gestational

age. The most widely used of these is the biparietal diameter (BPD) mentioned earlier

[Chudleigh & Pearce 86]. Others are the occipito-frontal diameter (OFD, the length of
the head), the head circumference and the head area. All of these measurements must

be taken in the correct plane through the fetal head, therefore the two main tasks are

to assess whether an image is in the correct plane, and then take the measurements
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from the image. Where the image is not in the correct plane it may still be possible
to approximate the measurement, though the confidence limits on the measurement will
be wider. The correct plane for a measurement can be located by ensuring the plane

images include certain brain structures. The recommended plane for the BPD has a

short midline (an echo produced by the interhemispheric fissure) and the thalamus is
visualised. If the head circumference and perimeter are also to be measured, the cavum

septum pellucidum and the basal cisterns must also be imaged [Evans et a/ 89]. The
skull itself should appear oval in shape.

In terms of ultrasound images, the midline appears as a straight, bright line running

length ways, equidistant from the sides of the skull. The cavum septum pellucidum

appears as two short lines parallel to and at either side of the midline, and at the front-

most end of it. The basal cisterns appear as an almost semicircular arc towards the rear

end of the midline, curving towards the cavum septum pellucidum, and bisected by the
midline. The thalamus appears as a textured region straddling the midline, and running
between the cavum septum pellucidum and the basal cisterns [Baldock & Towers 87].
The skull itself is probably the most obvious feature, appearing as a bright, rugby-ball

shape. In this plane the BPD is the greatest width across the skull perpendicular to

the midline and the OFD is the skull length along the midline. These features are

illustrated diagrammatically in figure 5.1. If the required features are not imaged then

thalamus

5

. /
4 ~tr

basal cisterns '

cavum septum pellucidum

Figure 5.1: Diagrammatic representation of the fetal skull

there are three possible explanations: the feature is obscured by noise, the structure
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giving rise to the feature is missing due to some clinical abnormality, or the image is in
the incorrect plane. The recognition of which of these explanations is correct (bearing
in mind that all three could be true of an image) is crucial to the interpretation of an

image. This recognition is complicated by the fact that each explanation cannot be
evaluated independently, e.g. in deciding that a feature is obscured by noise we must

check that other features confirm the correct image plane and that a disease state cannot

explain the observed situation more completely. Obviously there is knowledge that can

be used to constrain this process. For instance, if an image is believed to lie in an

incorrect plane this can be checked by searching for features that confirm an alternative

plane. If it is believed that a structure is absent then it should be possible to identify
disease states that cause such an abnormality and maybe to confirm them by identifying
other abnormalities associated with the condition. The interpretation of an image will
therefore be an iterative process where partial interpretations are used to confirm or

reject hypotheses about image features and their interpretations.

In terms of image processing, interpreting ultrasound scans of the fetal head involves

most of the problems that will be encountered in ultrasound images, aside from motion.

Some of these problems [Baldock & Towers 87] include:

• Ultrasound scans of the head often have strong shadowing where the beam is

tangential to the skull so the boundary becomes broken. Also there are other bright
curved lines in the image so it may be difficult to determine which correspond to

the skull echo.

• Given that the bright regions corresponding to the skull outline have been found,
how are the edges defined in terms of the fall-off of intensity, either side of the

bone?

• How should gaps in the outline be traversed? One answer to this is to fit a model,

e.g. a smooth curve, but there must be careful control of this procedure or else

important diagnostic information may be lost.
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5.1.4 Approaches to Automation

The potential for automated assistance in the fetal ultrasound image interpretation task
has been clearly recognised by both researchers and clinicians [Zador & Sokol 9'2]. De¬
spite this recognition relatively little research has actually been conducted and reliable
commercial systems are still some way off.

SBS is a blackboard based expert system for model based interpretation of fetal
head ultrasound images [Baldock et al 87, Baldock & Towers 88, Towers & Baldock 88].
SBS was designed to work with almost any data structures but in practice the most

useful for image processing was found to be frames [Minsky 80]. The models in SBS
are represented as a network of frames. Each frame is of one of three types; composite,

relation or primitive. Composite frames are used to group frames together to represent a

model or model sub-part. The combination of composite and primitive frames makes it

possible to build complex models from a set of simple low-level components. The relation
frame holds knowledge about the relationship that exists between frames. The work on

SBS only progressed as far as simple models using basic primitives, such as lines and

arcs, but it is potentially a very flexible representation. Two of the slots of a composite
frame are worth noting, the confidence slot and the key features slot. The confidence slot,

although never used, indicates the importance that measures of uncertainty would be

likely to have in a full system. The key features slot provides a means of identifying which
features (sub-frames) are necessary or important when matching the composite. The

matching strategy employed in SBS is essentially the cue-hypothesis-test paradigm used
in a number of image processing systems. Image primitives are used to cue hypotheses
based on the key-features of a model. These hypotheses can then be tested by attempting

to match other parts of the model.

A group at the Wayne State University in America have investigated the task of
feted image interpretation using standard image processing techniques [Salari et al 90,
Zador et al 91]. They analyse images of the fetal head to extract the BPD, OFD and
head circumference. The fetal skull is modelled using a simple five parameter ellipse

model. The five parameters are the X and Y coordinate of the centre of the ellipse, the

major and minor axis, and the orientation. These parameters are extracted using a four

step process:
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1. Local thresholding of image and rejection of small regions.

2. Location of edge points by application of a gradient operator and image threshold¬
ing.

3. Finding the centre of the ellipse using the Hough transform technique.

4. Determination of additional parameters by least-squares method.

Acceptable results are reported in 74 out of 75 test scans, when compared to a human

operator. Care was taken to ensure that the scans used were free from obvious structural

abnormality. The project hopes to develop a low cost, real-time system capable of taking
a variety of measurements and of making decisions about the ultrasound imaging process.

The appropriateness of the simple ellipse model is one of a number of factors still under

investigation.

One aspect of image processing that may prove particularly influential in fetal image

interpretation is three-dimensional visualization [Brinkley 87, Nelson & Pretorius 92].

By combining multiple two-dimensional ultrasound scans it is possible to form a three-
dimensioned model of the fetus, allowing the inspection of fetal surfaces, extremities and

internal anatomy. In many cases, and especially those where the fetus is abnormal, the
three-dimensional model would make it much easier to determine the spatial relationships
between parts of the fetus. The model also has the potential to reveal defects that are

difficult to identify in a two-dimensional image. Currently three-dimensional approaches

rely on standard image processing techniques and therefore encounter a number of prob¬

lems, such as determining surfaces in the presence of high noise levels, in addition to

image capture problems, for instance those due to fetal movement.

Although there has been relatively little research concerned directly with fetal ul¬
trasound images, there are many other image processing tasks that will pose similar

problems and whose solutions will have a bearing on fetal ultrasound interpretation.

Whilst lack of space precludes any in depth review of image processing as a whole, it is

possible to single out snakes, or active contour models, as being of particular relevance
to the belief network approach discussed later.

An active contour model is an energy minimizing spline which is guided by external

constraints and influenced by image forces that pull it toward features such as lines and
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edges [Kass et al 87]. Interna] forces on the contour may enforce continuity and curvature

constraints. Local minima are alternative solutions. Typically an initial starting position
is provided for the contour model which then adjusts itself itcrativcly to a minimum.

These dynamic models are an example of a general approach to image interpretation
based on deformable models as opposed to rigid geometrical models.

In addition to the detection of boundaries, active contour models have been ap¬

plied to motion detection, surfaces and three dimensional shapes [Terzopoulos et al 87,

Baumberg & Hogg 94, Byrne et al 94].

One of the recognised problems with the energy minimizing approach is that the
contour can become trapped in a local minimum representing a false boundary. Global

information, for instance in terms of a shape model, can be used to bias the con¬

tour towards the target shape, effectively restricting the space of allowed deformations

[Baumberg & Hogg 93, Gunn & Nixon 94]. Ideally these global shape models will re¬

flect the natural variation in the modelled shape and may best be derived from training

examples [Cootes et al 95].

Other problems with active models include sensitivity to the initial location of the

contour and undesirable attractions to irrelevant image features.

5.1.5 Belief Network Approach

The task of identifying the fetal skull in an ultrasound scan is an example of a generic

low level model matching problem. If the model is described by a scries of points along
its length at some level of resolution, then the matching task can be expressed in terms

of finding a maximally satisfying match between the points and the xy coordinates of
the image. The definition of the degree of satisfaction of a particular match will depend
on the information that is available. At a particular point there may be several different

types of information that should be considered. Some of this will be local to the point,

some will depend on the position of the other points and some may be due to higher
level input. This information can be utilised to improve a given match, by using it to

evaluate alternatives and to select the maximal match. Typically it is impractical to find

the maximal match in a single step and an iterative approach is adopted instead. There

are a number of different techniques that could be used to maximise the match.
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Within this application, a belief network is used to perform the low level matching

task, controlling and propagating evidence from the image, under constraints derived
from pre-stored models based on a training set. This means that the low-level processing

could be properly integrated into the diagnostic process within a theoretically sound

statistical model and that errors at this level could propagate to uncertainties in the

parameter estimation and diagnosis levels.

Each point in the model is represented by a node in the network. Only nodes that

represent adjacent points in the model are directly linked in the network. Through

these links the influence due to the position of neighbouring points can be modelled.

The domain of potential matches for a point includes the entire image space, which is

impractical. In order to restrict this domain, our starting point for the refinement is a

user generated estimate of the boundary in the image, which provides an initial estimate

of the match for each point. In our model we assume that the error associated with this

cue is unknown2, it is possible that the best match lies out.with an arbitrarily defined

domain. To allow for this the domain itself is redefined iteratively with respect to the

current match, so as a point ideally moves towards the maximal match, so the domain

of possible matches is redefined to include the maximal match. The movement of a

point towards the maximal match when that match lies outwith the current domain is

possible due to the non-local information that is available. Similarly a locally maximal

match that is not also part of a globally maximal match will be avoided. The available
information can be viewed as constraints on the way a point can be moved with respect

to the part of the image defined via the match domain.

In the ultrasound example we consider three main sources of information, the values

of potential matches for the other points, the match to a local grey-level profile model and

a parameterised shape model. At each point we consider two distinct match domains.

The first domain is defined by an orthogonal to the model line that extends in both

directions from a midpoint centred on the point. This domain is represented by the
states at the point node. The belief values across these states are used as a measure

of the match, a high belief representing a good match. The beliefs are propagated
between nodes as determined by the network model, therefore nodes that are distant

2This is not normally the case and integrating a prior probability of this type is straightforward with
respect to the probabilistic model.
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with respect to their ordering along the model will have less influence on each other's
matches than those that are direct neighbours. The grey-level profile defined by the
orthogonal is used to provide local match information. By using a grey-level profile
model created from training data, the likelihood of each possible match in the domain
can be calculated from a measure of the match between the profile model and the image

profile observed. Both the grey-level profile constraints and the constraints from the
belief values of the other nodes in the network operate in the domain defined by the

orthogonal. The parameterised shape model, which is also derived from training data,
is theoretically unconstrained with respect to any domain. In practice, however, the
current model points act as a global constraint on the shape model as the parameters

are used to transform the current set of model points rather than generating a completely

independent shape estimate. The result of the shape model estimate is a single maximal
match for each model point. As the two match domains may have maximal matches

that do not lie within the intersection of the domains, a mechanism for determining

the combined best maximal match is required. This combined match value is used to

determine the match for each point, this set of matches is then used as the initial set

of points for the next iteration. The iterative process is repeated until the best match
for all the points is identical (to within some degree of precision) to the current set of

points, i.e. the match is stable.

5.2 Cervical Screening

Cervical cancer is the second most common form of cancer in women throughout the
world [W.H.O. 88]. Currently primary prevention is not considered to be a viable option

because, as the World Health Organisation notes [W.H.O. 88, page 1],

... the causes of cervical cancer are not yet fully understood ... and be¬

cause the main factor thought to be associated with increased risk (sexual

activity of both men and women) is not very amenable to regulation or control

The key to the treatment of cervical cancer is early detection, 80% of cases that are

detected early can be cured as against 5 or 6% of late cases [N.E.F.J. 7'2]. Early detection
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is possible due to a recognizable pre-malignant phase, carcinoma in situ, which may last
as long as 10 to 15 years before invasive cancer develops.

The detection of carcinoma in situ is based on the examination of cells exfoliated

by the cervical surfaces. This technique of exfoliative cytology was described by Papan¬
icolaou and Traut in the 1940s [Shingleton & Orr, Jr 87]. A spatula, such as an Ayre

Type or a Cervix-brush, is used to collect a sample of cells which are then spread across

a microscope slide. The slides are then sent to a diagnostic laboratory where they are

stained using a Papanicolaou Stain which aids identification. The slides are then screened
for cellular abnormalities under a light microscope by a trained cytotechnician and/or

cytopathologist.

Screening to detect women in the pre malignant period has been shown to reduce
both the morbidity and mortality of cervical cancer [Miller 89], However the effects
of different screening programmes are highly variable. Chamberlain [Chamberlain 89]
suggests that the major reasons for the apparent failure of some screening programmes

are:

• Failure to reach high risk groups.

• Inadequate follow-up of abnormal smears.

• Long intervals between smears.

• False-negative rate.

The identification of high risk groups is complicated by the interrelationships between
those factors believed to be associated with high risk [Shingleton & Orr, Jr 87]:

• Early intercourse (less than 17 years old).

• Multiple sexual partners.

• Early pregnancy.

• Urban population.

• Low socio-economic status.

• Immunocompromised.
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• Smoker.

• Previous abnormaj smear.

• Failure to participate in screening.

• Nutritional defects.

• Infertility (fallopian tube damage).

• Use of contraceptives.

• High risk male partners (multiple sexual partners, previous partner with cervical

cancer).

5.2.1 Approaches to Automation

Researchers since the 1950s have suggested that the process of cervical screening be au¬

tomated in order to improve the throughput of specimens and the accuracy of diagnosis

[Evans 70, Wied et al 76, Eason ]. Much of the research has focussed on the concept of

pre-screening. An automated pre-screening system is designed to identify those speci¬

mens that are definitely normal or abnormal, those which are unclear being referred to

the cytologist. Pre-screening could potentially reduce the proportion of specimens that
must be examined by the cytologist, it could also add quantitative as well as qualita¬

tive data to the analysis of specimens. Research in this area has advanced to the point

where several mature systems exist, although a reliable automated system has yet to be

produced [Banda-Gamboa et al 92, Linder 92, Eason ].

The majority of the systems developed have taken a similar approach. Images of

objects on the slide are captured, object features (such as diameter and optical den¬

sity) are calculated and individual objects are classified on the basis of their set of
feature values. The classification for the entire slide depends on the profile of classifi¬

cations of individual objects in the sample. The particular features that are used and

the way in which the individual features are combined to produce an object classifica¬

tion vary between systems, with at least one system using neural network techniques

[Bartels & Weber 92, Linder 92],

112



There are, however, many uncertainties inherent in the prescreening process

[Bartels & Weber 92]. All slides, normal or abnormal, will contain some objects that
appear abnormal, and an abnormal slide may only contain a small number of abnormal
cells. Cell abnormality itself is a continuum and cell classification is error prone. Each
slide contains a large number of uninformative artifacts, some are easy to detect and ig¬

nore, but others appear cell like. It may only be possible to examine a sample of objects
on the slide.

As a result of these uncertainties, the overall profile of objects on the slide is also un¬

certain due to misclassifications. Furthermore there are statistically significant overlaps
between the object profiles of normal and abnormal slides [Bartels & Weber 92].

Investigations into improving automated classification through different staining meth¬

ods, disaggregation of cells and automatic slide preparation have also been conducted

[Banda-Gamboa el al 92, Eason ].

5.2.2 Belief Network Approach

Automated prescreening involves scanning the microscope slide for suspicious cells. The
scan produces a series of tens of thousands of "objects" (essentially dark image structures)
as potential cell candidates, and at the lowest level of this process are the tasks of object

detection, feature extraction and object classification. Whilst belief networks could be

applied at this level, we have chosen to examine the classification of the specimen as

a whole on the basis of the available information. Part of this information will be the

classification of objects in the specimen, other information includes counts of the number

of objects of different types and patient data that might indicate high risk, for instance.

With this example we demonstrate how information can be incrementally introduced

into a task bridging the gap between low-level processing and higher-level diagnosis.

The motivation for developing belief network models for cervical specimen prescreen¬

ing was the concept of an explicit model. Many automated systems contain some form

of 'black-box' statistical classifier that is typically highly tuned by a domain expert.

These classifiers are totally opaque to the user who is then forced to accept or reject

the system's classification without the benefit of understanding the reasoning behind the
classification. On the other hand an ad-hoc classification based, for example on rules,
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will not have the rigorous statistical underpinning typically required of a medical system.

Belief networks offer an ideal compromise, having a qualitative structure that is mean¬

ingful to the user, whilst preserving the statistical attributes of probability theory in its
results. It also offers the potential for using a single inference mechanism to model the
entire image processing task, from low level object classification to high level decision

making.
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Chapter 6

FLAPNet — Overview

In order to explore potential applications of belief networks, a flexible network propaga¬

tion shell called FLAPNet (FLAVOURS Propagation Network) has been designed and

implemented by the author. The shell supports a general network propagation mecha¬
nism that is not constrained by any particular inference algorithm. By allowing a variety
of different node types it is possible to include special-purpose nodes into belief networks
or to construct networks that do not follow the belief network paradigm at all.

The FLAPNet system has been developed using the POPLOG toolkit (version 14.1

with a couple of minor extensions from version 14.2). The code is written in POP-11
and makes use of the FLAVOURS package which adds object-orientated functionality
to the POP-11 language. It is designed to interface via the X Windows System. It is

currently being run under UNIX on a Sun Microsystems SPARC Station.

Although the FLAPNet core is application independent, when applying it to the

problem domains it proved necessary to customise the code to some degree, particularly
that concerned with interface management.

In addition to FLAPNet itself, the fetal ultrasound interpretation system, discussed
in the following chapter, made use of image display and interaction software kindly

provided by Dr Richard Baldock. As well as displaying stored boundaries and images
and allowing the user to set parameter values and to interactively create boundaries,
the software calculated the Mahalanobis distance which was then used as an input to

FLAPNet.

Each application consists of approximately 15,000 lines of POP-11 code, all of which
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have been developed incrementally, with little concern for optimisation. In some areas

ease of use has been sacrificed in exchange for flexibility. FLAPNet is not intended to
be anything more than a research tool.

6.1 Design Overview

The guiding principle in the FLAPNet design has been to make the network propagation
mechanism as general as possible and not follow any particular propagation paradigm.

However, FLAPNet was originally a belief network specific tool and as a result of this
influence the terminology used (e.g. pi and lambda vectors) is often that of belief networks
and some of the assumptions incorporated arise from belief networks.

FLAPNet makes minimal assumptions about the physical network model:

• A node N may only communicate directly with nodes defined as either a child of
N or a parent of N.

• If a node N is a child of another node O, then O is a parent of N and vice versa.

• A node cannot be defined as its own parent or child.

• A node may have zero or more parents and zero or more children.

• A node cannot be defined as both a parent and a child of a particular node.

• A node with no parents has a pre-defined default message. The node is said to be

pi conditioned with this message.

The message a node receives from any of its parent nodes is defined as a causal

message. A message from any child node is defined as a diagnostic message. External

messages may also be received, a causal form defined as a causal conditioning message

and a diagnostic form defined as a diagnostic conditioning message. The content of
a message is entirely unconstrained, for instance a message may contain a vector of
numbers representing a probability distribution. The principal message types are:

• Causal message.

• Causal (pi) condition message.
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• Causal (pi) uncondition message.

• Diagnostic message.

• Diagnostic (lambda) condition message.

• Diagnostic (lambda) uncondition message.

Each node has a set of attributes which typically reflect the possible propositional
states represented by that node. A belief vector is defined across the attributes, such
that each attribute has a corresponding belief. Two other vectors, lambda and pi are

also defined across the attributes. The lambda vector is associated with the influence

of diagnostic messages on the attributes, and the pi vector is associated with the causal

messages. For example, if a node's belief vector contains a set of numbers representing

a probability distribution across its attributes, then the lambda and pi vectors might
also be probability distributions representing respectively the combined diagnostic and
combined causal evidence messages sent to the node. The belief vector would then be

a combination of the lambda and pi vectors. The principal data associated with a node
are:

name — The unique name of the node.

parents — A list of the names of the parents of this node and the most recent causal

message that each parent has sent.

children — A list of the names of the children of this node and the most recent diag¬
nostic message that each child has sent.

attributes — The states represented by the node.

belief — A vector across the attributes at this node.

pi — A vector across the attributes, associated with the causal messages.

lambda — A vector across the attributes, associated with the diagnostic messages.

