6,638 research outputs found

    Perceptual Copyright Protection Using Multiresolution Wavelet-Based Watermarking And Fuzzy Logic

    Full text link
    In this paper, an efficiently DWT-based watermarking technique is proposed to embed signatures in images to attest the owner identification and discourage the unauthorized copying. This paper deals with a fuzzy inference filter to choose the larger entropy of coefficients to embed watermarks. Unlike most previous watermarking frameworks which embedded watermarks in the larger coefficients of inner coarser subbands, the proposed technique is based on utilizing a context model and fuzzy inference filter by embedding watermarks in the larger-entropy coefficients of coarser DWT subbands. The proposed approaches allow us to embed adaptive casting degree of watermarks for transparency and robustness to the general image-processing attacks such as smoothing, sharpening, and JPEG compression. The approach has no need the original host image to extract watermarks. Our schemes have been shown to provide very good results in both image transparency and robustness.Comment: 13 pages, 7 figure

    Character recognition using a neural network model with fuzzy representation

    Get PDF
    The degree to which digital images are recognized correctly by computerized algorithms is highly dependent upon the representation and the classification processes. Fuzzy techniques play an important role in both processes. In this paper, the role of fuzzy representation and classification on the recognition of digital characters is investigated. An experimental Neural Network model with application to character recognition was developed. Through a set of experiments, the effect of fuzzy representation on the recognition accuracy of this model is presented

    ART-EMAP: A Neural Network Architecture for Object Recognition by Evidence Accumulation

    Full text link
    A new neural network architecture is introduced for the recognition of pattern classes after supervised and unsupervised learning. Applications include spatio-temporal image understanding and prediction and 3-D object recognition from a series of ambiguous 2-D views. The architecture, called ART-EMAP, achieves a synthesis of adaptive resonance theory (ART) and spatial and temporal evidence integration for dynamic predictive mapping (EMAP). ART-EMAP extends the capabilities of fuzzy ARTMAP in four incremental stages. Stage 1 introduces distributed pattern representation at a view category field. Stage 2 adds a decision criterion to the mapping between view and object categories, delaying identification of ambiguous objects when faced with a low confidence prediction. Stage 3 augments the system with a field where evidence accumulates in medium-term memory (MTM). Stage 4 adds an unsupervised learning process to fine-tune performance after the limited initial period of supervised network training. Each ART-EMAP stage is illustrated with a benchmark simulation example, using both noisy and noise-free data. A concluding set of simulations demonstrate ART-EMAP performance on a difficult 3-D object recognition problem.Advanced Research Projects Agency (ONR N00014-92-J-4015); National Science Foundation (IRI-90-00530); Office of Naval Research (N00014-91-J-4100); Air Force Office of Scientific Research (90-0083

    Three-dimensional multifractal analysis of trabecular bone under clinical computed tomography

    Get PDF
    Purpose: An adequate understanding of bone structural properties is critical for predicting fragility conditions caused by diseases such as osteoporosis, and in gauging the success of fracture prevention treatments. In this work we aim to develop multiresolution image analysis techniques to extrapolate high-resolution images predictive power to images taken in clinical conditions. Methods: We performed multifractal analysis (MFA) on a set of 17 ex vivo human vertebrae clinical CT scans. The vertebræ failure loads (FFailure) were experimentally measured. We combined bone mineral density (BMD) with different multifractal dimensions, and BMD with multiresolution statistics (e.g., skewness, kurtosis) of MFA curves, to obtain linear models to predict FFailure. Furthermore we obtained short- and long-term precisions from simulated in vivo scans, using a clinical CT scanner. Ground-truth data - high-resolution images - were obtained with a High-Resolution Peripheral Quantitative Computed Tomography (HRpQCT) scanner. Results: At the same level of detail, BMD combined with traditional multifractal descriptors (Lipschitz-Hölder exponents), and BMD with monofractal features showed similar prediction powers in predicting FFailure (87%, adj. R2). However, at different levels of details, the prediction power of BMD with multifractal features raises to 92% (adj. R2) of FFailure. Our main finding is that a simpler but slightly less accurate model, combining BMD and the skewness of the resulting multifractal curves, predicts 90% (adj. R2) of FFailure. Conclusions: Compared to monofractal and standard bone measures, multifractal analysis captured key insights in the conditions leading to FFailure. Instead of raw multifractal descriptors, the statistics of multifractal curves can be used in several other contexts, facilitating further research.Fil: Baravalle, Rodrigo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Thomsen, Felix Sebastian Leo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur; ArgentinaFil: Delrieux, Claudio Augusto. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lu, Yongtao. Dalian University of Technology; ChinaFil: Gómez, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Stošić, Borko. Universidade Federal Rural Pernambuco; BrasilFil: Stošić, Tatijana. Universidade Federal Rural Pernambuco; Brasi

    Uncertainty Analysis for the Keyword System of Web Events

    Full text link
    © 2015 IEEE. Webpage recommendations for hot Web events can assist people to easily follow the evolution of these Web events. At the same time, there are different levels of semantic uncertainty underlying the amount of Webpages for a Web event, such as recapitulative information and detailed information. Apparently, the grasp of the semantic uncertainty of Web events could improve the satisfactoriness of Webpage recommendations. However, traditional hit-rate-based or clustering-based Webpage recommendation methods have overlooked these different levels of semantic uncertainty. In this paper, we propose a framework to identify the different underlying levels of semantic uncertainty in terms of Web events, and then utilize these for Webpage recommendations. Our idea is to consider a Web event as a system composed of different keywords, and the uncertainty of this keyword system is related to the uncertainty of the particular Web event. Based on keyword association linked network Web event representation and Shannon entropy, we identify the different levels of semantic uncertainty, and construct a semantic pyramid (SP) to express the uncertainty hierarchy of a Web event. Finally, an SP-based Webpage recommendation system is developed. Experiments show that the proposed algorithm can significantly capture the different levels of the semantic uncertainties of Web events and it can be applied to Webpage recommendations
    corecore