168 research outputs found

    Sensitivity-based robust feedback linearizing control of hydraulically actuated system

    Get PDF
    Feedback linearization is an effective controller-design methodology for nonlinear systems where it is difficult to obtain a finite number of operating points to linearize the system for designing well-known linear robust controllers. Feedback linearization becomes one of very limited methodologies that can be used for control of such systems. Traditional implementations of feedback linearization technique are not robust, which means this control methodology does not account for system uncertainties. The reason being that the control law methodology assumes accurate knowledge of nonlinear dynamics of the system. Recently, in [1] a new methodology was proposed which adds robustness to feedback linearization. The methodology uses sensitivity dynamics-based control synthesis. The methodology was demonstrated on a simple proof-of-concept single actuator mass-spring-damper model. This research is focused on application of robust feedback linearization technique to real life complex hydraulically actuated physical systems. In particular, the methodology is applied to the problem of controlling mechanical linkage configuration in excavator machines. The problem addressed is controlling of bucket angle of excavator such that the bucket is always kept parallel to ground irrespective of boom motion to avoid spilling of the load. The dynamics of systems such as excavator linkage actuated by hydraulic actuator are often complex and application of robust feedback linearization (RFL) methodology gets tedious and cumbersome. The work in this thesis is intended for demonstrating the applicability of RFL methodology for such complex systems and also to lay foundation for development of an automated user-friendly toolbox to enable easy use of such control technique in day-to-day practice. The uncertain parameter considered in the development in this thesis is the bulk modulus of the system as it is the most common uncertainty in the system. The modeling process also considers portability of models from some known commercial software tools such as SimHydraulics and SimMechanics. The results presented show that the RFL methodology is very effective in achieving robust control of hydraulically actuated systems with uncertainties in hydraulic parameters

    Development of Motion Control Systems for Hydraulically Actuated Cranes with Hanging Loads

    Get PDF
    Automation has been used in industrial processes for several decades to increase efficiency and safety. Tasks that are either dull, dangerous, or dirty can often be performed by machines in a reliable manner. This may provide a reduced risk to human life, and will typically give a lower economic cost. Industrial robots are a prime example of this, and have seen extensive use in the automotive industry and manufacturing plants. While these machines have been employed in a wide variety of industries, heavy duty lifting and handling equipment such as hydraulic cranes have typically been manually operated. This provides an opportunity to investigate and develop control systems to push lifting equipment towards the same level of automation found in the aforementioned industries. The use of winches and hanging loads on cranes give a set of challenges not typically found on robots, which requires careful consideration of both the safety aspect and precision of the pendulum-like motion. Another difference from industrial robots is the type of actuation systems used. While robots use electric motors, the cranes discussed in this thesis use hydraulic cylinders. As such, the dynamics of the machines and the control system designmay differ significantly. In addition, hydraulic cranes may experience significant deflection when lifting heavy loads, arising from both structural flexibility and the compressibility of the hydraulic fluid. The work presented in this thesis focuses on motion control of hydraulically actuated cranes. Motion control is an important topic when developing automation systems, as moving from one position to another is a common requirement for automated lifting operations. A novel path controller operating in actuator space is developed, which takes advantage of the load-independent flow control valves typically found on hydraulically actuated cranes. By operating in actuator space the motion of each cylinder is inherently minimized. To counteract the pendulum-like motion of the hanging payload, a novel anti-swing controller is developed and experimentally verified. The anti-swing controller is able to suppress the motion from the hanging load to increase safety and precision. To tackle the challenges associated with the flexibility of the crane, a deflection compensator is developed and experimentally verified. The deflection compensator is able to counteract both the static deflection due to gravity and dynamic de ection due to motion. Further, the topic of adaptive feedforward control of pressure compensated cylinders has been investigated. A novel adaptive differential controller has been developed and experimentally verified, which adapts to system uncertainties in both directions of motion. Finally, the use of electro-hydrostatic actuators for motion control of cranes has been investigated using numerical time domain simulations. A novel concept is proposed and investigated using simulations.publishedVersio