Every node has an area of private storage for miscellaneous data. This list can be used

to store any data that is necessary for the operation for a particular node type. Data

can be placed in this slot either at creation time or dynamically at run-time, or both.
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All nodes respond to a particular type of message by executing the same sequence

of actions. For example, a causal message, containing the name of the originator of the

message and the item of causal evidence, is processed using the following sequence of

actions, shown in POP-11 pseudo-code:

defmethod causaljnessage(origin, evidence)
update parents record to include new evidence
unless pi conditioned
do

update pi
update belief
update display
propagate diagnostic messages
unless lambda conditioned
do

propagate causal messages
endunless

endunless

enddefmethod

The action sequences for the other methods are contained in Appendix B. The action

sequences embody certain assumptions about propagation:

• A node will only propagate messages when it receives a message.

• A node that is lambda conditioned sends no message to its children.

• A node that is pi conditioned sends no message to its parents.

• A node cannot be simultaneously pi and lambda conditioned.

• Messages can only be propagated to the parents or children of a node.

Although all nodes respond to the same set of messages with the same sequence of

actions, the effect of the actions is determined by the individual nodes. If a node performs
the update belief action, for instance, the effects of that action and the interpretation
of the resulting belief vector may be unique to that particular node. The common effects

of the actions are:

update belief This function is used to update the belief vector of this node. It takes
a single variable, self which is a reference to the node. The result it returns is

stored in the belief vector.

update pi This function is used to update the pi vector of this node. It takes a single

variable, self. The result it returns is stored in the pi vector. If the node is pi
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conditioned the result will be the conditioning vector.

update lambda This function is used to update the lambda vector of this node. It

takes a single variable, self. The result it returns is stored in the lambda vector.

If the node is lambda conditioned the result will be the conditioning vector.

propagate causal messages This function is used to calculate and send the appro¬

priate causal messages. It takes two variables, self and either false to indicate
that this propagation was not initiated in response to a diagnostic message, or the
name of the child that sent the initiating diagnostic message. It returns nothing.

propagate diagnostic messages This function is used to calculate and send the ap¬

propriate diagnostic messages. It takes two variables, self and either false to

indicate that this propagation was not initiated in response to a causal message, or

the name of the parent that sent the initiating causal message. It returns nothing.

parents function This function is used to update the parents to reflect new causal

messages. It takes three variables, self, the name of the originator of the causal

message, and the value of the causal message. The result it returns is stored as the

parents. The parents are updated even if the node is pi conditioned.

children function This function is used to update the children to reflect new diagnostic

messages. It takes three variables, self, the name of the originator of the diagnostic

message, and the value of the diagnostic message. The result it returns is stored

as the children. The children are updated even if the node is lambda conditioned.

By allowing all the functional components of the message handling methods to be

individually specified it is possible to create node types that can perform a variety of

different behaviours. A small library of experimental node types has been be developed
and in many cases a new node type will reuse some of the existing function definitions,
as illustrated in the following node function definitions.

6.1.1 Pearl Type Node

This node type embodies the belief or Bayesian network propagation algorithm described

by Pearl [Pearl 88b, chapter 4]. Initially this was the only node type supported and
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many of tho design decisions were influenced by the requirements of the algorithm. It
should be noted that there is no restriction on circular inference paths and there arc no

mechanisms for handling them. It is assumed thgt the underlying probability model is
defined to ensure convergence (see Chapter 7).

A Pearl Node represents a prepositional variable, with attributes that define cxhauc

tivc, mutually exclusive variable states. The parents of a Pearl Node are those nodeG

judged to be direct causal influences and the children are those nodes judgod to be di

rcctly causally influenced by the node. Messages received from both parents and children
are assumed to have a probabilistic interpretation consistent with that given hy Pearl.

Specifically the message is assumed to contain a vector of probabilities or likelihoods,

depending on whether it in a causal or diagnostic message. The belief vector in this case

represents an actual probability for each state represented by the node variable. The
lambda message vector contains a relative likelihood value for each state at the node
variable. The pi message vector contains probabilities in the form of the belief vector of
the sending node, less the lambda contribution of the receiving node. These values are

mapped to the states of the receiving node via conditional probability matrices stored
at the receiving node.

The majority of the implementation of the Pearl Node is straightforward as there is

a close match between the Node model and the function of a Pearl Node.

update helief The new belief vector is calculated as the normalised vector product of

the lambda vector and the pi vector. This is actually defined as a standard function

rather than specifically a Pearl Node function.

update pi This function simply returns a vector that has been stored in miscellaneous

data by the node.

update lambda The standard function which calculates the vector product of the mes¬

sages sent by the children of the node.

propagate causal messages A standard function is also used here. This function
calculates and sends a message to all children except the originator of the initiating

message if that node is a child. The message sent is the belief vector of the node,

less the contribution made by the child node to the which the message is directed.
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propagate diagnostic messages This function calculates and sends a message to all

parents except the originator of the initiating message if that node is a parent. The

message sent is the lambda vector of the node multiplied by a marginal probability
matrix that is stored in the miscellaneous data at the node.

parents function This function first updates the parents record at the node to include
the new evidence vector. It then recalculates the marginal tables for ail the parents

other than the originator, given a conditional probability matrix stored in the
miscellaneous data, and then stores them in the miscellaneous data. A new pi

vector is calculated and also stored in miscellaneous data. This rather complex

sequence of actions is necessary as the links in the network model are unquantified,
all notions of quantification must be implemented by the nodes themselves.

children function The standard function is used, it simply updates the children record
at the node to include the new evidence vector.

6.1.2 Simple Classifier Type Node

In the course of the application developments a requirement to convert from a single

number, e.g. a count of some quantity, to a probability over classes of quantity, e.g.

{inadequate, adequate} as illustrated in figure 6.1, was identified. This function repre¬

sents the conditional probability "matrix" for the two classes given the number. Two

number range

Figure 6.1: Conversion from a number to class membership

node types have been defined to perform this function, one taking the number from a

single child node and one taking it from a single parent, only the first of these is de¬
scribed here. The node is given a classification model that specifies the incline slope

121



and decline slope for each class membership range. The attributes are the classes over

which membership is defined. In the application considered it was not valid to include
information from the parent at the node.

update belief The new belief vector is the same as the lambda vector as the causal

contribution of the parent is ignored.

update pi This function simply returns a vector that includes dummy characters to

indicate that the data is ignored.

update lambda The classification model stored in miscellaneous data is used to calcu¬

late the class membership probabilities which are used as the lambda vector.

propagate causal messages Although it is assumed that there is no valid message to

transmit to the child, a dummy control message is sent (this is explained below).

propagate diagnostic messages Unless the parent initiated the propagation, the cur¬

rent belief is propagated to the parent via a conditional probability matrix held in

the node's miscellaneous data.

parents function The standard function is used, it updates the parents' record at the

node to include the new evidence vector. This is not strictly necessary.

children function The standard function is used, it simply updates the children record

at the node to include the new evidence vector.

The relationship between the classifier node and its child node is interesting as it

shows the potential for including control messages. The child is a Number Display Type

node which essentially just provides a way of displaying the numerical data that has been
entered. The entered data is propagated directly to its parent. The single attribute is

the quantity being measured, the lambda and belief vectors contain the quantity entered,
the pi vector contains a dummy character. The data is entered at the node by lambda

conditioning, if no data has been entered then the node should automatically use the

default value provided in its miscellaneous data. In order to achieve this, the parents

function checks to see if the node is lambda conditioned (i.e. data has been entered) if
not then the node lambda conditions itself to its default value and propagates it to its
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parent. The causa! message from its parent that results in this behaviour is otherwise

ignored. This is obviously only a very simple example, but as there is no restriction on the
contents of a message they could easily be used to convey genuine control information,
or even routing information if an application required it.

6.2 Interface

FLAPNet provides a simple, application independent X-windows interface. The interface
was intended to be a developers' interface only and it is therefore rather basic.

The primary display is the base display window which shows all the nodes in the

network, identified by their unique name. Each node is assigned to a particular generation

by the user, or is automatically assigned a generation number given its relationship to a

reference node of a given generation, i.e. according to network topology. The generation
numbers assigned by the user need not bear any relation to the structure of the network
and so can be used to group network nodes into sets in any way the user chooses. Each

generation has a user definable title and is displayed as a separate list in the base display

window, as illustrated in figure 6.2. In the example shown, taken from the application

Figure 6.2: Base display window

discussed in Chapter 7, the generation groupings, angles, deltas, images and cues, have
been imposed by the user to reflect the function of the individual nodes. Thus the column

headed 'cues' contains a list of all the nodes of type cue because they share a common
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generation number. The individual names of the nodes are determined by the uf,cr, the
fact that the names of the nodes in the cue list arc all of the form CueXX is a feature of

the application rather than the interface. The name of a nodes have no influonco on the

generation grouping into which it is placed.

The buttons on the side of the base display window have the following functions:

QUIT — Quits the display.

CLS — Clears all display windows other than the base window from the screen.

BTCH — A batch function for reading data from a file.

STEP — An incremental version of BTCH.

INTR — An interactive function for entering commands.

The way in which a BTCH, STEP or INTR function interprets its data is application

dependent and specified by the user.

The lists of node names in the base display window are selectable. When a specific
name is selected a node display window appears, figure 6.3. Each node has its own node

display window, allowing several to be displayed simultaneously. The main area of a node

Figure 6.3: Node display window

display shows the attribute, pi, belief and lambda values for the node. In the example

shown, the attributes have obscure names (p_7 and so on), but these are just a feature
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of the application. The Parents and Children lists contain the names of the parents and

children of the node. These lists are selectable in the same way as the lists in the base

display window and node display windows are created for the selected nodes.

The buttons on the node display window have the following functions:

current — As the network may be propagating values whilst a node display is active,
the values at that node may change. Rather than constantly refreshing any node

display window whose values have changed, the node display is marked when it
is out of date. The 'current' label on this button is changed to *-OLD-* when

the information display is out of date. The display can be brought up to date by

clicking on this button, causing the node display to be refreshed.

Explain — See below.

RelExpl — See below.

Pcond — This button creates a dialogue that allows the user to enter a vector of values
that is then used to pi condition the node.

UnPcond — This removes any pi conditioning currently in force at the node.

Lcond — This button creates a dialogue that allows the user to enter a vector of values

that is then used to lambda condition the node.

UnLcond — This removes any lambda conditioning currently in force at the node.

The lambda and pi conditioning facilities are the principal means of entering data into
the network. The BTC1I, STEP and 1NTR functions use these mechanisms, as do the

majority of the application dependent data entry methods.

Although this interface is very limited it displays the majority of the information a

user requires. The notable exception to this is the display of node type specific data,

such as the conditional probability matrices used by Pearl Type nodes. There is clearly

a requirement for partial customisation of the node display according to node type. This

extension would be fairly straightforward.

In addition to the experimentation with different node types, some simple explanation
facilities were developed. Like the main display interface, these are text based. They give
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a flavour of tlie range of information that it is possible to offer the user for a relatively low

computational overhead. The first of these facilities is shown in figure 6.4. Most of the

Figure 6.4: Explanation window

text in the window is selectable, generating further detail of the explanation. The area

below the lists and buttons is used to display these dynamic messages. The functionality
of this window is as follows:

granuls — The name of the node to which the explanation window relates. Selecting
this item brings up a brief explanation of the purpose of this node.

[absent ... unlikely — Groups the states of the target nodes according to their ap¬

proximate likelihood. These likelihoods are expressed in fuzzy verbal terms even

though they have a precise definition within the system. Selecting these items

brings up an explanation similar to this description.

Factors ... unrelated — Indicates which nodes are direct neighbours of the target node

and provides an assessment of the degree of agreement between the evidence avail¬

able from these neighbours. Selecting these items again brings up an explanation

similar to this description.
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No significant ...received — Identifies the most likely states based solely on the
information from child nodes. In this case there are no children and no external

evidence. Selection brings up an explanation similar to this description.

[absent ... likely — As above but for parent nodes. The likely states are categorised

verbally.

granuls + ... contraceptive — (Shown selected) This displays paths of strong influ¬
ence. The length of the path is selected by the user. Selecting this item brings up

the display shown in the figure.

Expectations, Observations and States — Selecting these items brings up an ex¬

planation of the contents of the fists they head.

specimen — This is a fink to the specimen node display. Selecting it causes the display
to appear.

absent, present — These are the states of the granuls node. Selecting them causes a

short explanation of the meaning of that state to be displayed.

The second explanation type is the relative explanation display, shown in figure 6.5.

The relative explanation displays the relationship between the target node, granuls, and
a second target node, loresc, selected by the user. The specimen node is included as it
forms the converging join of the path between these two nodes. The display functions as

follows:

granuls, specimen, loresc — (Specimen shown selected) Selecting these items brings

up a brief explanation of the purpose of the selected node (non available in this

example).

absent 0.716486 ... unknown 0.0 -— These are the likelihoods of the states at each

of the nodes. Selecting one of them brings up an explanation as to the meaning of
that state.

Path — Selecting this brings up a brief description of the path, e.g. specimen is a

common parent to both granuls and loresc.
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granuls specimen loresc

absent 0.7164B6
present 0.283514

normal 0.619027
borderline 0.163012
mlld_moderate 0.146618
severe 0.071343

artefact 0.036564
abnormal 0.0
normal 0.963436
other 0.0
unknown 0.0

Path current ||NodeUnk|
granuls |Explaln||StKnown|
specimen |Display 11NewRelnJ
susplist

objectc

hlresc

loresc

This node is the conmon parent of the current node (on left)
and target node (on right). Sorry no further details available.

Figure 6.5: Relative explanation window

granuls v ... loresc — This shows the causal direction of the path between the selected

target nodes. Selecting a node from this list brings up its display.

NodcUnlc Allows the user to set one of the three displayed nodes to an unknown

state. The effects of this on the likelihoods at the other two nodes is displayed.

StKnown AIIowd the user to see the effects of setting one of the displayed node
Gtates with certainty. Neither this nor the NodeUnk function actually change the

network permanently, rather a series of conditioning and unconditioning operations

are used to record, simulate, and then restore the network.

These explanation facilities have been developed an part of the network environment

and have not been UGod directly in the applications prosontod in this thccis. The ex

planation facilities work ceamlcssly within the Pearl type nodes, but they are not fully
defined for the other node types, for which explanation facilities are an open problem.
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Chapter 7

Application — Fetal Ultrasound

This application is a model-based matching system for two-dimensional boundaries in

images. It takes as its starting point an estimate of the position of the boundary in
the image. This initial cue is improved by the system on the basis of model constraints
derived from training data. These constraints are currently of two types, a grey-level or

image model in which a grey-level profile is matched to a learned model, and a geometric

shape model for the local and global boundary. This is an example of the generic task of

combining local and global constraints in an image interpretation problem. In principle
the whole matching process is based on models derived from the known shape, size
and variation of the fetus and in the measured characteristics. By basing the matching

process on a probabilistic model it is then possible to establish true error estimates for the

measurements required, e.g. the biparietal diameter, and to monitor fetal development.

7.1 Overview

The system attempts to modify an initial cue, in the form of an estimate of the boundary

position, such that the geometric and image models are optimally matched. As the

application is concerned with refinement of a cue which has been produced by some

other process or in our case by the user, rather than the direct instantiation of a model,
the search space can be limited to a region of the image local to the initial cue. The cue

is defined by a number of equally spaced xy coordinates. At each of these coordinates an

orthogonal to the boundary is placed, such that its midpoint lies on the boundary. This

orthogonal defines the search space for matching the image profile and is dynamic, as the
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line is adjusted iteratively until an acceptable solution is found. The shape constraints

operate outwith the reduced search space defined above, and potentially include the entire

image. The two constraints each provide a best estimate of the new position to which
each point on the boundary should be moved. These estimates are combined to give
an overall best position. The line defined by the new set of points then serves as the
current best estimate and the process is repeated. This iterative refinement is illustrated
in figure 7.1.

Image Initial cue

Beat combined e&umate

Figure 7.1: Processing cycle for iterative refinement of an hypothesised boundary
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7.1.1 Probability Model

The boundary is defined by a set S of i boundary points A'V, J=1 At each boundary

point s an orthogonal is placed, such that the mid-point of the orthogonal lies at the
intersection with the boundary. The orthogonal is defined by a set D of j matches or

sample points. Thus each boundary point s is associated with a set of sample points

XY,D. This is the current set of potential matches for the boundary point s and includes
the point s itself. The task then is to generate a probability distribution over this set

of potential matches on the basis of the information available from the image, other

boundary points, trained models, and so on.

Local information can be defined as that which provides a probability distribution

across XY,D for a particular s, irrespective of any information concerning other boundary

points in 5, i.e. treating a as an isolated point. In this application only a single local
information source is considered, a measure of the match between the grey level profile at

points in D and the grey level profile model derived from the training set. This provides
a probability distribution over D. In a more developed application there may be several

sources that need to be combined to give a single local probability distribution over D
at boundary point s, PL(XY,D). This combination can be modelled in a belief network

by representing each boundary point s as a node, with states D, and representing the
local information sources as parents or children of the node, depending on their causal

relationship. The most probable d, PLmax(XY,D) can be interpreted as the best match

for the point s under consideration. In the absence of any non-local information the total

probability distribution over D, P(XY,D) is equal to PL(XY,°). A matching process

based solely on PL would locate a set of individual matches irrespective of non-local

information such as the connectivity of the boundary or shape constraints.

The connectivity constraints of the boundary are modelled by linking nodes that

represent adjacent points on the boundary and the relationship between adjacent nodes
is represented by the conditional probability matrix. This provides a mechanism for

combining the influence of the local information relating to A'Vj?,, with PL(XY,D). The

resulting probability distribution at s reflects both the point spocific local information
and the local information at all the other points in S, mediated by their probabilistic

relationship. The nature of the links between adjacent nodes is such as to impose a
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constraint on the curvature of the line. This is a physical constraint which acts only
over a limited distance, some bending is permitted and sufficiently strong local matching
information will always override this effect. Therefore the influence decays with respect

to distance (path length) a feature we term spatial or temporal conditioning (temporal in
the sense of causality). This is a type of probabilistic conditioning which allows a cyclic
network to converge correctly and arises from the underlying physical model.

The construction of a network of this type raises questions about the nature of the

causality embodied in the links. When considering a cot of points there is no intuitive
sense in which the position of any one point causes the position of any other point, rather
the positions mutually constrain each other. Movement of a point, however, can be said
to cause movement at adjacent points, though thin implies bidirectional causality. In our

model we arbitrarily impose a child/parent relationship between the nodes, such that
each node has one adjacent point as a parent and the other as a child, resulting in a

vertical chain between the point nodes. In addition to this we rely on the notion of spatial

conditioning to control the propagation of inference in cyclic networks which are used for
closed boundaries. In a cyclic network a path can be traced from a node back to itself
in either direction and continuous propagation is possible even though the probabilities

converge. Spatial conditioning implies that the further the propagation travels from the
initial evidence source (in terms of the number of nodes or links traversed) the less effect
that evidence has at a node. Therefore the effect will decay exponentially and when it

falls below some resolution threshold, propagation can be terminated. An alternative
solution is to let the network run continuously and then sample the probability values

which will become stable with time. The choice between terminating on convergence or

allowing a continuously running network is simply one of computational economy.

The result of propagating a piece of evidence is an assignment of probabilities across

XYf. As we are interested in matching the model to the image, we select the set of the
most probable XY'f, PSmax(XYf) and move the current points to these new points.

This displacement between the current points and the new, most probable points is a

measure of the stability of the match. If there is no displacement then the match is

stable. In the examples presented in this chapter, zero displacement stability will not be

achieved because of noise arising from the image data and the image discretisation, so a
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stability threshold is applied.

The match domain described above is one-dimensional for a particular point, and

constrained two-dimensional for the model as a whole. In order to introduce greater

flexibility into the domain of potential matches we allow the shape constraints to consider
matches over the entire image. In practice, of course, the refinement of a boundary's

shape is constrained by the location of the boundary in the image and its current shape.
The shape modelling system provides a single match for each point G(XY,), without an

associated probability. We choose to interpret this as the most probable match given

the shape constraints and the current boundary. This then provides a global constraint

on the matching, with the most probable XYf providing both the local and semi-local
constraints on the matching.

We need to combine the boundary estimates from the shape and the image network,
whilst maintaining probabilistic consistency. Conceptually we have a network as shown

in figure 7.2, where the matrix is defined over the k pixels that make up the image. As

/ Profile \

estimate /

j*

k by k by k
matrix

/ Current \

hypothesis /

Figure 7.2: Conceptual network for boundary estimate combination

the profile estimate for a particular boundary point XY, is defined only across the or¬

thogonal set XY,D and the shape constraints provide only a single match point G(XY,)}
the majority of the probabilities, for the k points that theoretically make up the domain

of each of the estimates, are undefined. We choose to solve this in terms of the maximum

probability PSmOI(A'VJD) and the single shape match point G(XY,). We can fit a prob¬

ability distribution to each of the estimates such that it is maximal at that point and

, Shape
estimate
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decreases in all directions with respect to the distance from the estimated point, reaching
zero at infinity. If we do this for both estimates, we can construct a third distribution by

taking the product of the distributions. The highest value in this distribution is the best
combined hypothesis. The two estimates can be differentially weighted, for instance by

altering the variance of a fitted normal distribution. In our work we have implemented

this as a simple weighted average of the two estimates.

