13 research outputs found

    Recent Advances in Multi Robot Systems

    Get PDF
    To design a team of robots which is able to perform given tasks is a great concern of many members of robotics community. There are many problems left to be solved in order to have the fully functional robot team. Robotics community is trying hard to solve such problems (navigation, task allocation, communication, adaptation, control, ...). This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field. It is focused on the challenging issues of team architectures, vehicle learning and adaptation, heterogeneous group control and cooperation, task selection, dynamic autonomy, mixed initiative, and human and robot team interaction. The book consists of 16 chapters introducing both basic research and advanced developments. Topics covered include kinematics, dynamic analysis, accuracy, optimization design, modelling, simulation and control of multi robot systems

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Particle Swarm Optimization

    Get PDF
    Particle swarm optimization (PSO) is a population based stochastic optimization technique influenced by the social behavior of bird flocking or fish schooling.PSO shares many similarities with evolutionary computation techniques such as Genetic Algorithms (GA). The system is initialized with a population of random solutions and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem space by following the current optimum particles. This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field

    An Approach Based on Particle Swarm Optimization for Inspection of Spacecraft Hulls by a Swarm of Miniaturized Robots

    Get PDF
    The remoteness and hazards that are inherent to the operating environments of space infrastructures promote their need for automated robotic inspection. In particular, micrometeoroid and orbital debris impact and structural fatigue are common sources of damage to spacecraft hulls. Vibration sensing has been used to detect structural damage in spacecraft hulls as well as in structural health monitoring practices in industry by deploying static sensors. In this paper, we propose using a swarm of miniaturized vibration-sensing mobile robots realizing a network of mobile sensors. We present a distributed inspection algorithm based on the bio-inspired particle swarm optimization and evolutionary algorithm niching techniques to deliver the task of enumeration and localization of an a priori unknown number of vibration sources on a simplified 2.5D spacecraft surface. Our algorithm is deployed on a swarm of simulated cm-scale wheeled robots. These are guided in their inspection task by sensing vibrations arising from failure points on the surface which are detected by on-board accelerometers. We study three performance metrics: (1) proximity of the localized sources to the ground truth locations, (2) time to localize each source, and (3) time to finish the inspection task given a 75% inspection coverage threshold. We find that our swarm is able to successfully localize the present so

    Guided Self-Organizing Particle Systems for Basic Problem Solving

    Get PDF
    In recent years researchers have shown increasing interest in swarm intelligence as a promising approach to adaptive distributed problem solving. Swarm intelligence consists of techniques inspired by nature, especially social insects and aggregations of animals, and even human interactions. They are based on self-organization (a system's overall behavior emerges from the local interactions among its relatively simple components) and are often decentralized and massively distributed. Particle systems are an approach to swarm intelligence that focus on collective movements, and have been used successfully for applications such as computer animation in graphics and control of movements of autonomous robotic vehicle teams. However, particle system techniques have not been applied substantially to problem solving beyond merely collective navigational tasks. In this dissertation, I present an extension to particle systems that incorporates top-down, high-level control to self-organizing mobile agents, thereby guiding the self-organizing process and making it possible for particle systems to undertake problem solving directed by goal-oriented behavior while retaining their decentralized, local nature. This extended particle system approach is critically evaluated through three experimental studies that are adapted from well-known problems in multi-agent systems: search and collect, cooperative transport and logistics. The results provide evidence that extended particle systems are capable of exhibiting behavior important for distributed problem solving, such as cooperative sensing, division of labor, sharing of information, and developing global strategies through local interactions. They also show that aggregated movements can be utilized to create coordination at different levels and phases of the performance of a task, whether those include navigation or not, making extended particle systems a useful tool in the construction of adaptive distributed systems

    Evolutionary Computation 2020

    Get PDF
    Intelligent optimization is based on the mechanism of computational intelligence to refine a suitable feature model, design an effective optimization algorithm, and then to obtain an optimal or satisfactory solution to a complex problem. Intelligent algorithms are key tools to ensure global optimization quality, fast optimization efficiency and robust optimization performance. Intelligent optimization algorithms have been studied by many researchers, leading to improvements in the performance of algorithms such as the evolutionary algorithm, whale optimization algorithm, differential evolution algorithm, and particle swarm optimization. Studies in this arena have also resulted in breakthroughs in solving complex problems including the green shop scheduling problem, the severe nonlinear problem in one-dimensional geodesic electromagnetic inversion, error and bug finding problem in software, the 0-1 backpack problem, traveler problem, and logistics distribution center siting problem. The editors are confident that this book can open a new avenue for further improvement and discoveries in the area of intelligent algorithms. The book is a valuable resource for researchers interested in understanding the principles and design of intelligent algorithms

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Fuzzy counter-ant for avoiding the stagnation of multirobot exploration

    No full text
    International audienceSince swarm intelligence allows self-organization into an unfamiliar environment and adapting behaviors through simple individuals' interactions, we propose to realize a swarm multirobot organization with a fuzzy control. We introduce in this paper a fuzzy system for avoiding the collaboration stagnation and to improve the counter-ant algorithm (CAA). The robots' collaborative behavior is based on a hybrid approach combining the CAA and a fuzzy system learned by MAGAD-BFS (Multi-agent Genetic Algorithm for the Design of Beta Fuzzy System). A series of simulations enables us to discuss and validate both the effectiveness of the hybrid approach to the problem of environment exploration (i.e., for the purpose of cleaning an area) as well as the usefulness of MAGAD-BFS for learning the fuzzy knowledge base while tuning it and reducing its number of rules

    Proceedings of the International Micro Air Vehicles Conference and Flight Competition 2017 (IMAV 2017)

    Get PDF
    The IMAV 2017 conference has been held at ISAE-SUPAERO, Toulouse, France from Sept. 18 to Sept. 21, 2017. More than 250 participants coming from 30 different countries worldwide have presented their latest research activities in the field of drones. 38 papers have been presented during the conference including various topics such as Aerodynamics, Aeroacoustics, Propulsion, Autopilots, Sensors, Communication systems, Mission planning techniques, Artificial Intelligence, Human-machine cooperation as applied to drones
    corecore