    Fuzzy Controlled Hydraulic Excavator with Model Parameter Uncertainty

    Get PDF
    The hydraulic actuated excavator, being a non-linear mobile machine, encounters many uncertainties. There are uncertainties in the hydraulic system in addition to the uncertain nature of the load. The simulation results obtained in this study show that there is a need for intelligent control of such machines and in particular interval type-2 fuzzy controller is most suitable for minimizing the position error of a typical excavator’s bucket under load variations. We consider the model parameter uncertainties such as hydraulic fluid leakage and friction. These are uncertainties which also depend up on the temperature and alter bulk modulus and viscosity of the hydraulic fluid. Such uncertainties together with the load variations cause chattering of the bucket position. The interval type-2 fuzzy controller effectively eliminates the chattering and manages to control the end-effecter (bucket) position with positional error in the order of few millimeters

    Soft Gloves: A Review on Recent Developments in Actuation, Sensing, Control and Applications

    Get PDF
    Interest in soft gloves, both robotic and haptic, has enormously grown over the past decade, due to their inherent compliance, which makes them particularly suitable for direct interaction with the human hand. Robotic soft gloves have been developed for hand rehabilitation, for ADLs assistance, or sometimes for both. Haptic soft gloves may be applied in virtual reality (VR) applications or to give sensory feedback in combination with prostheses or to control robots. This paper presents an updated review of the state of the art of soft gloves, with a particular focus on actuation, sensing, and control, combined with a detailed analysis of the devices according to their application field. The review is organized on two levels: a prospective review allows the highlighting of the main trends in soft gloves development and applications, and an analytical review performs an in-depth analysis of the technical solutions developed and implemented in the revised scientific research. Additional minor evaluations integrate the analysis, such as a synthetic investigation of the main results in the clinical studies and trials referred in literature which involve soft gloves

    The Virtual Robotics Laboratory

    Full text link

    Header height control of combine harvester via robust feedback linearization

    Get PDF
    Studies have shown that feedback linearization can provide an effective controller for many types of nonlinear systems. It is known, however, that these controllers are not robust, in particular to model uncertainties as the feedback linearization process involves canceling of nonlinearities in the dynamics using an exact model which is seldom available. Although there are several strategies to add robustness, recent work on sensitivity theory has shown that it can provide the least conservative design for robust feedback linearization. This is achieved by adjusting the control input to minimize the sensitivity. The work in this thesis develops the robust feedback linearization (RFL) methodology further by extending it to a new class of non-linear systems. This research presents a methodology for designing a RFL controller in conjunction with previous work on integrated robust optimal design (IROD) for hydraulically controlled multibody systems. With growing world populations the total output of the agricultural industry will need to increase with it. It has been shown that a significant portion of yield losses occur during harvest, and specifically at the header of the combine harvester. One way to improve this is by improved header height tracking. Promising research has shown that integrated mechanical plant and controller design can provide a better optimal controller than previously possible, but those techniques focus on the mechanical system only and do not account for hydraulic actuator dynamics. However, in practice, hydraulic systems pose control challenges because they are highly nonlinear and the system parameters can vary significantly. The proposed RFL methodology offers an ideal solution to this problem and the work in this thesis is dedicated to developing this methodology. Details are given about the mechanical and hydraulic plants as well as the development of a nominal feedback linearization controller. Then the controller is rendered robust to uncertainties in the bulk modulus by deriving the sensitivity dynamics and control adjustment. Finally, the controller performance is tested over a variety of simulated conditions and is compared to the current industry standard, the PID controller. The results show that the RFL controller greatly improves header height tracking with reduced input power and is robust to bulk modulus uncertainties

    RBFNN based adaptive control of uncertain robot manipulators in discrete time

    Get PDF

    Robot Impedance Control and Passivity Analysis with Inner Torque and Velocity Feedback Loops

    Full text link
    Impedance control is a well-established technique to control interaction forces in robotics. However, real implementations of impedance control with an inner loop may suffer from several limitations. Although common practice in designing nested control systems is to maximize the bandwidth of the inner loop to improve tracking performance, it may not be the most suitable approach when a certain range of impedance parameters has to be rendered. In particular, it turns out that the viable range of stable stiffness and damping values can be strongly affected by the bandwidth of the inner control loops (e.g. a torque loop) as well as by the filtering and sampling frequency. This paper provides an extensive analysis on how these aspects influence the stability region of impedance parameters as well as the passivity of the system. This will be supported by both simulations and experimental data. Moreover, a methodology for designing joint impedance controllers based on an inner torque loop and a positive velocity feedback loop will be presented. The goal of the velocity feedback is to increase (given the constraints to preserve stability) the bandwidth of the torque loop without the need of a complex controller.Comment: 14 pages in Control Theory and Technology (2016

    Service Robots and Humanitarian Demining

    Get PDF
    • …
    corecore