Although we have chosen to implement the shape constraints and the combination
function outwith the belief network, and to reuse the network each iteration, there is in

principle nothing to prevent the entire process being implemented as a single network. A

simplified network is shown in figure 7.3, where each iteration is represented by a distinct
time slice, dividing the network vertically across all boundary points, and each boundary

point is represented horizontally in the network, dividing it across the iterations.

7.1.2 Grey-level Profile Model

In this application an average grey level profile model for a given boundary is created,
that is, a set of sample profiles along orthogonals to the boundary are combinod to form
a single average grey level profile model of the boundary. The set of sample profiles are

derived from training examples in which a boundary is drawn by a user as an exemplar.
This training set can be built up from a number of boundaries in a number of images in
order to form a representative profile model. The number of orthogonalc and the spacing
and number of sample points along each orthogonal, which are determined by the user,

are kept constant within the training set and between the training set and the cue. In

cases where the boundary profile is asymmetrical the direction in which the boundary is

drawn relative to the boundary profile must also be kept constant. In principle it would

be possible to train a model with a different profile for each point if an average profile is

unrepresentative.

To generate a set of likelihoods of the boundary being located at a particular sample

point on an orthogonal, the Mahalanobis distance [Mahalanobis 36, Cootes & Taylor 92]
is computed between the stored profile model and the actual profile across that orthog¬
onal. This generates a set of likelihoods across the sample points at the orthogonal that

can be input into the belief network.
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( ps(xys) PS(XYP) !
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data

pl(xyp)
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g(xy.)

, Current

r-. hypothesis ,

pl(xyp)

ps(xyp)

( g(xy.)

( PS(XYP) )

Figure 7.3: Time-slice network for iterative refinement
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The belief network contains a node for every orthogonaJ in the model. The sample

points arc each represented by a state at the node. Probabilities in the network are

therefore distributions across these points and it in these distributions that are propa¬

gated between nodes. The belief network outputs a likelihood for the sample points at

each orthogonal and the set of the most likely points is the best cstimato for the model.
The profile constraints are a one dimensional model, the belief network links the results
of a series of one dimensional matches to form an estimate based on the set of orthog-
onals. The probabilities at one orthogonal influence the probabilities of all the other

orthogonals through network propagation.

7.1.3 Geometric Shape Model

The shape model is also derived from a set of training examples. The method used
is the Point Distribution Model [Cootes et al 92]. This defines a shape by an ordered
set of xy coordinates where each coordinate is associated with a particular feature on

the boundary. In our work the points aro evenly spaced along the boundary and the
start point and boundary direction are kept constant. This ensures that there is a fixed

relationship between the points in the shape model and the nodes in the belief network,
which is crucial to the combination method selected. The point distribution models of
each shape in the training set arc scaled, translated and rotated until they correspond
as closely as possible. A mean shape is calculated and principal component analysis is

used to determine the major modes of variation. The variation is described by a set of

parameters, each with a mean value and standard deviation, a set of weights that define

the stability of each point in the line, and a mean line. It is these parameters we use to

test and adjust the shape of a line with respect to a given shape model.

In addition to these shape parameters, a scale range, and edge-definition measure are

calculated from the training set. The scale range imposes constraints on the acceptable

size of the image line relative to the model line. The edge-definition measure is composed
of the mean and standard deviations of the variance across every orthogonal in the shape

training set. This measure is only really of use when the profile of the boundary is

well defined. In these cases the edge-definition measure ensures that the hypothesised

boundary is similarly well defined. It prevents the system accepting a boundary that
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satisfies the shape model and is maximal with respect to the limited search space defined

by the orthogonals, but is not sufficiently well defined. It is expressed in terms of
a number of standard deviations from the mean, defining an acceptable range within
which the mean variance across the orthogonals on the boundary must lie.

To test the shape constraints for a given line, the translation, rotation and scaling
that result in the best match to the mean model line are calculated. The set of pa¬

rameter values that describe that line are extracted. If all the values lie within some

pre-determined number of standard deviations from the mean parameter value, then the

line satisfies the shape constraint. If a parameter value fails to satisfy its constraint, it is

replaced with the mean parameter value. If the scaling factor lies within the acceptable

range, then the line satisfies the size constraint. If the size constraint is not satisfied, then

the closest acceptable scaling factor that satisfies the constraint is substituted for the

scaling factor. If either constraint fails, the modified parameters are used to generate a

new line and rotate, scale and translate it to best match the current line. The coordinates

of this new line are taken as the best estimate based on shape and size constraints.

7.1.4 Combining the Best Estimates

If a line satisfies both the shape and size constraints then no shape or size constraints

are applied to the best estimate which is determined solely by the grey-level profile
constraints. If the shape and size constraints are not satisfied then the best estimate

based on the grey-level profile constraints and the best estimate based on the shape and

size constraints are combined to form a new best estimate. The combination function is

a weighted average of the two estimates for each point on the boundary. The weight by
which the grey-level profile constraint based estimate is multiplied is referred to as the

edge weight and the shape and size constraint based estimate weight as the model weight.
Once the coordinates of the new best estimate have been calculated a smooth curve is

fitted between the points. The orthogonals are replaced at their new position so that

their midpoint lies on the line. From this it can be seen that the relationship between

the belief network and the image is dynamic, with the network following the refinement
of the line.
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7.1.5 Halting Conditions

The iterative refinement process continues until the matched line has stabilised. In
order to be deemed stable the new set of matches must be within a specified distance of
the current points. This distance, specified in the stability parameter is expressed as a

number of pixels. The sum of the differences between the xy coordinates of each point

on the current line and the xy coordinates of the same point in the new best estimate is
calculated. This value, the distance value, is then compared with the stability threshold,
if the distance value is less than or equal to the threshold then the constraint is met.

The threshold for this is currently determined by the user, as we do not have a method
for establishing it from the training set. In addition to having a low distance value, for
a match to be considered stable the following must also be true:

• The shape constraints are satisfied.

• The size constraints are satisfied.

« The mean edge-definition is acceptably high.

The edge-definition constraint (described on page 136) sets the number of standard devi¬
ations from the training set mean edge-definition within which the mean edge-definition
of the boundary must lie for the constraint to be satisfied. The purpose of this constraint

is to ensure that the boundary is lying on a sufficiently well defined edge.

7.1.6 Interfaces

There are four main methods for interacting with the system, the model definition file

model.p, the text interface, the image interface and the network interface. The relation¬

ship between these methods, the user and the network is illustrated in figure 7.4.

The file model. p contains a set of variables that determine the form of the network

when it is created and the values of various parameters that govern its behaviour. This

file is read each time a network is created.

The window from which the system is called becomes the text interface. It is used

solely for messages from the system to the user.
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Figure 7.4: Interface overview

Calling the system creates the image interface. This is used to display the image

and boundary lines. It provides facilities for the user to send data about the lines to the

network, to receive results from the network, and to change the values of some of the

parameters that govern the network's behaviour. Replies to image interface events are

displayed in the text interface.

When a network is instantiated (created and sent data) the network interface becomes
activated. This allows the user to examine the values of nodes within the belief network

and to change those values.

7.2 Types of Network Model

Each orthogonal on the boundary is represented by a cluster of nodes in the network,

including data entry nodes and nodes which calculate the the probability distribution
over the points along the orthogonal. Each cluster is linked to the clusters representing

the two (or one in the case of an end point) adjacent orthogonals on the boundary. One

Network Interface

Model p
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of the clusters is designated the parent and the other the child ouch that traversing the
clusters in one direction along the boundary is always parent to child and in the other
direction is always child to parent.

Currently there are four main variables in the model definition, the type of nodes,

the type of line, the propagation direction and the propagation control or convergence

criterion.

There are two types of node that can be used to calculate the probability distribution
in the network, delta nodes and composite delta nodes (or composite nodes). These node

types use two different algorithms to calculate the distributions which are propagated

through the network to neighbouring clusters.

The type of line is either open or closed indicating that the boundary is a line with
two distinct end points or a closed loop respectively. In a closed boundary every cluster
has two adjacent clusters, in an open boundary the two end points have only one adjacent

cluster.

Propagation direction (or type) controls the direction in which values are propagated

through the network with respect to the parent child relationship.

Propagation limitation is used to control the distance over which probability dis¬

tributions are propagated through the network. This may be desirable for reasons of

efficiency, or necessary to halt propagation on convergence in closed boundaries.

By selecting different combinations of these variables and the other model parameters

a variety of networks with different behaviours can be created.

7.2.1 Network Model

The network model is created from the duplication of four or five node clusters. Each

orthogonal on the line has an associated cluster, as illustrated in figure 7.5. The nodes
that make up a cluster are:

P - Image node — this node is a local evidence node. It represents the likelihoods
across a single orthogonal due to the profile data. It has states corresponding to

the sample points. Its lambda input is the likelihood vector across the sample

points calculated using the Mahalanobis distance.
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Figure 7.5: Single orthogonal node cluster with connections to adjacent orthogonals

C - Cue Node — this node is also a local evidence node and has states across the

sample points. It was originally used to provide additional local evidence, for
instance shape data or initial cue data. It is not used in the examples presented in
this thesis and is set with a constant probability across ail offsets.

A - Angle node — this node embodies the conditional probability matrix between
delta nodes and between composite delta nodes. It is represented explicitly par¬

tially due to historical reasons and partially to explore the use of different node

types. The function of the angle node is illustrated in figure 7.6. The vertical
lines represent two neighbouring orthogonals, each with oeven sample points ( 3 to

3), the boundary line runs between the 0 sample points. The 'fan' between them
indicates the strength of the probabilistic relationship, with the darker colour indi¬

cating a stronger relationship. Areas that are not coloured have zero strength. The

angle nodes store the definition of the strength function. When propagating from
one orthogonal to the next, the strength function is applied to each sample point

in turn. The underlying model is that the line should be smooth with respect to

the original cue and this is implemented as a tendency to maintain a small angle

change at any node.

D - Delta node — this node calculates the distribution across the sample space of

the point to which it relates. It is connected to delta nodes representing the two

adjacent points on the boundary. It combines the local evidence for the sample

space with evidence from the other delta nodes in the network. This node has states

across the sample points. The inference algorithm used is that of Pearl [Pearl 88b,
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Figure 7.6: Angle node function, the upper image shows the function centered
on sample point 0, the lower shows it centered on sample point -3

chapter 4] which calculates standard a priori probabilities given the evidence.

CD - Composite delta node —this node performs the same function as a delta node,

except that it uses a different inference algorithm [Pearl 88b, chapter 5]. This

algorithm is based on the notion of a composite explanation where a measure of

belief commitment is used to identify an optimal set of jointly accepted propositions.

The practical difference is the propagation of maximum probabilities rather than

average probabilities.

The two types of delta node calculate different but related quantities. The normal

delta nodes estimate the current individual degree of belief for each orthogonal indepen¬

dently, i.e. the maximum belief records the most probable position for that orthogonal

given all the input data. The composite delta node on the other hand, records the best

overall explanation of the data in terms of a set of orthogonals. Pearl [Pearl 88b, chapter

5] shows that for a set of nodes, the most likely explanation, i.e. a set of values (one for
each node), is not in general the same as the set of values that maximises the belief at

each node. This is essentially because of the conditional dependencies. Pearl also shows

that the best explanation of all the data can be established using a modified form of

the propagation mechanism which we have implemented as the composite delta node.
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Either or both of these delta node types can be included in the network and can be
used to determine the best fit for the model. It should be noted that the calculation of

belief by the delta nodes is independent of the calculation made by the composite delta
nodes. The relationship between these two networks is illustrated in figure 7.7, note

that Pi, for example, is the same node in both networks, there are not two nodes of the
same name. Composite delta nodes send messages only to neighbouring composite delta

DO I AO I 1 CDO ) ( AO
> >

1 1

( D1 I ( CD1
< > <

t♦
T

A A.

( PI ) ( CI ) ( D2 J ( PI ) ( ci ) (CD2)

Figure 7.7: Delta and composite delta network relationship

nodes, the links from cue, image and angle nodes are one way only. This is purely for
the sake of computational convenience as, for this application, we are interested only in

the results at these nodes. There is no interaction between delta and composite delta

nodes. Messages are only sent to a composite delta node if they carry new evidence from
a cue or image node or a change in the relationship at an angle node.

This limited interaction is illustrated in figure 7.8, where solid nodes indicate new

evidence, solid lines represent message passing in the indicated direction and dashed lines

indicate no message passed. In the first pair of networks evidence entered at the cue node,

Cl, is propagated to both the delta node, D1, and the composite delta node, CD1. D1

propagates the evidence to the image PI and angle AO nodes as well as through the
delta network DO and D2. CD1 propagates the evidence solely through the composite

delta network CDO and CDS. In the second pair evidence from a delta node, DO is

propagated through the delta network D1 and D2, and to the image PI, angle AO and
cue Cl nodes. There is no propagation through the composite delta network. In the

third pair of networks evidence from a composite delta node CDO is propagated through
the composite delta network CDl and CDS only.
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Figure 7.8: Propagation in delta and compoeito delta networks following new evidence
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7.2.2 Line Types

Two types of model line can be selected, closed-line and open-line. An open-line model
is used for a boundary that does not form a closed loop, its component nodes are shown
in figure 7.9. The initial end-point, DO, has no angle constraint imposed upon it, and
the final end-point, Dn imposes no angle constraint on any other point. In the closed-
line model, shown in figure 7.10, the path between the deltas is continuous, there are

no end-points. All points impose an angle constraint upon their direct successor and
have an angle constraint imposed upon them by their direct predecessor. The closed-line
model is identical to the open-line model, with the final end-point being connected to

the initial end-point as its predecessor.

I AO 1 ( Al )

( DO ) —( Dl) (Do)

( TO 1 I CO ) ( PI ) ( CI ) ( Pn ) ( Cn )

Figure 7.9: Open-line network model for non-closed boundaries

( An ) ( AO ) ( Al )

- H Dn ) ( DO ) { Dl }

i Pn ) ( Cn ) ( TO ) ( CO j ( PI ) ( CI )

Figure 7.10: Closed-line network model for closed boundaries

Connections between composite delta nodes are the same as those of the delta nodes

they shadow. Thus if the delta nodes form a closed-line, so will the composite delta
nodes.
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7.2.3 Directing Propagation

It is possible to select the direction in which messages will be propagated from one delta
to the next. Messages can be passed from parent delta to child delta only, from child delta
to parent delta only, in both directions excluding leaf and root nodes, or in all directions

(this is the only completely consistent scheme for a belief network). As the probability
distribution calculated at the delta node is the same under all these propagation schemes,
bidirectional exclusive propagation is typically selected as it reduces message propagation
overheads and the number of calculations that must be performed. These propagation
schemes are illustrated in figure 7.11.

7.2.4 Limiting Propagation

Propagation limitation methods are employed for efficiency and to terminate infinite

circular propagation on convergence when using closed-line models. Three types of limit
on propagation from a node are available; decay, distance and circuits.

Decay continues to propagate messages from delta to delta, so long as there is sufficient

change in belief. The old belief vector is compared to the new belief vector using

the product moment correlation coefficient. If the value is greater than a user

defined threshold then no propagation occurs.

Distance limits the propagation to a set number of delta nodes in every direction that

propagation is allowed.

Circuits limits propagation to a set number of circuits (appropriate for closed-line mod¬

els) in every direction that propagation is allowed. Again this is counted at the
delta nodes.

It is possible to select any combination of limits, including none, but they are always
checked in the same order, namely; decay, distance, circuits. If any limit has been reached

then propagation is halted. There is an independent propagation limitation applied to

composite deltas that functions in an identical fashion.

Limiting propagation for efficiency using arbitrary measures, such as distance and
circuits above, could affect the probabilistic interpretation of the propagation results and
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the results themselves. The decay parameter, based on a measure of change in infor¬
mation is dynamic, varies according to the information being propagatod and maintains

probabilistic integrity.

7.3 System Development

To develop and test the system, a number of ultrasound images with similar character¬
istics were selected. These images were then normalised to give an even distribution
of pixels across the available grey-levels, and had their grey-levels inverted, resulting
in dark features on a light background as shown in figure 7.12. In order to assess the

Figure 7.12: Ultrasound image of fetal skull

performance and the failure modes of the system we initially applied it to less complex

images1, microscopic images of sections of mouse embryo. The mouse embryo images are

part of a large scale three dimensional reconstruction project which will require model
based matching of boundaries to enable efficient manually guided segmentation. The

techniques presented here are also likely to be of use for that project. The external

edges in these images are well defined, allowing the system to be tested within a simpler
environment. A typical mouse image with an initial cue is shown in figure 7.13.

A grey-level profile model, profile map and distance map for the line in figure 7.13 are

shown in figure 7.14. The grey-level profile model is the average grey-level profile for the

boundary edge calculated from a set of training examples. The profile map shows the
1 The structure visible in the microscopic images is more complex than in the ultrasound images,

however the signal to noise ratio is higher and therefore the image processing task is easier.
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Figure 7.13: Mouse embryo image

Figure 7.14: Grey-level profile model (bold line), profile map and distance map
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actual grey-level profiles from the image along each orthogonal. The distance map shows

the calculated Mahalanobis distances that result from applying the grey-level profile
model to each of the profiles in the profile map. The distance is calculated for every

sample point along the orthogonal.

The training set for the grey-level profile and shape models each comprised ten ex¬

ample lines similar to that shown in figure 7.15. The shape model was created after
the grey-level model, using a different set of ten lines. The grey-level model must be
constructed first as it is used in the calculation of the edge definition measure.
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Figure 7.15: Mouse training line example

Except where stated otherwise, all the refinement results have been produced using

the same grey level profile model and shape model. The system also has a number
of parameters that can be defined, for the mouse images the values used for the most

important parameters were as shown in table 7.1.

During testing we found that the best estimate line would occasionally become fixed
at a point that did not satisfy the halting conditions, or would get caught in a cycle. In

order to resolve these situations a random shift was introduced. Every point on the line

is moved a bounded random distance in the x aids and an independent bounded random

distance in the y-axis. The line is shifted whenever the current position of the line is

judged to be the same as a previous position of the line and the halting conditions are not

satisfied. Two lines are judged to be the same if the zy coordinates of the ends of the line

(or the initial point if a closed lino) arc the camo and tho distance between orthogonals
is also the name. These conditions would not distinguish between two linen that were a
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parameter value

node type delta node only
line type open

propagation type bidirectional exclusive

propagation limitation decay 0.95
distance 25

edge weight 0.5
model weight 0.5

stability < 2 pixels
edge definition 3

orthogonals 20

sample points 15

Table 7.1: Mouse embryo network parameter values

reflection of each other about a straight line drawn between their co-occurring endpoints.
Each time a shift is performed the record of previous line positions is discarded. Due to

this random element, the refinement of a line that includes a shift will generally produce

different results each time, even thought the starting conditions are the same. This
can drastically change the number of iterations taken to reach a solution, and possibly

whether or not a solution is reached at all. When describing a result, a pair of numbers
will be used, e.g. (23-2) or (63*12), which denote the number of iterations performed
and the number of times a shift was performed. An asterisk * indicates that the process

was stopped by the user before the halting conditions were met. As an illustration of
the above, figures 7.16, 7.17 and 7.18 show three refinement runs on figure 7.13 under

default conditions. In figure 7.22 a solution in (40-2) is shown, the shift occurred at

(35-0), another refinement under the same conditions reached a solution in (102-11)

indicating the effect that these random shifts can have on the refinement process.

We performed a number of trials using the mouse images to determine whether
the system could adequately detd with the range of expected errors. In particular we

deliberately generated cues that violated the grey-level and shape constraints by not

placing the cue on the boundary, and by defining a shape different to those in the

training set (figures 7.19 and 7.20). Cues that failed to satisfy the size constraint were

also used (figure 7.21). The refinement process is able to cope with a variety of errors in

the initial cue, including loops, figure 7.22.
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Figure 7.16: Initial cue and result (19-2)

Figure 7.17: Initial cue and result (22-2)

Figure 7.18: Initial cue and result (65*12)
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Figure 7.19: Initial cue and result (48-3)

Figure 7.20: Initial cue and result (14-0)

Figure 7.21: Initial cue and result (13-0)
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Figure 7.22: Initial cue and result (40-2)

The sensitivity of the refinement process to some of its default values was investigated

using figure 7.16 as the test case. The variables considered were:

• Relaxing the definition of stability by increasing the distance value (pixel match)

• Varying the model weight used in the combination of the best estimates

The results of these tests are shown in figures 7.23 and 7.24. From the small samples used

it is hard to identify any definite pattern in the results other than the correlation between

the number of iterations and the number of shifts. It is also important to realise that

these results are liable to be highly dependent on the type of images under consideration,

specifically the utility of the grey-scale model relative to the shape model, the number
of orthogonals and sample points, and the degree of fit required of the final line.

7.3.1 Initial Ultrasound Results

The initial application of the refinement system to ultrasound images used parameter

settings identical to those used for the mouse images, except for those shown in table 7.2.
The increase in the number of orthogonals and sample points was made on the basis of

approximating the same density of points as used in the mouse images. The increased
movement allowed reflected the increase in the total number of points.

A closed line model of the skull outline was created for both the shape and profile

models, each being based on ten training lines similar to that shown in figure 7.25.
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Figure 7.23: Pixel match sensitivity graph
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parameter value

line type
stability
orthogonals
sample points

closed
< 6 pixels
30

31

Table 7.2: Initial ultrasound network parameter values
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Figure 7.25: Fetal ultrasound training line

Initial results on these images were disappointingly poor, with the line typically

wandering across the image, unable to fix on any position even when started close to the

skull boundary, see figures 7.26 and 7.27 for example.

Possible causes of this poor performance included a breakdown of spatial conditioning

for the closed-line model or grey level profiles providing insufficient information to anchor

the boundary correctly. Tests conducted with open Lines had similar or worse results to

those using a closed-line, indicating that this was not the problem. In these ultrasound
tests the propagation limits selected in fact prohibited feedback as the distance limitation
is less than the number of nodes in the network. There are still advantages in representing

a closed-line using a closed network rather than an open network as it places a constraint

on the distance between the two end points that does not otherwise exist.

The attributes of the image and models were then considered. It was apparent that

at least part of the problem was that the boundary of the fetal skull had significantly

different grey-level profiles around its circumference, resulting in an average profile model
that was a poor match for the boundary. The variation in the profiles is illustrated in

156



Figure 7.26: Initial cue and result (330*1)

Figure 7.27: Initial cue and result (20*0)
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figures 7.28 and 7.29, taken from the dark part of the skull (the top relative to the

image) and the light part (the bottom) of the skull respectively. In both cases the profile
model (shown in bold) is that generated from including profiles around the complete
circumference. It can be seen that in neither case is the grey level profile model a good
match to the actual grey level profiles in the image. When the distances are compared
with those from the mouse images (page 149), the relative lack of information in the
ultrasound profile model becomes apparent.

Currently there is no provision in the system for the use of multiple grey-level profile

models, so in order to make the grey level profile information more effective, a new

grey level profile model was created using only profiles taken from the dark part of the

boundary. We hypothesised that the ability to identify even part of the boundary on the

basis of its grey level profile should be sufficient to anchor the line in the image. Once
the line is anchored, the shape constraints should ensure that the line is constrained to

the region of the image that contains the less well defined boundary, enabling its poor

profile match to provide the fine adjustment.

In addition to this change, several of the parameter values were varied in order to find
a combination that would consistently produce acceptable results. The changes tried can

be broadly classed as hard or soft. Hard changes were designed to force the line into the
correct place, typically by increasing the model weight parameter. Soft changes generally
involved relaxing the definition of a stable match by increasing the pixel match or tho

edge definition parameters. Various combinations of hard and soft changes were found

to produce reasonably acceptable results, as illustrated in figures 7.30 to 7.33.

However, we were unable to find a single set of parameters that provided an acceptable
refinement in all cases, an illustrated by figure 7.34, Similarly no sot of parameters could
be found that worked well when the test cues were applied to other images in the tost

set.
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Figure 7.29: Light grey-level profile map and Mahalanobis distances
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Figure 7.30: Initial cue and result (95-0) (model weight 0.75, pixel match 16)
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Figure 7.31: Initial cue and result (12-0) (model weight 0.7, pixel match 16)
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Figure 7.32: Initial cue and result (13-0) (model weight 0.7, pixel match 12)
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Figure 7.33: Initial cue and result (23-0) (model weight 0.5, pixel match 16)

Figure 7.34: Initial cue and result (135*3) (model weight 0.5, pixel match 16)
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7.4 Further Ultrasound Results

The failure to determine a set of parameter values that gave consistently acceptable
results across a variety of initial lines and across different images required further con¬

sideration of the particular problems posed by ultrasound images. We first considered

aspects of a single image and identified a number of features that could potentially cause

the refinement process to fail, these are illustrated in figure 7.35.
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Figure 7.35: Fetal ultrasound image features

Noise The generally high noise level tended to obscure the true edge and generate

spurious profile matches attracting the line in incorrect directions. Increasing the

model weight could alleviate this to some degree, but in turn introduced other

problems.

Structured Noise The presence of structured noise that mirrored not only the grey-

level profile of the true edge, but also its shape was always going to be difficult
to overcome. This problem was exacerbated by the use of only a partial profile

model which made it difficult for the line to fix on the parts of the edge not well

represented in the profile model.
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Internal Structure This created similar problems to structured noise, presenting con¬

nected structure with a profile that reasonably approximates the profile model.

Missing boundary The total absence of a boundary at certain parts of the image
often resulted in the line attaching itself to noise elements as the closest match
for the profile model. Once this attachment occurred it was difficult or impossible
for the rest of the fine to exert enough influence to pull these points back again,

particularly if the model weight was low.

Variable Profile This is probably the root of all the problems for this application, as

we have discussed earlier. The necessary use of a partial boundary model greatly

reduced the ability of the system to identify the correct boundary, particularly in
view of the other features identified above.

In addition to these problems caused by the features of a single image, the considera¬
tion of different images introduced further problems due to the variability between them.
Consider the test images shown in figure 7.36. Clearly these images vary considerably
with respect to the problem areas identified above.

7.4.1 Revised Network Model

Following the analysis of the ultrasound images some changes were made to the grey-level

profile modelling and to the function for combining the best estimates.

The change to the profile modelling allowed the creation of profile models that could
be applied to profiles that were not of the same length as the model2. This allowed the
use of long orthogonals to sample a larger area of the image. The problem with using

correspondingly long profile models was that the grey-level profiles for the areas either
side of the skull boundary were very different, both between orthogonals and between

images. This change made it possible to construct profile models that spanned only the
width of the skull boundary but still apply them to profiles that spanned a much greater

part of the image. It was hoped that this would allow points lying some distance from
their correct position to at least include their correct position within their local match
domain.

2This was a technical constraint imposed for convenience in earlier versions of the program.
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The changes to the combination function were primarily motivated by the recognition
that in the ultrasound images it would be necessary to assume that the initial cue was

reasonable. For the mouse embryo images the profile model provided such strong evidence
that the system was able to cope with initial estimates that were very distant from the

required result and in the mouse embryo refinement and the initial ultrasound tests this
initial cue was discarded after the first iteration. If we assume that this initial estimate

is in fact reasonable then discarding this information is clearly erroneous.

The second change in the combination function concerned refinement when the line
satisfied the shape and size constraints. Previously the best estimate was simply that

provided by the profile estimate. This was changed so that if the shape and size con¬

straints were satisfied then the current position of the line was used as the best shape

estimate. This was particularly relevant in the ultrasound domain where the profile data

and the shape data were often at odds with each other and oscillations between a posi¬

tion estimated on the basis of profile only, and a position estimate including shape data
was possible.

The new combination function was therefore a weighted average of the initial user line,
the best profile line and the best shape line (either the current line or one derived from the

imposition of the shape constraints). Additionally, separate shape model weights were

provided for the case when the current line is used and for when the shape constraints

are applied.

One further change was introduced in order to differentiate between the case where

the most likely sample point according to the profile data was not a good match for the

profile model (it is just the best match available), and the case where it was. To achieve
this the most likely point location given the profile data was weighted by the Mahalanobis

distance for that point (the distances lie between 0 and 1) as well as the edge weight.
This allowed the shape model to move points that were poorly supported by the image

data more easily than those that appeared to be on the true edge.

Using this new network it was possible to achieve reasonable results for both the delta
and composite delta networks across the four test lines in all the three test images using

the sets of parameter values shown in table 7.3. Some of the results of the experiments

are presented in figures 7.37 to 7.42. A complete sets of results, including those shown
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parameter delta value composite value
node type delta node only composite node only
line type closed closed

propagation type bidirectional exclusive parent to child
propagation limitation decay 0.95 decay 0.95

distance 25 distance 25
circuits 2 circuits 2

initial cue weight 0.1 0.1

shape model weight 0.5 0.5
current shape weight 0.5 0.5

edge weight 1.0 1.0

stability < 16 pixels <16 pixels
edge definition 3 3

orthogonals 30 30

sample points 59 59

Table 7.3: Revised ultrasound network parameter values

below, can be found in Appendix C.

The stability of these results arises from the full use of the probability information

from the image matching and model prior knowledge.

We also ran some of the experiments again using the delta network, but with the

only propagation constraint being decay (0.95). The results under the two regimes are

shown in figures 7.43 to 7.45. Experiments comparing the limitation regimes using the

composite delta network on the same examples are shown in figures 7.46 to 7.48.

It should be noted that none of the refinements managed to satisfy the size constraint

halting condition, regardless of the network model used. This is discussed below.
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Figure 7.37: Initial image, result (149*13) and composite result (149*14)
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Figure 7.38: Initial image, result (29*2) and composite result (29*2)
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Figure 7.39: Initial image, result (659*59) and composite result (659*54)
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Figure 7.43: Delta network with arbitrary limitation (29+2) and decay only (29*4)

Figure 7.45: Delta network with arbitrary limitation (269*20) and decay only (269*16)
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Figure 7.47: Composite network with arbitrary limitation (134*2) and decay only (134*3)

Figure 7.48: Composite network with arbitrary limitation (269*10)
and decay only (269*10)
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7.5 Discussion

The move from the mouse embryo images to the fetal ultrasound images demonstrated
a number of weaknesses in the refinement system. Whilst the final results from the

ultrasound images were better than the initial results suggested, the hoped for level of
robustness was not achieved. However, the system does demonstrate the prime motiva¬

tion for this work, that belief networks are capable of controlling complex image analysis
tasks and can be modified easily and conveniently by the domain expert. Some particular

points of concern with the current approach to the general problem include:

Network Propagation The current implementation has an undesirable feature which
is best illustrated by an example, see figure 7.49. In the top image we see a line

Figure 7.49: Nicked edge example

fitted to a boundary which has a nick in it. The orthogonal that lies across the
nick is receiving conflicting information, on the one hand the profile information

suggests it should move to the location shown in the lower image, on the other hand
the influence of the neighbouring orthogonalc suggests it should remain where it

is. The influence of the neighbours i3 modelled such that a high probability at a

particular sample point on one orthogonal is propagated as a distribution centred
about the same sample point to the neighbouring orthogonals. In the top image

this is the desired behaviour, as we are assuming that the edge is smooth and
continuous we would expect the nick to be largely ignored.
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In the lower image with the orthogonal in the nick, we might expect the neigh¬

bouring orthogonals to be suggesting that the orthogonal be moved to the position
shown in the top image. In fact this is not the case, the reason for this is that
the network has no knowledge of the spatial relationship between orthogonals other
than their ordering along the line. As a result of this the neighbouring orthogonals
in the lower image actually suggest that the orthogonal in the nick remain where
it is, as the high probabilities of the centre sample points support each other.

On a related point, it is assumed that the orthogonals are approximately parallel
to each other. This assumption is more or less false depending on the number of

orthogonals and the degree of curvature along the line. It is not clear what effect
this has in practice.

The profile model The current profile model is an average grey-level edge profile,
formed from grey-level edge profiles taken along the extent of the edge. Three

assumptions underlie this model:

1. The orthogonals are sufficiently long to incorporate the significant profile.

2. The profile is similar along the extent of the edge.

3. The averaging of the line does not destroy important fine-resolution detail.

Assumption 1 has occasionally proved to be problematic in the examples consid¬

ered, particularly if the initial cue was poor.

Assumption 2 was violated in the ultrasound images, leading to the problems dis¬
cussed earlier. In the ultrasound images it was possible to work around the problem
to a limited degree by creating a profile model for part of the boundary and relying
on the fact that the shape model is restrictive. In domains where assumption 2 was

not met and the shape model was highly variable it is doubtful that the refinement

could be made to succeed. In such domains it may be necessary to have multiple

profile models, one for each distinct profile. These could then either be associated
with only a subset of the orthogonals, or could provide competing likelihoods to

the belief network.

Assumption 3 was not directly an issue in the examples considered though it is
related to assumption 2 and a similar solution might prove appropriate. It may
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be possible to use profile models at different resolutions, the low resolution models

being formed by averaging over a number of profiles and the high-resolution model

being formed by maybe only a single profile. Initially the low resolution model
would be used to position the line approximately, then the high resolution model
would be used to perform the fine adjustment.

As the profile models will typically be constructed from a set of approximately

aligned boundaries, it will never be an exact match to the edge and the final result
of the alignment will always be dependent on the accuracy of the models with

respect to the image data.

Parameter selection The system performance has proved to be highly variable de¬

pending on the parameter values used. This allows the system to be adapted to

suit the particular images under consideration, as was shown in the ultrasound

images. This information is part of the expertise within the image processing do¬
main and needs to be elicited from the expert. In this case it may be necessary

to introduce a learning technique, for example a neural network, to undertake this
role.

Constraints The current constraints arc embodied in the halting conditions as well as

the belief network itself. The constraints are currently very simple, due to the

limited sources of information available to the system, i.e. the grey level profile
model and the shape model. The specific limitations of these two models are

discussed above. More generally the fact that the refinement does not necessarily

progress in the direction of the true boundary suggests that cither the problem is

underconstrained or that the available constraints are not being applied effectively.
Thin is supported by the failure of the system to transfer well from tho training

images to new images.

The halting conditions do not necessarily define satisfactory refinements in the
ultrasound images, though in the mouse embryo images they typically did. The

edge definition measure has very wide bounds in the ultrasound images and is
therefore easily satisfied by fairly arbitrary lines.

A richer variety of constraints may be necessary in order to overcome the problems
associated with refinement in the ultrasound domain. Providing these constraints
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produce results defined in terms of probabilities, then they can be included using
the belief network approach.

7.5.1 Results — Postscript

Subsequent investigations aimed at improving the results of the matching process have
further emphasised the sensitivity of the system to its parameter values and to particular

types of error in the initial cue. They have also indicated the source of the problem

preventing convergence to a stable solution.

parameter value

node type composite node only
line type closed

propagation type parent to child
propagation limitation decay 0.95
edge weight 1.0
model weight 0.5
initial weight 0.0

stability < 2 pixels
edge definition 3

shape standard deviation3 1

orthogonals 20

sample points 59

Table 7.4: Improved ultrasound network parameter values

The revised set of parameter values shown in table 7.4 was used to generate the re¬

sults shown in figures 7.50 to 7.53. It should be noted that these results are better, they

converge more quickly and all the constraints are satisfied. It appears that the initial

weight parameter combined with a poor initial cue was preventing the refinement moving

beyond a certain point and from satisfying the constraints. There is clearly further in¬

vestigation required into the precise effects of different combinations of parameter values
to see if a genuinely optimum set can be determined.

This revised parameter set was still unable to provide acceptable results in certain

situations, as illustrated in figure 7.54. This behaviour is due to a combination of frag-
3The Shape Standard Deviation parameter defines the acceptable number of standard deviations

each parameter in the shape model can be from the mean. In all previous experiments the value used
was 3.

178



Figure 7.50: Composite delta network result with original parameters (59*2)
and with revised parameters (30-0)

Figure 7.51: Composite delta network result with original parameters (44*1)
and with revised parameters (24-0)
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Figure 7.52: Composite delta network result with original parameters (269*10)
and with revised parameters (20-0)

Figure 7.53: Composite delta network result with original parameters (104*6)
and with revised parameters (49-0)
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Figure 7.54: Composite delta network result with original parameters (210*4)
and with revised parameters (210*0)

mentary or non-existent edge profiles at the easternmost and westernmost areas of the

skull, noise providing spurious profile data, and very tight conditions for an accept¬

able solution. In cases where only one of these features is present, the shape model is

typically able to impose its estimate as the edge data either supports (in the case of non-

fragmentary edge profiles) or does not detract (in the case of no spurious profile data)
from the estimate. It also depends on the positioning of the initial cue, as the process is
better able to refine in an up/down direction than a left/right, due to the lack of profile
data where the ultrasound beam is approximately tangential to the skull boundary.

7.5.2 Future Work

Despite some weaknesses in the specific implementation we adopted, the belief network

approach to the ultrasound model matching tasks has proved both interesting and useful.
On the basis of the work that has been completed, an outline for a new approach has

been developed. This new approach addresses some of the invalid assumptions and poor

design features of the current system.

The most significant change is to move from a belief network that shifts dynamically

with the boundary, to one that is static with respect to the image. The boundary then
moves with respect to both the image and the network. This creates an opportunity to

incorporate more knowledge directly within the belief network.
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In addition to providing an initial boundary cue, the user is required to provide an

axis line running from front to back down the approximate middle of the skull. This
should not present too many problems as it will follow the midline which is often well
defined in the images. This axis line should be extended from the centre of the skull out

to a point that is judged to contain both points of intersection between the skull and
the axis line. This axis line is then used to place a set of orthogonals. The midpoint
of the axis line is taken as the approximate centre of the skull, orthogonals4 are placed
so that they radiate from the centre towards the skull boundary. The length of each

orthogonal and the number of sample points along each orthogonal can be calculated
relative to the length of the axis line using knowledge about the distribution of skull

shapes. The number of sample points per orthogonal will vary depending on the length
of the orthogonal. This is illustrated schematically in figure 7.55.

Extent of network model

■ ; \
Axis line p

Inilial skull line

Figure 7.55: Schematic network model

The conditional probability matrices that determine the influence an orthogonal has

on its neighbours can then be based on the degree of curvature, as the sample points on

neighbouring orthogonals now have a fixed spatial relationship to each other. For exam¬

ple, in figure 7.56 if the curve being modelled is roughly symmetrical through orthogonals

A, B and C, then a boundary passing through points 1 and 2 will have a greater proba¬

bility of passing through point 4 than points 3 or 5. As the orientation and centre point

4These radial lines are no longer orthogonal to the boundary but have a similar function.
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of the skull are approximately known it should be possible to derive the probabilities
of different curvatures at different orthogonals from example images. Similarly it will
be possible to produce prior probability distributions across each orthogonal based on

a training set suitably scaled by the length of the axis line. These distributions would,
for example, make sample points that are very close to the centre point highly unlikely,
whereas those towaids the outei edge will be more likely. The initial skull cue could be

treated in a similar manner.

The shape model will need to be modified as it should only consider points lying
within the extent of the network model. The issue of including multiple shape models
requires further consideration.

7.5.3 Conclusion

The aim of this application wan to demonstrate the suitability of belief networks as a

tool for integrating local and global constraints for image interpretation. One of the

distinguishing features of ultrasound images is the high level of noise. In addition to

this, the noise may also be highly structured, mimicking genuine image features. The

imaging technique also tends to produce ill-defined boundaries, both in terms of the

discontinuity of the boundary under certain conditions and the blurring of the true

position of a boundary. In addition to the difficulties arising from the imaging modality,

u

2

3 4 5

Conditional probabilities based on curvature
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the subject, i.e. the fetal head, introduces additional problems due to natural variations

in size and shape and variations due to abnormality. These two factors combine to

form an image interpretation task with a high degree of inherent uncertainty. The belief
network approach provided on the one hand a principled mechanism for handling this

uncertainly, and on the other hand an explicit model of constraint integration. Whilst
the application concentrated only on the lowest level of the task, the identification of

the fetal skull, this was always viewed as part of a larger system that would produce a

high level analysis and diagnosis of the image. By adopting a probabilistic underpinning
we hoped to maintain the validity of uncertain inferences from this low level image

interpretation task through to the diagnosis itself, allowing for the possibility of this

diagnosis then being used as a constraint at the image interpretation level as part of an

iterative refinement process.

As a mechanism for handling uncertainty within this image interpretation task, the

belief network has performed well. The probabilistic model employed was relatively

straightforward, thereby avoiding some of the problems that can be encountered when

determining an appropriate model. The most unusual feature of the model was the use

of a circular network for propagating constraints between boundary points. While this
model was a natural representation of the domain, it was at odds with the probabilistic

theory underlying the belief network. Although the solution discussed earlier, namely

propagation limitation, does not strictly adhere to the probabilistic theory, we believe

that, in the context of the application, it provides an appropriate approximation. Whilst

this may have implications for the results produced by our particular system, it does not

undermine the probabilistic approach to image processing.

The application considered only a small number of constraints, but these were suffi¬
cient to demonstrate the principle behind the integration of constraints. Certain assump¬

tions, such as an equal number of points in both estimates, were made but these were for

programmatical convenience rather than any inherent limitation in the approach. A be¬
lief network appears to offer a flexible and powerful mechanism for combining disparate
constraints under certain conditions.

Where possible the constraints used were based on training sets in order to capture

the variation in the fetal skull and the way it appears in an ultrasound image. The image
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models derived from these training sets may themselves be probabilistic in nature, again

suggesting that a belief network approach is appropriate.

As all the constraints within the application were concerned with the low level image

processing task, the question of how the probabilities from this level would influence
probabilities at higher levels of interpretation and diagnosis was never raised. This would

depend to a certain extent on the types of evidence and the forms of domain model that
were available. However, regardless of these factors, the belief network approach should
be powerful enough to provide a coherent unifying framework.

One issue that was not addressed by this research was how estimates of the error

associated with the boundary could be derived from the network. Ideally these estimates
would have a statistical interpretation as they would be based on probabilities from the
model.

Ultrasound image interpretation is a difficult task, typically performed by a trained

expert. Although the specific task addressed by the application has concentrated only
on fairly straightforward images, they have proved challenging given the constraints we

have used. More important than the actual image interpretation was the demonstration
of the basic approach to the task of image processing using belief networks. The gen¬

eral approach of combining multiple sources of evidence to aid image interpretation is

widespread, belief networks offer an elegant mechanism for achieving this combination.
The application demonstrates that belief networks can be used to provide probabilistic
mechanisms for achieving low level image-based tasks. If uncertainty can be modelled

within the system in terms of probabilities then belief networks can bo used to provide a

coherent and consistent mechanism for handling that uncertainty in a way that facilitates
rationed decision making at all levels of interpretation.

It may be that for image measuring tasks, a more traditional image processing

approach, such as that taken by the Wayne State University group [Salari ct al 00,
Zador eta/ 91] mentioned earlier, may suffice. Where more flexible model matching
and multi-level constraints are to be used, the belief network approach may be more

appropriate.

There is evident similarity between the belief network approach and the active con¬

tour models discussed in Chapter 5, particularly the work of Cootes et al [Cootes et al 95],
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from where the Point Distribution Mode! was adopted. Both employ a form of active con¬

tour influenced by both local and global constraints. In fact, the belief network approach
could be described as a form of active contour model using probability maximization in

place of energy minimization. Both approaches share a common philosophy in terms of
constraint integration and dynamic models, and some common limitations. The impor¬
tant difference between the belief network and active contours lies in the interpretations

that can be applied to the numbers within the two approaches. The belief network num¬

bers have a strong interpretation as probabilities, but it is not clear what interpretation
can be applied to numbers within an active contour. This will have implications for

any decision making that may be made on the basis of these numbers. It is also likely
that belief networks will be more able to provide a common framework for all levels of a

diagnostic task, rather than being limited to low level image processing tasks.
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Chapter 8

Application — Cervical Screening

The potential for using belief networks in the task of cervical specimen classification
has been recognised by at least two authors [Poole 91, Bartels & Weber 92, Poole 93].

Following on from the work by Poole, we have developed a belief network for classifying
cervical specimens, implemented in FLAPNet. The intention is to illustrate and explore
how a belief network can be used to integrate the results of low-level image processing
functions with high level patient information in a diagnostic task. The goal of this

chapter is to establish the behaviour and techniques for applying the belief network to

an interactive diagnostic task.

8.1 Overview

The purpose of an automated prescreening system is to reduce the number of slides
that must be inspected manually. Ideally a prescreening system divides slides into two

groups, those that can be accepted as normal without manual inspection by a cytologist,
and those which should be referred for manual inspection. Clearly this procedure is

critically dependent on acceptable error rates. Whilst the effect of a high false-positive

rate, i.e. manually inspecting normal slides, is essentially a question of efficiency, the

false-negatives are potentially of great clinical significance. The determination of an

acceptable false-negative rate is made more difficult by the absence of any reliable figures

concerning the false-negative rates of cytologists.

The typical approach to automated pre-screening systems can be divided into three

main stages; the location of objects on the slide, the measurement of distinguishing pa-
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rameters of individual objects, and the combination of the individual measurements into

a classification for the slide or specimen as a whole. On the basis of this classification,
the slide is accepted as normal or referred for manual inspection. The tasks of locat¬

ing objects and classifying them on the basis of measured features are relatively well
understood [Eason ]. The task of slide classification is still very much a research issue.

As far as the classification of the slide is concerned, we consider only four classes,

normal (no abnormality), borderline changes, mild/moderate dyskaryosis and severe

dyskaryosis*. These classes represent a continuous scale of change between a sample
that has been taken from a healthy patient and a sample taken from one showing various

degrees of severity of cervical cancer.

Although there are a number of risk factors that are believed to be involved in cervical

cancer, the lack of understanding about the precise influence of these factors and the

way in which they combine means that these factors are usually not incorporated in

automated slide classification schemes. The influence these factors and other items of

clinical and patient data have on manual classification is also not understood.

8.1.1 Probability Model

There are several sources of data that are potentially important in the classification of a

cervical specimen. These include:

• Incidences of cervical cancer in the population.

• Items of patient-specific clinical data.

• Patient-specific risk factors.

• Sample quality of the slide.

« Particular clinical features of the slide as a whole.

• The classification of objects on the slide.

The population incidence rates can be taken as the base prior probability of cervical
cancer for an individual selected at random from the population under consideration.

'Including severe dyskaryosis, carcinoma in situ, microinvasive carcinoma, invasive carcinoma and
glandular.
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Thin prior probability can then be refined to provide a patient specific prior probability

by including relevant items of the patient's clinical and personal data.

The classification of a slide depends partly on the condition of the cells observed and

partly on the number of cells observed to be in a particular condition, though the precise
nature of the process is unclear. The belief network relies on the Cytoline-110 system

[Poole et al 92, Poole 94, Eason ] to locate and classify objects on a slide. The results

generated by Cytoline arc then used as inputs into the network. As the network has
been constructed from an example set of data generated by Cytoline, it is necessarily
tuned to the particular operating characteristics of Cytoline. Civen a large enough set

of example data from some other process providing object classifications, or some other

diagnostic measure, this new process can be easily incorporated within the existing belief
network model. Currently the network provides a slide classification which is all that

is needed for a decision on manual inspection. The actual decision of normal (accept)
or suspicious (refer for manual review) requires an analysis of the receiver operating
characteristic curve and an assessment of the clinical and economic factors to set the

decision point. This is not of direct interest here.

Cytoline produces a variety of information which may potentially be of diagnostic
value. A first pass over a slide locates objects and classifies them as being being one of

leukocyte, normal cell, sucpicious cell, a clump of overlapping normal cells, or junk. It is

generally believed that leukocytes and junk arc not significant for diagnostic purposes.

This initial classification is based on a number of low level image features. A count of
tho number of objects in each class and the average probability of all the objects of a

particular class relative to the other classes is also produced. A certain number of the

objects identified as being suspicious are then re-examined at low resolution to produce
an individual set of probabilities across the classes for each specific object. Finally some

of these objects are selected and scanned at a higher resolution to provide more detailed
information. We refer to these three data sets as the average data (AD), low resolution
data (LR) and high resolution data (HR) respectively. It is on the basis of these three

sets of data that we must provide a classification of the specimen. One further source

of information not directly considered here is the possible classification of the objects in

the LR or HR sets by a trained human operative, though this in part of the Cytolinc
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processing regime.

The diagnostic value of the data produced by Cytoline is still under investigation
and there is no absolute benchmark against which a network model could be compared.
This does not affect the purpose of this investigation which is to explore the use of belief
networks and examine their operating characteristics.

Data sets produced by Cytoline are available, therefore the network model was de¬

rived from and tested on real data rather than a theoretical model. In addition to these

data sets, a cytologist's clinical grading for each slide was also known, allowing a relation¬

ship to be established between Cytoline data and an estimate of the true classification.

The clinical grading was defined over a slightly different set of classes to those we in¬
tended to use, but as the gradings were simply refinements (subsets) of the intended
classes this presented no problem.

A total of 334 graded slides were available, these were divided arbitrarily into a

training set, upon which the model was based, and a test set. The composition of these
slides is shown in table 8.1. In view of the small number of slides in the severe class, it

slide grade total set training set test set

normal 177 101 76
borderline 36 21 15

mild/mod. 104 47 57
severe 17 10 7

total 334 179 155

Table 8.1: Composition of training and test slide sets

was decided to combine the mild/moderate and severe classes.

An important benefit of using a belief network classifier is the ability to allow in¬

cremental addition of data so that the process can be stopped at any point to assess

the current classification. For this reason initial investigations concentrated on trying to

establish a coarse classification on the information contained in the AD (average data)

alone. It was found that this information is insufficient to provide a satisfactory discrim¬

ination. Cytoline has since been modified to produce a finer grained representation of
the probabilities for the initial pass in place of the average. Whether it will be possible
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to perform some form of discrimination on the basis of this improved data remains to be
seen.

There were a number of ways in which the LR and HR data could have been used.

Cytoline combines the low level image information (area, integrated optical density,

shape, etc.) of each object and determines likelihoods across the classes for each object.
We term the likelihood of the object being suspicious, an index of suspicion. This allows
us to use the values assigned by Cytoline (or indeed by any process) with only minimal

assumptions about the way in which the value has been calculated. We require only
that the value assigned by the process varies monotonically across its range and that the

ordering of specific cells by value is similar (we cannot expect any process to always be
correct or accurate) to that produced by a cytologist ordering the cells relative to their

degree of suspicion. A plot of the index of suspicion against likelihood (derived from the

frequencies in the training data) on a per-class basis for the LR and HR are shown in

figures 8.1 and 8.2 respectively.

A particular feature of the Cytolinc data is that objects are ranked according to

a calculated degree of suspicion, based on the degree of apparent abnormality due to

measured features of the object. This allows us to test the incremental updating of the
belief network which can then be used to determine if further analysis is required or if
sufficient data has been collected. This may not be critical for this application but in the

general medical case collecting further data may involve expensive or possibly hazardous
medical procedures. The network can act both as a tool for reasoning and for planning.

The distributions of index of suspicion values for objects at different points, #1

... #n, in this order arc very different, as shown in figure 8.3. The top graphs chow
the plot of index of suspicion values for the first ranked object (#1) on a per class
basis. There is little difference between the class distributions as there are typically a

small number of suspicious looking objects even on a normal slide. At the #20 object
there are distinct differences between the distributions. Whilst the individual graphs
are not particularly discriminating, by basing a classification on a series of them a more

accurate discrimination should be possible. In this work we use the first 20 distinct

likelihood distributions, representing #1 ...#20.

191



Figure 8.1: Index of suspicion likelihoods for [,R
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Figure 8.2: Index of suspicion likelihoods for IIR
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Figure 8.3: Likelihoods for #1 and #20, LR (left) and IIR
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Each of these graphs provides the likelihood of an object, O; with a given index
of suspicion /S(o,) belonging to each of the three classes, C, given its ordering #(o,),

i(o, = C | IS(o,), #(<>, )). This likelihood depends also on whether the index of suspicion
is based on the low resolution scan or the high resolution scan. The probabilities for the
slide as a whole P(Sj = C) can be calculated as the product of the likelihoods of all the
object data multiplied by the prior probabilities across the classes.

8.2 Network Model

Although we have concentrated on the part of the model concerned with the classification
of a slide on the basis of object data, extending the model to include, for instance, patient

and population data is straightforward, as illustrated in figure 8.4. The precise nature

Incidence I [ Age (Contraceptive! J

Population Data . - - - . Patient Data

( Pnors )

X
( Slide

Classification

4
( Object II • ■ • ( Object n )

._ i
i Cytologist i ( UOI I HD) ) ( L(OI I LD) )

Object Data

Figure 8.4: Schematic network model

of the relationship between the items of patient data, their combination with population

data and the question of default values are not addressed in the work we have undertaken.

In the network model used for the classification results presented in this chapter, we

ignore slide data and assume that the priors for the slide classification are available from
the training data. This simplified network is shown in figure 8.5. We have also created

( Quality ) ( Features )

SJjJj £)ala
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Figure 8.5: Reduced network model

some experimental networks that incorporate slide, patient and population data.

In this study we have tested two models for the conditional probability matrices.

Both models assume a categorical relationship between the Object nodes and the Slide

Classification node. In model 1 we assume that the matrices between the LR and HR

Likelihood nodes and the Object node are also categorical, i.e. that there is no error in
the classification. This is very unlikely to be true, but by including sufficient data the er¬

ror introduced by this assumption may average out. In the second model we hypothesise
that the conditional probability relationships between the LR Likelihood node and the

Object node and the HR Likelihood node and the Object node are non-categorical.
The relationship used is shown in table 8.2. Whilst the hypothesised relationship is

class normal borderline mild/mod/sev
normal 0.9 0.1 0.0
borderline 0.1 0.8 0.1

mild/mod/sev 0.0 0.1 0.9

Table 8.2: Hypothesised non-categorical conditional probability matrix

certainly over simplified and inaccurate, it provides a comparison with the categorical

hypothesis.

In the current situation we know the total number of objects in the LR and HR for

a particular 3lidc as they arc taken from a pregenerated data sot, however thic would

not be the case if Cytoline were supplying data at run-time directly to the network. To

allow for the possibility of a direct run-time link to Cytoline, the network is created
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incrementally in response to the data it receives. Initially the network consists of only a

single node, the Slide Classification, conditioned with the appropriate prior proba¬
bilities. All objects located by Cytoline are numbered, therefore the index of suspicion
is linked to a specific object. If an index of suspicion datum is received for an object
that is not represented in the current network, an Object node is added to the Slide

Classification node. If it is a LR index then a LR Likelihood node is added with

the distributions appropriate to the order in which the data has arrived. If an Object

node but no Likelihood node exists an appropriate Likelihood node is added to the

existing Object node. In this way the network contains no redundant nodes.

Each Likelihood node is in fact a pair of nodes, one that is used to input and display

the raw index of suspicion and the other to convert the index into likelihoods. The

conversion node holds an approximate, discrete representation of the three likelihood
functions which it uses to make the conversion. This conversion is performed on the

single value sent to it by its solitary child node. The resulting likelihoods are taken as

the lambda value at the conversion node. The rest of the node functions as a Pearl Type

node, except that no messages are sent to the child node. In the present model, each
likelihood distribution is represented by twenty discrete classes across the range 0 to 1,

corresponding to the range of possible index of suspicion values.

8.3 Results

Summaries of the results obtained from applying the network to the test slides are shown
in the tables on page 198. Table 8.3 shows the classifications of the slides under the two

models. We consider the most probable class at the Slide Classification node to be

the network classification2. The true classification column indicates the grade allocated

by the cytologist. These are offset to align with the appropriate model classification
row. The figures are the number of slides of that clinical grade that were classified as

the grade denoted in the model classification column. For each of the models both the

intermediate result using only LR and the final result using both LR and 1IR are shown.

The LR and HR results are based on the HR set in addition to the LR data, i.e. it is

based on both sets of data, with the LR set being processed first.
2There were no cases in which there was not a single, most probable class
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The actual slide classification results are not particularly good and certainly are not

good enough to be included in any real classifier, though this was not the aim of the

investigation. Consider, for example, the two extremes of the classification range, the
normal and the severe samples. For an automated pre-screening system we would need to

be able to identify normal samples efficiently, as these will form the bulk of the slides. The
classifier correctly identifies these slides in only 48 to 68 % of the examples (depending
on the model used) and classifies between 28 and 35 % of them as severe. In a screening

system which handles a large number of samples, a high false-positive rate undermines
the purpose of automation by requiring the cytologist to examine a significant number
of normal slides. Similarly, and more importantly from a clinical point of view, 14 %
of severe samples were misclassified as normal. False-negative classifications can have

potentially grave clinical implications. To be usable, a classifier would need to have a

false-negative rate of some fraction of 1 %.

Table 8.4 shows the change between the LR and the LR and HR classifications.
Cross referencing the LR (intermediate) column and the LR & HR (revised) row gives
the number of slides (of a particular clinical grade) that were given that intermediate

grade, having that revised grade after the HR was added. For example, using the model
1 LR borderline column and the true classification normal section, HR & LR borderline

row, gives the value 6. This means that 6 of the clinically normal slides that were

classified as borderline using Model 1 and LR were still classified as borderline after the
11R had been included.

Figure 8.6 shows the classification results for three slides, one each of normal, bor¬
derline and severe, for both the models. The graphs illustrate the way in which the

probabilities of the classes change as data in the form of the index of suspicion values
is made available. The Data axis of the graph shows the number of index of suspicion

values that have been examined, 0-20 twice, once for the LR and once for the HR. In

the normal and severe graphs the classification is not changed by the addition of the HR

data, and settles after only about half of the LR data. Whilst it may be tempting to

suggest that a classification can be based simply on the first ten LR index of suspicion

values, this will not always be the case. Ideally a classifier would allow decisions to be

made as to when the process had settled and further data was unnecessary.
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true model m odel 1 m odel 2

classification classification LR only LR & HR LR only LR & HR
normal normal 41 52 39 37

borderline 8 2 11 18
severe 27 22 26 21
normal 5 6 5 6

borderline borderline
severe

0

9
0
8

1

8
0
8

normal 14 13 13 12
borderline 0 1 1 3

mild severe 20 20 20 19
normal 7 7 6 6

borderline 1 1 3 2
moderate severe 14 14 13 14

normal 1 1 1 1

borderline 0 0 0 0
severe severe 6 6 6 6

Table 8.3: Intermediate and revised classification results

true LR & HR model 1 LR classificat ion model 2 LR classification
classification classification normal borderline severe normal borderline severe

normal normal 41 1 2 34 1 2
borderline 0 6 1 5 10 4

severe 0 1 24 0 0 20
normal 5 0 2 5 0 2

borderline borderline 0 0 0 0 0 0
severe 0 0 7 0 1 6

normal 12 0 0 12 0 0
borderline 0 0 1 1 1 1

mild severe 2 0 19 0 0 19
normal 7 0 0 6 0 0

borderline 0 1 0 0 2 0
moderate severe 0 0 14 0 1 13

normal 1 0 0 1 0 0
borderline 0 0 0 0 0 0

severe severe 0 0 6 0 0 6

Table 8.4: Change between LR and LR & HR classifications
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Figure 8.6: Example slide classifications, normal, borderline and severe (top to bottom),
using Model 1 (left) and Model 2
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8.4 Discussion

The network model presented in this chapter has focussed on the use of the Cytoline data
sets for classifying cervical specimen slides. We have used the data in a way that makes
a minimal number of assumptions about the precise meaning of the numbers Cytoline

assigns. By adopting this kind of approach it is possible to include data with a less

rigorously defined mathematical underpinning than Cytoline's, for instance cytologist

gradings. Often when using human expert opinion in a classifier it is difficult to determine
whether the numbers they assign should be treated as posterior probabilities, likelihoods,
or in some other way. Belief networks provide a means of incorporating poorly defined
values into a probabilistic framework.

One of the potential strengths of an explicit network model is its use as a testbed for
theories about how the risk factors, for instance, are related both to each other and to the

incidence of cancer. It has been argued [Boden 77, page 401] that the implementation of
a theory as a computer model provides a good test of the validity and completeness of
that theory. By experimenting using different models of the interaction between the risk
factors it may be possible to improve on a classification based on object data alone. In our

investigations we have experimented with simple models of the interaction between, for

example, age, contraceptive usage and social class. The models are easy to construct and

are entirely explicit once created allowing the expert user to follow the inference process.

We have also experimented with quality control data, for instance by measuring the

proportion of debris and cell objects located by Cytoline. This information can either be

fed directly into the Decision or can be included at the Slide Classification node

by expanding the classifications to include a 'quality reject' class. The fact that the

underlying probability model is explicitly represented by the network structure and the
conditional probability matrices, means they are ideally suited to this type of incremental,

experimental model development. Different sub-parts of the model can be refined when

an appropriate biomedical or mathematical model is available or represented only as an

input if the underlying models are not understood or are not important.

Before any investigation into the way in which the risk factors affect classification, it

will be necessary to improve the object based classifications. Once this improvement is

achieved, the network can then be used to combine the results of the image processing,
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object based data, with expert opinion on how the rink factors and clinical data interact.

There are several factors which could be contributing to the current poor classification

results, among these are:

• The index of suspicion may simply not be a powerful enough discriminator on its
own. The rosults suggest that it may have some limited discriminatory power, but
it is possible that this is an artifact of the available data. The whole question of

identifying useful discriminators is still largely unanswered. There is a suggestion
that the data on which a classification is to be based should be expanded to include

more object classes, such as inflammatory and particularly overlapping abnormals.
It is also possible that the special slide preparation method used for Cytolinc is

failing to reveal vital diagnostic information.

• The training data set was small and may therefore not be truly representative of
the underlying distributions. The desire to maintain a totally independent te3t set

also restricted the size of the training set.

• The number of slides in each of the classes varied greatly, even after the severe

and mild/moderate classes had been combined. It is difficult to assess what effect
this may have had, though it may be possible to compensate to some degree in the
conditional probability matrices.

• In calculating the likelihood distributions, no attempt was made to compensate

for missing data. Gaps in the data for a certain discrete range in the index of

suspicion range were treated as genuine rather than a feature of the training data,
which is more likely to be the case. Had some approximation of the missing data
been attempted, it is possible the results may have been better.

• Rather than use the absolute ordering # of suspicious objects, some form of nor¬

malisation, based on the number of cells examined should be performed. Instead
of examining the #20 cell we should examine, for instance, the #0.002 % cell.

• The use of only the first twenty index of suspicion values represents approximately
one sixth of the index of suspicion data available for each slide. It is not clear if
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the discrimination would be improved or degraded by making use of the remainder
of the index of suspicion and object data.

• The use of only twenty divisions to represent the index of suspicion discretely may

have been too coarse, but this choice was influenced by the wish to avoid gaps in
the data. A uniform division across the range should be replaced by a division
with finer resolution at the lower end of the scale, on the basis of trying to identify
slides that are "clearly" normal.

• The hypothesised conditional probability matrices and the use of the same matrix
for the LR and HR data are certainly incorrect and discrimination may be improved

by basing these matrices on real data.

8.4.1 Conclusion

Most of the factors that have been identified as possible causes of the poor classification

results achieved concern the way in which the data was used and the quality of the data

itself, rather than the belief network approach to the task. With a larger data set and a

more thorough investigation of possible correlations between the items of data and the

classification of the slides, the majority of these reservations could be addressed.

Even with significantly better classification results, the case for using a belief network
instead of (or in addition to) the black-box statistical classifiers typically used is still to

be made. The force of argument for the use of belief networks in this application rest

less on their statistical validity (though this is still vital) and more on the explicit nature

of belief network models and their ability to use weak, incremental evidence.

The importance of an explicit model is expressed well by Bartels and Weber when

discussing prescreening procedures and systems [Bartels & Weber 92, page 1],

Understanding the underlying assumptions requires knowledge and insights
from different disciplines, most of them not in the area of the professional

experience of cytopathologists and cytotechnologists. Yet, these are the pro¬

fessionals who will ultimately operate the devices, will have to trust the

results, and whose profession will be affected by the process of automation.
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A belief network can provide an explicit model in addition to a statistically sound infer¬
ence mechanism for the combination of the measure or measures useful for classification

with items of patient data.

The other attraction with the belief network approach is that it allows the cumula¬
tive aggregation of diagnostic information, where weak but consistent evidence can be
utilized. It also provides a means for integrating diverse indicators. These features can

potentially reduce the number of objects that must be examined or re-examined. If the

uncertainty associated with the classification based on the current evidence is within lim¬

its a decision can be made without reference to further objects. Clearly this is useful in a

process where through-put is a major concern. Bartels and Weber [Bartels & Weber 92,

page 13] again summarise this well,

As classifiers, inference networks offer capabilities very different from almost

any other classification method: an inference network will allow utilization

of discriminating information, even from feature distributions with substan¬
tial overlap of tolerance regions. Such features frequently can offer reliable

diagnostic evidence, but the high classification error associated with each sin¬

gle such feature precludes their inclusion in the feature set of any statistical

classifier, including neural net classification schemes.

These attributes of belief networks suggest that there is indeed a role for them within
the cervical screening task. It may well be that the best overall approach is a hybrid of

statistical classifiers at the lower, object orientated level and belief networks at the higher,

patient orientated and decision making levels. A belief network provides a statistically
sound framework for the integration of evidence from these different levels.

The two applications described in this thesis present different but complimentary

perspectives on the potential uses of belief networks. Both applications are working
within a common context, namely the formation of an expert diagnosis based, in part, on

the interpretation of image data. Within this context, if all the processes involved can be

placed on a probabilistic foundation we have the possibility of a completely probabilistic

diagnosis, combining low level data-based information with high level expert knowledge
within a consistent statistical model. The two applications should therefore not be

considered as addressing separate tasks, but rather as addressing different levels of the
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same task.

The ultrasound application uses a belief network to implement a low level model

matching task, operating directly on image data. The application is a constraint sat¬

isfaction system, with a static set of constraints embodied within the various models.

In a complete system the constraints would vary dynamically, for instance the shape
model may change if clinical evidence suggests that a malformation is likely. Similarly
the detection of a malformed skull would influence the clinical diagnosis.

Within the image processing domain it is possible to imagine a suite of interpretation

procedures, such as edge detection routines, designed to produce probabilistic results.
Given suitable control information, a belief network based expert system could then

select which procedures to execute in order to minimize resource expenditure relative to

the expected result of the process and the quality of result required.

Clearly this is adding an entire additional level of functionality and whether this

can be handled elegantly within the belief network model, perhaps through the use of
decision theory, or whether a control element will act as an adjunct to a belief network

is an open question.

The screening application focussed more on the higher level task of diagnosis, but

again had an emphasis on the combination of information. Within this application the

idea of belief networks as an explicit model, more accessible to the non-expert user than
standard statistical methods, was also mooted. The ability of a belief network to produce

incremental results as evidence becomes available was also illustrated. Control knowledge

working at this level, based on information of this type could be used to control the lower
level processes demonstrated within the ultrasound application.

In both applications doubts were raised as to the appropriateness of the network

models and the quality of the data. In a real world development it would be important to

ensure that both the model and the data were sufficiently powerful to enable a satisfactory

diagnosis. It is possible that belief networks themselves could play a role in this initial
validation phase. Within the screening application we discussed the possibility of creating

network models in order to test theories regarding the application domain. We also noted

that failure to achieve satisfactory results given an appropriate model, may point to a

lack of diagnostic power in the evidence. In practice it may be difficult to separate
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weaknesses in the data from flaws in the model, and some other form of analysis may be

more appropriate.

One of the greatest strengths of the belief network approach is that it is able to

combine such diverse sources of information in a potentially powerful way. It is not

necessary for any individual source to be a powerful discriminant, as noted by Bartels
and Weber earlier. As a result of this it may be possible to apply expert systems to new

areas, previously considered to lack the necessary quality of evidence. This possibility

combined with our experience in developing these applications, suggests that there might
be a particular class of problem suitable for solution using a belief network. Although
it is difficult to be precise about the nature of this class of problem, it is likely to

involve multiple, diverse, weakly suggestive information sources with a high degree of

independence in the underlying model.

The two applications taken together suggest the outline form that a complete proba¬
bilistic expert system might take. We have identified various features of belief networks
that make them suitable for such expert systems, but as yet there tire few, if any, "indus¬
trial strength" belief network applications, despite an enthusiasm for them in research

circles. Whether belief networks can make the transition, and what classes of application

they are suited to, remains to be seen.
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Chapter 9

Conclusion

At the beginning of this thesis we listed several broad areas that may contribute to

the slow introduction of expert systems technology into biomedical domains, perspec¬

tive, communication, assimilation, evaluation, and ethics and liability. When discussing

expert systems and belief networks the topics included the representation of uncertain

knowledge, the control of inference and the design of user interfaces. How then are these

seemingly different outlooks to be reconciled?

The design perspective of an expert system will not be altered by the formalism

employed for the expert system. Part of the problem is, perhaps, that the biomedi¬
cal domain is so challenging it is ideal for research purposes but far from ideal from
a commercial point of view. Often the research community is (maybe correctly) little
interested in the practical application of its own research. Perhaps as some of the im¬

pediments are overcome the emphasis will shift from what we can give the physician to

what the physician wants.

The underlying theme throughout this thesis is inference under uncertainty. As

expert systems have moved from the laboratory into the real-world it has become in¬

creasingly apparent that uncertain reasoning is the norm rather than the exception. As

we have seen, this has resulted in a number of diverse methodologies being developed,

many of which claim to be measuring the same quantity. From the expert systems point

of view, no methodology can truly claim to be more philosophically or cognitively valid
than any other, and ultimately they must be judged on the support they provide for

rational decision making. Cox and others have shown that in this respect, and under

"common sense" assumptions, probability is both necessary and sufficient.
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As we have stated, belief networks propagate inferences measured in terms of belief
based on the axioms of probability theory. The fact that belief networks can perform
correct inference that is justifiable as an accepted statistical value is important. Much
has been made of the fact that people typically violate the axioms of probability theory,
but this reflects more on the cognitive abilities of people than the validity of probability
theory. Debates about the sufficiency of probability theory continue, but the importance
of the debate must be clearly defined. It is one thing to claim that probability theory
is the normative method for uncertain reasoning and another to claim that probability

theory is an adequate inference method for certain types of uncertain inference. If we re¬

strict the claims of sufficiency, we can ask more pertinent and more answerable questions,

such as is probability theory sufficient for the general task of medical diagnosis? There
are types of reasoning, such as reasoning by analogy, which will certainly fall outwith the
belief network paradigm. It does, however appear that belief networks and probability

theory provide a powerful tool for a particular type of reasoning, diagnostic inference
and decision making. This class of reasoning is prevalent within the biomedical domain.

Probability theory does have a certain intuitive appeal in as much as the notion of

probability is familiar to most people. Unfortunately this familiarity is also seductive

in that the precision and validity of numbers is often accepted without question as they

appear to carry some weight of scientific fact. People's general naivety about statistics

combined with a respectful familiarity, can potentially make probabibty theory, and more

generally any form of automated reasoning, a dangerous tool. People are well used to

considering the rebability of an information source when deciding whether to act on

the information, few people are ever familiar enough with the internal functioning of an

expert system to form a reasonable assessment of its rebability.

Possibly the most important aspect of belief networks from the point of view of

acceptance is the network representation itself. In many expert system representations

the clarity of the representation degrades dramatically with the size of the model, for
instance trying to debug a complex rule base is very difficult as the interactions between

rules can be hard to trace. Belief networks rely on an analogue, pictorial representation

of the caused relationships in the domain. Ideally the independencies in the domain

result in a network that is relatively sparsely connected. The network explicitly shows
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all tlie relationships and conditional dependencies in the domain (assuming the model is

correct and complete). As we mentioned earlier, Pearl suggests that it is the structure

of the network that is important. This representation therefore allows the user to assess

the reliability of an expert system on the basis of the causal model it is using, without

necessarily being concerned with the precise probability values used.

An explicit model also enables the model to be expanded or modified more easily,
without the problem of introducing inconsistencies. This structural representation is also
an ideal basis for the generation of explanations.

This combination of an explicit analogue domain representation and a sound proba¬
bilistic inference mechanism makes belief networks appropriate both for use and design.
It will remain to be seen if it is possible to develop the necessary extensions to this

basic representation and inference model that will enable it to provide the full range of
decision making, modelling and communication facilities that will be required. We have

indicated that research is already underway into many of these important areas. Whilst

none of these general points address specifically the areas highlighted as limiting the
successful application of expert systems technology in the biomedical field, they all go

some small way to making expert systems more transparent to the biomedical user and

may therefore go some way to improving their acceptability.

We have also presented a gazetteer of biomedical applications ranging from small
networks with only a handful of nodes, to those containing over a thousand. It is encour¬

aging to find so many applications of a relatively new methodology to such a challenging
domain. Many of the developments in belief networks are a direct result of domain

constraints and requirements. As much as anything else the gazetteer shows the wide

variety of problem types that are being addressed using belief networks, though diagno¬
sis appears the most popular. The diversity of implementations of the basic approach

indicates that belief networks are still a rather immature technology though we appear

to be reaching a transition point where belief network shells are becoming available more

widely, opening the way for true commercial applications.

We have introduced a network propagation tool, FLAPNet, and demonstrated appli¬

cations in two very different domains. The cervical screening application is an example of

a diagnostic task linking low-level processing with operator interaction. The ultrasound
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example is very different, using a belief network for part of an image processing task.
These two examples serve to demonstrate that belief networks can span the entire range

of inference required of a complex biomedical expert system. This principled propagation
of inference is a general requirement that is common to a variety of applications, sug¬

gesting that belief networks will be employed in a variety of ways within expert systems

and other computerised systems.

In the future belief networks and expert systems will inevitably become more widespread
in the biomedical domain. The rale of acceptance will be critically dependent upon the

willingness of expert systems designers to meet the needs of the biomedical user. Belief
networks have a number of properties that suggest they will play an important role as a

core inference mechanism in expert systems. Already belief networks arc being applied
to a variety of biomedical applications mainly for research purposes. Belief networks

require further development in order to make them fully acceptable as export systems

rather than simply as inference mechanisms and research is currently underway to ad
dress some of these developments.
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Appendix A

Gazetteer

This appendix contains a gazetteer of belief network applications in biomedical domains.
It is not exhaustive, as the intention was to give a view of the breadth of application of
belief networks, and the increasing influence belief networks are exerting in the field of
medical informatics.

For some projects it was difficult to determine whether or not they constituted belief
networks or not (particularly some decision theoretical systems). In most cases those
we have chosen to omit are mentioned elsewhere in the text, or are included in the
bibliography.

Each entry comprises four parts, brief information, key points, references, and precis.
In some cases the authors have not given their project a name, in which case we have
given a name for reference purposes. These given names are identified by the dagger'
superscript. The entries are in alphabetical order of project name and are indexed on

page 211.
The dates give an approximate range for the publications associated with the project.

The most recent entries are from approximately the first quarter of 199-4. The list of
publications concerning a particular project should not be considered complete.

Authors are listed in alphabetical order rather than any order of precedence. Au¬
thors names only are included, qualifications have been omited. The organisations are
referenced with respect to the authors' affiliations where known.

The precis for each entry is deliberately brief and selective, the intent is to provide a
overview of the project and any interesting features it may possess.
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A.l Gazetteer Index

ABDO 212

ALARM 214

Aspiration-Net' 215

BAYES 217

Cardio-Net' 218

CPNEDIT-ICU" 221

Database-Net' 222

Drug-Net' 223

GAMEES 225

Guardian 227

Heart-Net' 228

MIDAS 230

MUNIN 231

NESTOR 233

Pathfinder-2 234

Prostate-Net' 236

QMR-DT 238

QUALQUANT 241

Simulation-Net' 244

SWAN 246

VentPlan 248
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ABDO

Project:
ABDO

Application:
Diagnosis

Domain:

Acute abdominal pain

Date:
1993

Authors:

J. Ft. Clarke1
G.M. Provan2

Organisations:
'Department of Surgery, Medical College of Pennsylvania, Philadelphia, USA.
2Computer and Information Science Department, University of Pennsylvania, Philadel¬
phia, USA.

Software:

DYNASTY

Hardware:

Unknown

Key Points
• Use of decision theoretic models
• Dynamic construction and updating of models
• Interval-based temporal modelling

References:

[Provan & Clarke 93]
Precis

ABDO is a domain specific demonstration of the DYNASTY system, concerned
with acute abdominal pain. The DYNASTY system dynamically constructs and
updates influence diagrams with respect to temporal data.
A knowledge-base of domain-specific causal relationships is used to generate a
belief network that models only the observations currently available and causal
consequences or antecedents, at a particular time interval. The network is used
to generate probabilities of diseases given the observations. It is assumed that the
values of observations are constant over an interval and that an interval has a defi¬
nite transition point. The model consists of over 50 findings nodes, 20 intermediate
physiological states and 4 disease states. The data for the model was collected from
several thousand real cases.

A subsequent time interval is then selected and a model created on the basis of the
initial model. Sensitivity analysis is performed, comparing the decision-equivalence
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of the current interval model relative to the previous and subsequent interval mod¬
els, to confirm that the model is valid. If necessary the network model topology
is updated. This model is then augmented with decision theoretic nodes repre¬

senting decisions and utilities of outcomes. Sensitivity analysis is also performed
to validate the selected time interval relative to other time intervals, based on the
decision options suggested by competing intervals.
Model updating includes the addition or deletion of nodes and the refinement or
coarsening of nodes. The emphasis is on the development of the model over time
where ever possible, with the creation of an entirely new model taking place only
when it is necessary.
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ALARM

Project:
ALARM

Application:
Patient monitoring and diagnosis

Domain:

Anesthesiology

Date:

1989

Authors:
I.A. Beinlich
R.M. Chavez
D.M. Gaba
II.J. Suermondt

Organisations:
Section on Medical Informatics and Department of Anesthesiology, Stanford Uni¬
versity School of Medicine, Stanford, California, USA.

Software:

KNET

Hardware:
Macintosh II

Key Points
• Compared propagation algorithms for multiply connected networks

References:

[Beinlich & Gaba 89]
[Beinlich et al 89]

Precis
The ALARM prototype is designed to provide specific text warnings in order to
advise the user of possible problems. A simple network of 8 diagnostic nodes, 16
evidence nodes and 13 intermediate nodes, containing loops is used. Continuous
variables were represented categorically using discrete intervals, typically 3 to 5
depending on the situation. In experiments ALARM'S top diagnosis was correct
in 71% of test cases.

In time critical applications, propagation time is an important issue. Two propa¬

gation algorithms were tested, Pearl's with cutset conditioning and the clique-tree
approach of Lauritzen and Spiegelhalter. The large cutset required and the fact
that although several pieces of evidence arrived simultaneously they have to be
processed sequentially, resulted in Pearl's algorithm being much slower. The accu¬
mulation of evidence reduces the size of the clique-tree, making it an ideal algorithm
for this application.
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Aspiration-Net

Project:
Aspiration-Net'

Application:
Diagnosis

Domain:
Fine needle aspiration cytology of the breast

Date:
1994

Authors:
N. Anderson'
P. 11. Bartels2
P.W. Hamilton1
D. Thompson2

Organisations:
'Department of Pathology, The Queen's University of Belfast, Northern Ireland,
UK.

2Optical Sciences Centre, University of Arizona, Tuscon, Arizona, USA.

Software:

C, algorithm based on [Morawski 89a, Morawski 89b]

Hardware:
Unknown

Key Points
• Standard belief network mechanism
• Use of measures of evidence conflict

References:

[Hamilton et al 94]
Precis

This is a simple network with a single diagnostic root node (Benign/Malignant)
and ten evidence nodes. There are no intermediate nodes. The links are quantified
by conditional-probability matrices, and standard belief propagation mechanisms
are used. Evidence, in the form of likelihood ratios, is entered by the cytologist.
One particularly interesting point is the use of equal priors in the diagnostic node
modelling the cytologists reported assumptions, rather than the statistical priors
that favour a benign diagnosis. This is reported to work well, though it is not clear
how much experimentation was conducted.
The probabilities calculated at the diagnostic node are mapped onto four final
diagnostic categories, if the probability of benign or malignant is greater than 0.9
then the final diagnosis is either benign or malignant. If the probability of benign
is less than 0.9 but greater than 0.5 then the final diagnosis is equivocal (benign),
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and similarly with equivocal (malignant). In addition to this diagnosis, three other
measures are calculated. These are derived from a cumulative probability graph
which is plotted after each piece of evidence is entered. The evidence is entered
according to an order determined by a cytologist to have decreasing impact on the
final diagnosis. The measurements are P-score (number of peaks), T-score (number
of troughs) and C-score (the number of intersections with the 0.5/0.5 threshold).
These measure the extent of conflict in the information given by the evidence.
It is planned to incorporate these measurements into the network when sufficient
statistics can be gathered. Currently the graph is used to provide the cytologist
with an overview which is useful, for example, for identifying evidence that appears
to be aberrant and should be confirmed.

The system has been tested on forty cases, with a high degree of accuracy, the
apparent misdiagnoses were all due to lesions known to be difficult to diagnose.
In the future the use of this system as a teaching tool and as part of an automatic
diagnostic system will be considered.
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BAYES

Project:
BAYES

Application:
Diagnosis

Domain:

Macroscopic melanocyte lesions

Date:

1994

Authors:
W. Abmayr
P.II. Bartels
D. Rehberg
W. Stolz
D. Thompson

Organisations:
Fachbereich Informatik/Mathematik, Fachhochschule Miinchen, Germany.
Dcrmatologi3che Klinik und Poliklinik, Universitat Regensburg, Regensburg, Ger¬
many.

Optical Sciences Center, University of Arizona, Tuscon, Arizona, USA.

Software:

BAYES

Hardware:
Unknown

Key Points
• Standard belief network mechanism
• Simple two-level network model

References:

[Abmayr el al 94]

Precis
This is a simple, five node network used for classifying lesions. The network consists
of a diagnosis node and four evidence nodes. There are no intermediate nodes.
Good results are reported.
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Cardio-Net

Project:
Cardio-Net'

Application:
Diagnosis

Domain:

Cardiovascular Hemodynamics

Date:

1989

Authors:

W. Long

Organisations:
Laboratory for Computer Science, Massachusetts Institute of Technology, Cam¬
bridge, Massachusetts, USA.

Software:
Unknown

Hardware:

Symbolics 3650

Key Points
• Domain model includes cycles
• Approximation through noisy-OR relationship
• Approximation through other archetypal relationships
• The modelling of qualitative terms
• The use of heuristic reasoning
• The use of abstracted notion of probabilistic causality
• The use of simple two-state nodes

References:

[Long 89]

Precis
This system provides physicians with a reasoned differential diagnosis on the basis
of patient history, evidence, and a causal knowledge base. The domain is heart
failure, a complex domain with a multitude of possible causes and strong compen¬
satory mechanisms to consider.
The disease model must enable the system to distinguish between situations that
are similar yet require different therapies. The hypotheses must also be complete
and explicit. These requirements demand a detailed disease model and have lead
to a system that considers hypotheses that are constructed from causal chains that
link primary causes (those not requiring further causal justification) to the findings
(evidence). The generation of possible hypotheses is far from trivial as a useful
differential diagnosis must contain only those hypotheses that are comprehensive in
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their explanatory power, but that are also significantly different to other hypotheses
in the set. This problem has been solved by designating certain nodes within
the domain network model as diagnostic nodes. Hypotheses are considered to be
different if the sets of diagnostic nodes they contain are different. This heuristic,
based on high-level domain knowledge, has proved an effective solution to this
particular problem.
The domain is modelled as a simplified network, based on the notion of probabilistic
causality, each causal relation is summarised as the probability of the cause produc¬
ing the effect. Causes are defined as preceding the effect and all nodes are either
true or false. One particularly interesting feature of the selected domain is the
occurrence of circularities or feedback loops. The problems typically encountered
with such loops are avoided through the definition of the cause effect relationship,
any time a feedback loop could be completed, the effect node will already be true,
blocking the circularity.
The probabilities on the links are summaries of different types of causal relation¬
ship. In some cases such a representation is not appropriate and an equation is used
instead. Qualitative descriptors arc also important in the domain, typically these
are divided into a limited number of partitions which reflect different causal roles
or effects, whilst at the same time reduce the computational costs. For example,
the level at which the effects of low cardiac output will start occurring varies from
patient to patient. The program models this by specifying the probability that
each qualitative partition produces a measured range in an associated parameter:

low: (range cardiac-index 0.7 2.3 0.2 2.5 0.1 2.7 0.0)
normal: (range cardiac-index 0.0 2.3 0.05 2.5 0.05 2.7 0.9)

thus 70% of low cardiac outputs have a cardiac index (cardiac output normalised
for body size) below 2.3, 20% between 2.3 and 2.5 and so on. Similarly no normal
cardiac outputs are below 2.3, but 5% are between 2.3 and 2.5.
Link probabilities may be fixed, dependent on patient parameters, or dependent on
the diagnostic hypothesis. In the majority of cases there is insufficient knowledge to
determine the situations in which the probability of a causal fink should be changed,
so the probability is generally represented as a fixed number. In cases where the
link relationship is understood it can be modelled. For instance, pneumonia is less
likely to produce a fever in the elderly than the young, the probability on the fink
can be defined as:

pneumonia: p(fever) = (0.9 (range age 0.95 70 0.9 80 0.8 90 0.7))
meaning if nothing is known about age, 0.9 should be used, if the patient's age is
less than 70 then the probability of fever is 0.95, if the age is between 70 and 80, the
probability is 0.9, and so on. These dependencies relating to patient parameters
are incorporated by adjusting the relevant links before the computation of the
differential diagnosis, i.e. the general model is tailored to produce a patient-specific
model.

The noisy-OR relationship is used as a general combination mechanism, but two
special cases have specific mechanisms. The first interaction models factors that
increase the probability of a cause producing an effect, but cannot produce the
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effect in their own right, the probabilistic contribution of such factors are com¬
bined as if they were causes when another cause is present or zero otherwise. The
second interaction is the reverse of this, factors that reduce the probability of a
cause producing an effect. These factors are combined with existing causes, but
multiplicatively decrease the causal probability. For instance, if the causes imply a
0.5 probability of producing an effect and there is a reducing factor that prevents
the effect in 80% of cases, the resultant probability is 0.1. This collection of mecha¬
nisms were sufficient to represent the relationships in the domain as a probabilistic
network that could be used as a knowledge base for diagnostic reasoning.
The network model cannot be used directly as a belief network as it contains
both cycles and loops. Removing the cycles still resulted in a network with an
infeasible number of loops, the cutset for the network contained over forty nodes.
The network was instead used as a basis for heuristic reasoning. In addition to these
heuristics, a number of computational tactics were employed in order to improve
efficiency.
The system proved effective for generating the differential diagnosis in some 40 test
cases.
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CPNEDIT-ICU

Project:
CPNEDIT-ICU'

Application:
Patient monitoring

Domain:
Intensive care patients

Date:

1994

Authors:

P. Laursen

Organisations:
S fc W Medico Teknik A/S, Albertslund, Denmark.

Software:
CPNEDIT

Hardware:

IBM-compatible PC

Key Points
• Mapping of continuous variables to discrete states

References:

[Laursen 94]
Precis

This is an investigative project concerned with the design of patient monitoring
syctomc that raise alarms only in response to situations that threaten patient well
being. Other causes of alarms in traditional systems include monitor malfunction
and noise. In attempting to distinguish between genuine and spurious alarms, the
inherent redundancy in the evidence is exploited.
An initial model has been developed that includes 10 evidence nodes, plus nodes
which model monitor errors, whether intervention is in progress and whether a car
diovascular event is occurring. The evidence comes from the monitored physiolog¬
ical parameter values. These continuous values are transformed into probabilities
over the states [high, normal, low] and [rising, stable, falling]. Each parameter is
transformed according to a specific rule, and it is suggested that these rules should
be context dependent.
Due to lack of a suitable comparison there has been no formal testing, but subjec¬
tive analysis suggests that the approach is promising.
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Database-Net

Project:
Database-Net'

Application:
Database analysis/diagnosis

Domain:

Cytology

Date:
1990

Authors:
P.M. Bartels1
M. Bibbo2
H. Dytch2
D. Thompson1
G.L. Wied2

Organisations:
'Optical Sciences Centre and Department of Pathology, University of Arizona, Tuc¬
son, Arizona, USA.
2Section of Cytopathology, Departments of Pathology and of Obstetrics and Gy¬
necology, University of Chicago, Chicago, Illinois, USA.

Software:

C, based on [Morawski 89a, Morawski 89b]

Hardware:
Unknown

Key Points
• Standard belief network

References:

[Weid et al 90]

Precis
Pearl's propagation algorithm is used to perform diagnosis based on cytologic data.
It forms the uncertainty management component of a larger system designed to
explore an analyse large cytologic databases. Other components include an as¬
sociative network expert system, a neural network module and an unsupervised
learning module.
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Drug-Net

Project:
Drug-Nett

Application:
Treatment prediction

Domain:
Adverse drug reaction rates

Date:

1991 — 1993

Authors:
R.G. Cowell1
A.P. Dawid1
T.A. Hutchinson2
S. Roden3
D.J. Spiegelhalter4

Organisations:
department of Statistical Science, University College London, London, UK.
division of Clinical Epidemiology, Royal Victoria Hospital and McCill University,
Montreal, Canada.
3Glaxo Group Research, Greenford, UK.
4MRC Biostatistics Unit, Cambridge, UK.

Software:
Unknown

Hardware:
Unknown

Key Points
• Use of clique-tree propagation algorithm
• Modelling of simple temporal data

References:

[Spiegelhalter et al 91]
[Cowell et al 93a]

Precis
This project is concerned with the modelling of suspected adverse drug reactions,
particularly in cases where there is more than one drug to consider. The experi¬
mental nature of the models is emphasised.
The models typically contain loops, and the clique tree propagation algorithm of
Lauritzcn and Spiegclhalter is used. Some very simple temporal relations arc in
eluded in the models, though there is no attempt to model changes over time. The
possibility of considering expert estimations of the model as starting points and
refining these estimates over time as data accumulates is mentioned.
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Although there has been no formal evaluation of the project, it is reported that
experts consider the models to be reasonable.
In the later work the models are extended in order to predict future adverse reaction
rates. This includes the modelling of the reporting procedure and clinical practices.
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GAMEES

Project:
GAMEES

Application:
Therapy monitoring

Domain:
Uremic anemia. Cytotoxic chemotherapy in breast cancer

Date:

1991 - 1993

Authors:
R. Bellazzi'
C. Berzuini1
M. Leaning2
D. Spiegelhalter3
S. Quaglini1

Organisations:
'Dipartimento di Informatica e Sistemistica, Universita di Pavia, Pavia, Italy.
2CORU, University College London, London, UK.
3MRC Biostatistics Unit, Cambridge, UK.

Software:
GAMEES [Bellazzi et al 91a]

Hardware:

Unknown

Key Points
• Use of Gibbs sampling for propagation
• Use of parameterised models
• The refinement of a patient-specific model over time
• Explicit modelling of a population model to estimate priors

References:

[Berzuini et al 91]
[Bellazzi et al 91b]
[Bellazzi 93]

Precis
This project is concerned with the general task of monitoring and predicting patient
response to therapy over time. A domain independent model of a class of medical
task is proposed.
A belief network model, using Cibbs sampling for inference, is designed to predict
the future response of a patient undergoing treatment.

Patient responses are defined in terms of the parameterisation of a physiological
model of the interaction between the treatment and a measurable symptom judged
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to be indicative of the effectiveness of that treatment. Population data in the
form of a database of previous cases is used to provide mean parameter values.
These parameter values can be further specialised to the current patient if it is
possible to identify clusters within the population that share significant features
with the current patient. These parameter estimates are combined with a patient
model which contains previous details of the current patient in order to predict
future response. The patient model is updated over time as more evidence becomes
available, so in the longer term the patient specific parameter values will come to
dominate those of the population model.
The same basic model has been tested in two domains, with good results. The first
domain was the monitoring of white blood cell counts of breast cancer patients
receiving chemotherapy. In the second domain, the treatment of uremic patients'
anemia using r-HuEPO, a mathematical, compartmental model of the relationship
between the treatment and the therapeutic goal (maintaining hemoglobin concen¬
trations at certain levels) was developed.
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Guardian

Project:
Guardian

Application:
Patient monitoring and therapy planning

Domain:
Ventilator-assisted patient monitoring

Date:

1989

Authors:
B. Hayes-Roth1
M. Hewett1
R. Hewett1
A. Seiver2
R. Washington1

Organisations:
'Knowledge System Laboratory, Stanford University, Palo Alto, California, USA.
2Palo Alto Veterans Administration, Medical Center, Palo Alto, California, USA.

Software:
Common LISP

Hardware:
TI Explorer

Key Points
• Use of belief network within black-board system

References:

[Hayes-Roth et al 89]
Precis

A belief network i3 used as a knowledge source in this complex black board based
prototype system. The network is used to perform diagnoses. The system as a
whole is able to combine opportunistic responses to unforeseen events and planned
strategics. Guardian explicitly considers control of resource allocations as part of
its processing cycle. Control knowledge and domain knowledge are represented
independently.
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Heart-Net

Project:
Heart-Net1

Application:
Therapy advisor

Domain:
Heart disease

Date:

1992

Authors:

F.J. Diez Vegas
J. Mira Mira

Organisations:
Departamento de Informatica, Ciencias, UNED, Senda del Rey, Madrid, Spain.

Software:

Unknown

Hardware:

Unknown

Key Points
• Representation of domain independent metaknowledge
• Approximation through the noisy-OR relationship
• The use of simple two-state nodes

References:

[Vegas & Mira 92]
Precis

This system appears to be very much in the developmental stage. The final aim is
the diagnosis of heart disease and therapy planning, with a particular emphasis on
the interpretation of echocardiograms.
The choice of a belief network approach was motivated directly by the form in
which domain experts described the heart disease domain.
The system defines three distinct levels of knowledge:

1. Domain knowledge for a specific field, containing anomalies, symptoms and
signs and causal links. Constitutes the static (declarative) knowledge base for
system.

2. Causal reasoning (high-level metaknowledge), concerning causes and effects.
This is intended to be domain independent and therefore valid for all diag¬
nostic problems.
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3. Medical reasoning (low-level metaknowledge). In principal this is applicable
to all medical domains. It provides a mapping between the domain knowledge
and the causal reasoning metaknowledge as well as other general knowledge
regarding medicine.

The two sources of metaknowledge combine to form a knowledge-based inference
engine capable of acting on the domain knowledge, calculating probabilities, col¬
lecting data, explaining conclusions, and so on. The claimed advantages of this ap¬
proach are its domain independence and its ability to produce explanations based
on objectives and strategies.
The belief network itself appears straightforward, many of the variables have only
two states, present or absent, and the standard mechanism for interaction is the
noisy-OR relationship, except where this approximation is unacceptable. It in¬
cludes a noisy effectiveness (a leak) associated with anomalies which models causes
that are not explicitly represented in the network.

Among the points listed for future consideration are a method to resolve loops,
extending the anomaly variables to include degrees of anomaly (absent, slight,
moderate...), learning, and temporal reasoning.
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MIDAS

Project:
MIDAS

Application:
Construction of individualised influence diagrams

Domain:
HIV with associated pulmonary disease

Date:

1994

Authors:

C.G. Hagerty'
C.A. Kulikowski1
F.A. Sonnenberg2

Organisations:
'Department of Computer Science, Rutgers University, Piscataway, New Jersey,
USA.
'Division of General Internal Medicine, Department of Medicine, UMDNJ Robert
Wood Johnson Medical School, New Brunswick, New Jersey, USA.

Software:
IDEAL

Hardware:

Apple Macintosh Ilfx

Key Points
• Use of belief network to represent domain model

References:

[Sonnenberg et al 94]

Precis
The MIDAS system is intended to function as a domain independent tool for the
automatic creation of patient-specific influence diagrams. Domain specific medical
knowledge is represented separately from knowledge about decision model creation.
A domain specific belief network is used to represent probabilistic dependencies
between patient data and possible diagnoses. This information is then used in the
construction of an influence diagram using the decision model creation knowledge.
MIDAS is able to create simple influence diagrams and formal evaluation is planned.
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MUNIN

Project:
MUNIN

Application:
Diagnosis

Domain:

Electromyography

Date:

1986 — 1992

Authors:
S.K. Andersen1,2,3
S. Andreassen1,2
B. Falck14
Frank Jensen1,5
Finn V. Jensen3,5
U. Kjaerulff3
K.G. Olesen1,5
M. Woldbye1

Organisations:
'Nordjysk Udviklingscenter, Aalborg, Denmark.
'Institute of Electronic Systems, Aalborg University, Aalborg, Denmark.
3Judex Datasystemer A/S, Aalborg, Denmark.
"•Department of Clinical Neurophysiology, Turku University Hospital, Turku, Fin¬
land.

5Department of Mathematics and Computer Science, Aalborg University, Aalborg,
Denmark.

Software:

HUGIN [Andersen et al 87, Andersen et al 90, Jensen et al 91]
Hardware:

Unknown

Key Points
• Use of clique-tree based propagation algorithm
• Provision of simple user interface tools

References:

[Andersen et al 86b]
[Andreassen et al 87]
[Jensen et al 87a]
[Jensen et al 87b]
[Olesen et al 89]
[Andreassen et al 92]
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Precis
This project investigates the use of belief network models in electromyography, the
diagnosis of muscle and nerve diseases through the analysis of bioelectrical signal
from muscle and nerve tissue.

The network model has undergone several transformations during the course of the
project. Initially a small network consisting of three levels of nodes with multiple
states was used. The levels represented diagnosis, pathophysiology and findings
(measurements), with one, eight and fifteen nodes respectively. The diagnosis node
represented eleven grades across three diseases, 'no disease' and 'other'. The 'other'
state was generally diagnosed if the evidence was contradictory or erroneous. The
network also contained continuous variables modelled by the normal distribution.
The model was derived from textbooks, statistical data and expert opinion.

Although this initial network model contain loops, these were removed by clustering
to provide a singly connected network and Pearl's propagation algorithm was used.
In addition to the diagnostic capabilities, simple tools that allowed the user to
view graphically the influences between neighbouring nodes (see section 4.10 and
offered guidance on evidence collection based on the consideration of entropy, were

provided.
Later a more complex model of the median nerve, containing four levels of node
(diseases, pathophysiological contributions, pathophysiology, and findings) was de¬
veloped. This contained a larger number of loops and a propagation method based
on the clique-tree propagation of Lauritzen and Spiegelhalter was used.
The most complex network developed, which modelled six muscles and eight nerves,
contained over 1000 nodes, though this was divided into six subnetworks, each of
which only considered a subset of the possible disorders. An informal evaluation
of this model suggests that performance is at 'expert level' within the domain.
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NESTOR

Project:
NESTOR

Application:
Diagnosis

Domain:

Hypercalcemia

Date:

1989

Authors:
G.F. Cooper

Organisations:
Medical Computer Science Group, Stanford University, Stanford, California, USA.

Software:
Unknown

Hardware:
Unknown

Key Points
• Importance of system/user interface acknowledged

References:

[Cooper 89]

Precis
NESTOR has a belief network knowledge-base containing seven diseases and around
100 symptoms and pathological states. The structural information was acquired
from text books, this was then refined and quantified by k domain expert. A key
design decision wa3 to give the physician control over the computer interaction.
NESTOR has been designed to criticise its hypotheses and explicitly record any
assumptions made.
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Pathfinder-2

Project:
Pathfinder-2

Application:
Diagnosis

Domain:

Lymph-node diseases

Date:

1990 — 1992

Authors:
CLF. Cooper1
D.E. Ileckerman2
B.N. Nathwani3
H J. Suermondt'

Organisations:
'Medical Computer Science Group, Stanford University, Stanford, California, USA.
2Department of Computer Science, University of California, Los Angeles, USA.
3Department of Pathology, University of Southern California, Los Angeles, USA.

Software:

SimNet

Hardware:

25 Megahertz 486 processor and maths co-processor

Key Points
• Use of similarity networks in belief network construction
• Propagation method based on clique-tree algorithm

References:

[Heckerman 90b]
[Suermondt et al 91]
[Heckerman & Nathwani 92]

Precis
This system is designed to perform diagnosis among more than sixty diseases of the
lymph nodes. The belief network model for the domain is multiply connected and
the clique-tree propagation algorithm of Lauritzen and Spiegelhalter provides the
basis of the inference mechanism. This was later expanded to include cutset condi¬
tioning to further improve efficiency. The construction or updating of a diagnosis
is achieved in less than one second.

The complexity and size of the domain meant that it was infeasible to construct the
network directly due to the large number of conditional independence assertions
that would need specifying. In order to construct the belief network, an interme¬
diate model called a similarity network was developed. This representation allows
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the construction of the network to be decomposed into a number of smaller tasks.
A similarity network consists of a similarity graph and a collection of local belief
networks. The similarity graph is an undirected graph with nodes representing
mutually exclusive diseases and edges connecting diseases that are judged to be
similar or difficult to discriminate. Each edge is associated with a belief network
that contains only those features judged relevant to the discrimination of the two
diseases it connects. These local belief networks are typically small and easy to
assess as the diseases arc by definition, similar. From the similarity network a
complete belief network can be constructed using graph union. Under relatively
weak conditions this network is sound.

The Pathfinder-2 network was compared on the utility of its diagnoses with the
Pathfinder-1 system which assumed all features were conditionally independent
given each disease. Tests on 53 cases found an average increase in expected utility
of $6,000 per case.
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Prostate-Net

Project:
Prostate-Net'

Application:
Diagnosis

Domain:

Grading prostate lesions

Date:

1992 — 1993

Authors:
P.H. Barrels'
M. Bibbo2
R. Christen2
B. Fitzpatrick2
H. Galera-Davidson3
C. Minimo2
T. Pfeifer"
D. Thompson1
J.E. Weber1
J. Xiao2

Organisations:
'Optical Sciences Centre, University of Arizona, Tucson, Arizona, USA.
"Department of Pathology and Cell Biology, Jefferson Medical College, Thomas
Jefferson University, Philadelphia, Pennsylvania, USA.
3Department of Pathology, University of Seville, Seville, Spain.
4Section of Cytopathology, Department of Pathology, University of Chicago, USA.

Software:

C, based on [Morawski 89a, Morawski 89b]
Hardware:

PC based

Key Points
• Use of Pearl's propagation algorithm
• Use of fuzzy membership functions to determine likelihood ratios

References:

[Bartels et al 92]
[Bibbo et al 93]
[Bibbo et al 94]

Precis
These papers address different aspects of the grading problem. The first paper
discusses the application of shallow, standard belief networks to the control of
image processing tasks, specifically thresholding and segmentation.
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The second paper considers the problem of diagnosis. A simple network with a
single diagnostic node, 13 evidence nodes and no intermediate nodes is used, along
with standard propagation algorithms. Evidence from the physician given by a
value on a scale are mapped to relative likelihood ratios, through the use of fuzzy
membership functions. These membership functions are subjective to a certain
degree, but the model appears to be robust in the event of small changes in these
functions. The conditional probability matrices were estimated from data.
Test results using four sample areas from 64 consensus graded specimens, were
correct in 94% of cases. The 6 areas that were incorrectly classified were due to the
poor expression of classification features within that area. Had the results from all
four areas been combined, each specimen would have been correctly graded.
The third paper discusses the implementation of the system on a PC hardware
platform.
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QMR-DT

Project:
QMR-DT (Quick Medical Research, Decision Theoretic)

Application:
Diagnosis and treatment planning

Domain:
Internal medicine

Date:
1991

Authors:
G.F. Cooper'
D.E. Heckerman2,3
M. Henrion2
E.J. Horvitz2,4
H.P. Lehmann2
B. Middleton2
M.A. Shwe2

Organisations:
'Section of Medical Informatics, University of Pittsburgh, Pittsburg, USA.
2Section on Medical Informatics, Stanford University, Stanford, California, USA.
3 Departments of Computer Science and Pathology, University of Southern Cali¬
fornia, Los Angeles, USA.
4Palo Alto Laboratory, Rockwell International Science Center, Palo Alto, Califor¬
nia, USA.

Software:

Unknown

Hardware:
Unknown

Key Points
• Inference using form of stochastic simulation
• Includes decision theoretic utility evaluation
• Use of noisy-OR gate

References:

[Heckerman & Horvitz 91]
[Middleton et al 91]
[Shwe et al 91]

Precis

QMR-DT is a reformulation of the QMR decision support tool which was devel¬
oped from the INTERNIST-1 project. Both INTERNIST and QMR have been
shown to work well in the domain of internal medicine. The QMR-DT project
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aims to construct a system based on the INTERNIST-1 knowledge-base, but using
probabilistic inference. The ultimate aim is to develop a system that can produce
cost-effective test sequences and therapy plans.
The first stage was the expression of the INTERNIST-1 knowledge-base in the form
of a belief network. The network has only two levels of nodes, disease nodes and
symptom nodes. There are no intermediate nodes representing pathophysiological
states. Each node has only two states, present and absent.
The network model is only approximate for a variety of reasons:

• The diseases are assumed to be marginally independent. This is not always
the case. Dependence is reflected to a certain extent in one of the heuristics
used to improve convergence.

• The symptoms are assumed to be conditionally independent, again this is not
always the case.

• The use of two-state nodes restricts the accuracy of the representation.
• A noisy-OR gate is used to model the conditional probabilities. Leak proba¬

bilities, representing the probability that the symptoms could occur sponta¬
neously or due to causes outwith the model area included.

• Historical data is modelled in a causally incorrect manner.

These assumptions greatly simplify the model and inference performed on it. The
probabilities for the network were derived from both the INTERNIST-1 knowledge¬
base and available disease statistics. Propagation is achieved using a form of
stochastic simulation called likelihood weighting in combination with two heuris¬
tics, importance sampling and self-importance sampling, which decrease conver¬

gence time.

Investigations into the performance and sensitivity of the QMR-DT model con¬
cluded, among other things, that:

• The model is insensitive to uniform prior probabilities, though this may be
due to statistical errors.

• The model is sensitive to the value of the leak probabilities.
• Based on rank ordering, the QMR-DT diagnoses were not significantly differ¬

ent to those of QMR.

The model has been extended to include the consideration of treatment actions.
An overall utility node, subvalue utility nodes and treatment nodes are added to
the model. The treatment nodes indicate the presence or absence of a particular
treatment. The subvalue nodes indicate intermediate utilities based on interactions
between diseases and treatments. The overall utility node measures the total util¬
ity given the diseases and treatments. This complete set of treatments and utility
nodes form a comprehensive decision model for the QMR-DT domain. For a partic¬
ular case the comprehensive decision model is pruned on the basis of the underlying
diagnosis, which in turn depends on the patients symptoms. This patient-specific
model provides a tractable approximation to the comprehensive decision model.
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QMR-DT is still under development, planned improvements include correcting the
model by including intermediate nodes, representing conditional probabilities more
accurately, and improving the decision model.
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QUALQUANT

Project:
QUALQUANT

Application:
Image processing

Domain:

Endoscopy

Date:

1991 - 1994

Authors:
D.A. Gillies1
D.F. Gillies2
L.E. Sucar2

Organisations:
'Centre for Logic and Probability in Information Technology, King's College, Lon¬
don, UK.
2Department of Computing, Imperial College of Science, Technology and Medicine,
Department of Computing, London, UK.

Software:

Unknown

Hardware:

Unknown

Key Points
• Approximate model based on multitrees
• Emphasises objective probabilities and testing
• Consideration of temporal modelling

References:

[Sucar et a I 91]
[Sucar el ul 93]
[Sucar fe Gillies 94]

Precis

This application addresses some of the issues associated with the task of high-level
vision, the representation of visual objects and the use of that representation for
recognition. The approach taken views objects in the world as causes of their
associated features in an image. In terms of a network model, the root nodes
arc hypotheses about the occurrence of objects in the image and the leaf nodes
are evidence from low-level vision processes. Intermediate nodes represent entities
(such as sub-parts, regions and so on) and relationships (such as above, near, etc.).
This network is essentially hierarchical, composed of a number of layers each of
which corresponds to a level of description or abstraction in the visual domain.
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Within this network it is generally the case that intermediate objects and features
are represented by separate nodes corresponding to different object hypothesis
nodes. At the lowest level, evidence and feature nodes, containing information
derived directly from the image, will be common to several competing object hy¬
potheses. This leads to the definition of a multitree, a possibly multiply connected
network in which only leaf nodes may have more than one parent.
Relational variables are assumed to be well defined, and the link between com¬

ponents and the relationship that exists among them is considered to be a cate¬
gorical link, assuming the relationship can be uniquely determined from the re¬
lated components. The relational variable still possesses a probabilistic link to its
non-component parent, and is treated as an instantiated node for the purposes of
propagation to that parent.

Temporal knowledge can be represented in two ways within the multitree, as semi-
static recognition or dynamic recognition. In semi-static recognition an object can
be identified from a single image, but observations from the previous image may
prove useful evidence. The information from the previous image can be used as

priors for the current interpretation task. In dynamic recognition it may be neces¬

sary to examine a number of images before object recognition can be performed, in
this case different nodes may become instantiated after each image is interpreted.
Within the multitree there is a recognition tree for each object hypothesis. This
tree is rooted at the object nodes and contains all the intermediate and leaf nodes
that represent that object. It is argued that whilst this representation may appear
restrictive, it is adequate for the task and facilitates efficient probability propaga¬
tion.

The propagation mechanism developed for these multitrees relies on two assump¬
tions about the properties of the image interpretation task:

1. Probability propagation is usually bottom-up, from image evidence to object
hypotheses.

2. Leaf nodes typically correspond to instantiated variables and will therefore
have fixed values obtained from low-level vision processes.

These assumptions make it possible to render the multitree singly connected by
partitioning the network at the leaf nodes, giving a copy of the node to each of its
parents. By definition every non-leaf node has only a single parent, therefore the
network is rendered singly connected. The propagation mechanism then merely
propagates up the tree to the root node, where the evidence is combined with the
prior probabilities.
The actual construction is guided by three principles:

1. As far as possible only qualitative suggestions should be sought from the
domain expert, and it should be left to the computer scientist to give this a
more precise quantitative form.

2. Objective probabilities should be used whenever possible.
3. All assumptions should be tested and modified if they fail the test.
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Initially a qualitative model of the network structure is provided by the domain
expert. The parameters necessary to quantify the network can then be calculated
from a set of examples. It is recognised that an expert assessment of the parameters
could be used as a starting point, but it is pointed out that if these estimates are
inaccurate, the parameters will take longer to converge on their true values. An
algorithm for estimating the parameters of both observable nodes and unobcorvablo
nodes (i.e. those which are not evidence nodes and for which the expert cannot
estimate a value) is presented.
The network structure can then be examined in order to check the independence
assumptions. Each recognition tree is divided into subtrees consisting of a single
root node and its immediate children. Correlation values between children are cal¬
culated to determine their independence. Whilst low correlation is not a guarantee
of independence it suggests that the assumption is reasonable. A high correlation
values indicates that the children arc not independent, in which case each of the
following is tried:

1. Node elimination — eliminate one of the dependent nodes and its associated
subtree. This is a cheap action to perform.

2. Node combination combine the two dependent nodes into a single node
which incorporates the information provided by the two childron, Link tho
two subtrees to new node and new node to parent. It will be necessary to
recompute the probabilities on the link, based on the joint probability distri
bution of the two former children.

3. Node creation — create a new node between the parent and dependent chil
dren, link it to the parent, both children become its children. Hopefully
children are now conditionally independent given their new parent. This will
usually require an external agent to define the new variable and will also
require the calculation of new parameters using the parameter learning algo
rithms.

Most of the structural testing can be conducted automatically and most areas of
a well formed knowledge-base should not require modification. The testing and
modification take place before the model is used by the end user.

A multitree model has been developed for use in a navigational aid for colonoscopy,
with acceptable results.
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Simulation-Net

Project:
Simulation-Net'

Application:
Simulation

Domain:
Abdominal pain

Date:

1994

Authors:
P. Macpherson'
R. Stamper2
B.S. Todd2

Organisations:
'The Nuffield Department of Obstetrics and Gynaecology, John Radcliffe Hospital,
Oxford, UK.
2The Programming Research Group, Oxford University Computing Laboratory,
Oxford, UK.

Software:

Unknown

Hardware:
Unknown

Key Points
• Conditional probabilities represented as sets of weighted inference rules
• Monte Carlo simulation used to generate cases

References:

[Todd et al 94]
Precis

This system is a tool for a larger research project investigating factors which limit
accuracy in medical diagnosis. This system is designed to simulate cases of abdom¬
inal or lower back pain of suspected gynaecologicial cause. An accurate simulation
would enable the generation of arbitrarily large, complete, representative data sets
which could have a variety of uses in the project as a whole.
The basic model is a belief network, but the conditional probabilities within the
network are represented as sets of weighted inference rules. These rules are based
on a logistic model, using certainty factors defined over the interval [-1, 1], where
-1 represents logical preclusion and 1 represents logical implication. This type of
model is able to represent a wide range of supportive and inhibitory interactions,
including the noisy-OR. Nodes in the network represent atomic propositions of the
form 'v in U\ which is true precisely when the value of the variable v lies in the set
of values U, for example atomic propositions about the site of tenderness include:
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1. site_of_tenderness in {generalized}
2. site_of_tenderness in {rightJower_quadrant, right, rightjoin}
3. site_of_tenderness in {right_upper_quadrant, right, upper}

The belief network specifies a joint probability distribution over truth assignments
to these atomic propositions.
The nodes are ordered causally, the relationship being expressed in the form of
rules. As an example of the form these rules take, some of the rules used to
determine whether the left adnexa appears abnormally enlarged under ultrasound
examination are shown [Todd et al 94, page 86]:

Rule 1 prcviousJ_salpingectomy in {true} and prcvious_Loophorectomy in {true]
=>_1 ultrasoundJ.adnexa in {enlarged, mass, cyst}
This first rule is categorical. If both the left fallopian tube and the left ovary
have been previously removed then no left adnexal enlargement (of any kind)
is possible.

Rule 2 true =>"° 908 ultrasoundJ.adnexa in {enlarged, mass, cyst}
This reflects the fact that usually no abnormality of the left adnexa is seen on
ultrasound examination.

Rule 3 left_ectopic_pregnancy in (unruptured, rupturedjnto.mesosalpinx, rup¬
tured jnto.peritoneaLcavity} =>° 610 ultrasound_Ladnexa in {enlarged, mass,
cyst}
The presence of a left ectopic pregnancy (whether ruptured or not) makes it
much more likely that some form of enlargement of the left adnexa will be
detected

A total of 2113 rules are used in the network, 571 of which are categorical. These
describe the relationships between 178 propositions. The certainty factors of the
non categorical rules were derived from a patient data set using standard optimi
cation methods. Monto Carlo simulation is uoed to genorato casoo from the modol.
In testing, the distributions of some of the variables proved to be incorrect, though
not wholly unrealistic, so refinement of the rules may prove necessary. In spite of
this, an expert was unable to distinguish between cases generated from the model
and real-world cases, suggesting that the model is substantially correct and should
prove useful.

245



SWAN

Project:
SWAN

Application:
Therapy monitoring and planning

Domain:
Glucose metabolism in diabetes, insulin adjustment

Date:

1990 — 1994

Authors:

S. Andreassen1,2,3
J.J. Benn4
E.R. Carson3,4
R. Hovorka3,4
U. Kjaerulff5
K.G. Olesen1,2

Organisations:
'Nordjysk Udviklingscenter, Aalborg, Denmark.
2Department of Medical Informatics and Image Analysis, Institute for Electronic
Systems, Aalborg University, Denmark.
3Centre for Measurement and Information in Medicine, Systems Science, City Uni¬
versity, London, UK.
■•Department of Endocrinology, Chemical Pathology and Medicine, UMDS, St.
Thomas' Hospital, London, UK.
5Judex Datasystemer A/S, Aalborg, Denmark.

Software:
HUGIN [Andersen et at ST, Andersen et al 90, Jensen et al 91]

Hardware:

SUN workstation

Key Points
• Discrete-time model of temporal changes
• Refinement of patient specific models
• Risk assessment and optimal therapy selection
• Clique-tree propagation algorithm

References:

[Andreassen et al 90]
[Hovorka et al 90]
[Andreassen et al 91a]
[Andreassen 92]
[Hovorka et al 92]
[Andreassen 94]
[Andreassen et al 94]
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Precis
This project considers the prediction of patient well being under treatment and the
recommendation of therapy plans. The domain examined is type 1 diabetes under
insulin therapy.
A belief network model of the physiological processes of carbohydrate metabolism
was created. This model takes as its inputs, insulin absorption, carbohydrates from
meals, and current plasma glucose. The model predicts the plasma glucose levels
that will be observed an hour later, given a measure of the patientc oencitivity to
insulin. The initial model structure was simplified by the addition of now nodes
to facilitate computation. The finks are quantified by a variety of relationships,
including the linear addition or subtraction of glucose by processes. Continuous,
qualitative values arc mapped to discrete ranges that reflect significant differences.
These discrete time models can be connected to provide a model of a particular
time period.
If prior data is available on the patient, the model can be used to determine the
value of the patientc insulin sensitivity, thereby improving its predictive accuracy.

The model can also be used to determine optimal therapy regimes. In order to do
this a risk model is defined for various plasma glucose level outcomes. A weighted
mean of penalties can be computed on the basis of the probabilities of those out
comes and summed over the 24 hour model. The therapeutic regime with the
lowest associated risk is found by gradient decent methods.
The system has been tested on twelve patients, showing that the predictions arc rca
sonable and suggesting that an average risk reduction of 32% was possible against
actual treatments. There is still work to be done on this project, particularly in
refining the glucose metabolism model.
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VentPlan

Project:
VentPlan

Application:
Therapy planning

Domain:

Ventilator management

Date:

1989

Authors:
I. Beinlich'
L. Fagan1
B. Farr1
G. Rutledge1
L. Sheiner2
G. Thomsen1

Organisations:
'Section on Medical Informatics, Department of Medicine, Stanford University,
Stanford, California, USA.
2Division of Laboratory Medicine, University of California at San Fransisco, Cali¬
fornia, USA.

Software:
DxNet

Hardware:
Unknown

Key Points
• Propagation algorithm based on Lauritzen and Spiegelhalter
• Inclusion of input validation nodes

References:

[Rutledge et al 89]
Precis

The VentPlan system is designed to make recommendations about the setting of
ventilator controls. Qualitative and quantitative data are used to develop a patient-
specific model which is used for prediction and plan selection. VentPlan is com¬
posed of four modules, a belief network, a mathematical model, a plan evaluator
and a control algorithm. The belief network is used to calculate probability distri¬
butions over physiological parameters used in the mathematical model. The net¬
work detects discrepancies between reported input measurements and their likely
values given other data as well as modelling physiological relationships.
The belief network inference mechanism is based on the algorithms of Lauritzen
and Spiegelhalter.
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Appendix B

FLAPNet Methods

There is only a single class of node, and every node is able to receive the same set of
messages. However, the content of the messages and the way that a node responds to
a message is determined by procedures stored in instance slots (i.e. each instance may
have a unique set of procedures that define its behaviour). The methods available to
a node object can be divided into two main groups, those directly concerned with the
implementation of the inference network, and those concerned with other areas, such as
interface management. Only the inference methods will be described here. The principal
inference methods respond to the following message types:

• Causal message.

• Diagnostic message.

• Lambda condition message (diagnostic).

• Pi condition message (causal).
• Lambda uncondition message.

• Pi uncondition message.

Each method runs through a fixed set of operations in a predetermined order. These
operations are illustrated below in pseudo-code.
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B.l Causal Message Method

The causal message method handles all causal messages sent to a node by its parents.
The message contains the name of the originator of the message and the item of causal
evidence.

defmethod causal_message(origin, evidence)
update parents record to include new evidence
unless pi conditioned
do

update pi
update belief
update display
propagate diagnostic messages
unless lambda conditioned

do

propagate causal messages
endunless

endunless

enddefmethod

B.2 Diagnostic Message Method

The diagnostic message method handles all diagnostic messages sent to a node by its
children. The message contains the name of the originator of the message and the item
of diagnostic evidence.

defmethod diagnostic_message(origin, evidence)
update children record to include new evidence
unless lambda conditioned

do

update lambda
update belief
update display
unless pi conditioned
do

propagate diagnostic messages
endunless

propagate causal messages
endunless

enddefmethod
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B.3 Lambda Condition Message Method

This method is called whenever a lambda condition message is received. The message
contains the new lambda value.

defmethod lambda_condition(new_lambda)
if pi conditioned
then

ERROR

endif

set lambda to new.lambda

update belief
update display
propagate diagnostic messages

enddefmethod

B.4 Pi Condition Message Method

This method is called whenever a pi condition message is received. The message contains
the new pi value.

defmethod pi_condition(new_pi)
if lambda conditioned

then

ERROR

endif

set pi to new.pi
update belief
update display
propagate causal messages

enddefmethod
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B.5 Lambda Uncondition Message Method

This method is used whenever a lambda uncondition message is received. The message
contains no data.

defmethod lambda.unconditionO
if lambda not conditioned

then

ERROR

endif

calculate new lambda

update belief
update display
propagate diagnostic messages

propagate causal messages
enddefmethod

B.6 Pi Uncondition Message Method

This method is used whenever a pi uncondition message is received. The message contains
no data.

defmethod pi.unconditionO
if pi not conditioned or root node
then

ERROR

endif

calculate new pi
update belief
update display
propagate diagnostic messages
propagate causal messages

enddefmethod
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Appendix C

Fetal Ultrasound Results

The complete set of results from applying the system to the four test cues and three test
images are presented below. It should be noted that the test cues were not adjusted in
any way when applied to different test images, therefore a good cue on one test image
may be a poor cue on another. The three test images are shown in figure C.l.

The parameters used for the delta experiments and composite delta experiments are
shown in the following table.

parameter delta value composite value
node type delta node only composite node only
fine type closed closed

propagation type bidirectional exclusive parent to child
propagation limitation decay 0.95 decay 0.95

distance 25 distance 25
circuits 2 circuits 2

initial cue weight 0.1 0.1

shape model weight 0.5 0.5
current shape weight 0.5 0.5

edge weight 1.0 1.0

stability <16 pixels <16 pixels
edge definition 3 3

orthogonals 30 30

sample points 59 59

The trials are presented in order, starting with test image one and cue one, followed
by test image one with cue two, and so on. For each trial the initial image and cue are
shown first, then the delta result, then the composite delta result.
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Figure C.l: Ultrasound test images
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Figure C.2: Initial image, result (419*6) and composite result (419*4)
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Figure C.4: Initial image, result (29*2) and composite result (29*2)

257



Figure C.5: Initial image, result (659*59) and composite result (659*54)
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Figure C.6: Initial image, result (134*4) and composite result (134*2)
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Figure C.7: Initial image, result (134*1) and composite result (134*1)
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Figure C.8: Initial image, result (209*7) and composite result (209*4)
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Figure C.9: Initial image, result (224*11) and composite result (224*3)
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Figure C.10: Initial image, result (104*2) and composite result (105*6)
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Figure C.ll: Initial image, result (269*20) and composite result (269*10)
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Figure C.12: Initial image, result (44*3) and composite result (44*1)
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Figure C.13: Initial image, result (59*7) and composite result (59*2)
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