5 research outputs found

    Fuzzy TOPSIS for Multiresponse Quality Problems in Wafer Fabrication Processes

    Get PDF
    The quality characteristics in the wafer fabrication process are diverse, variable, and fuzzy in nature. How to effectively deal with multiresponse quality problems in the wafer fabrication process is a challenging task. In this study, the fuzzy technique for order preference by similarity to an ideal solution (TOPSIS), one of the fuzzy multiattribute decision-analysis (MADA) methods, is proposed to investigate the fuzzy multiresponse quality problem in integrated-circuit (IC) wafer fabrication process. The fuzzy TOPSIS is one of the effective fuzzy MADA methods for dealing with decision-making problems under uncertain environments. First, a fuzzy TOPSIS methodology is developed by considering the ambiguity between quality characteristics. Then, a detailed procedure for the developed fuzzy TOPSIS approach is presented to show how the fuzzy wafer fabrication quality problems can be solved. Real-world data is collected from an IC semiconductor company and the developed fuzzy TOPSIS approach is applied to find an optimal combination of parameters. Results of this study show that the developed approach provides a satisfactory solution to the wafer fabrication multiresponse problem. This developed approach can be also applied to other industries for investigating multiple quality characteristics problems

    Fuzzy TOPSIS Approach in Selection of Optimal Noise Barrier for Traffic Noise Abatement

    Get PDF
    The paper presents a retrospective study for selection of noise barrier for road traffic noise abatement. The work proposes the application of Fuzzy TOPSIS (Technique for order preference by similarity to an ideal solution) approach is selection of optimal road traffic noise barrier. The present work utilizes the fuzzy TOPSIS model proposed by Mahdavi et al. (2008) in determination of ranking order of various types of noise barriers with respect to the various criteria considered. It is suggested that application of this approach can be very helpful in selection and application of optimal noise barrier for road traffic noise abatement

    Containership Flag Selection: The Opening of Direct Shipping between Taiwan and China

    Get PDF
    The signature of the cross-strait sea transport (CST) Agreement in 2008 has not only established the cross-strait direct shipping link, but also lifted the ban on the involvement of Taiwanese flagged ships to call at China’s ports. This paper focuses on the flag selection for Taiwanese container shipping companies under the provisions of the CST Agreement, and embraces the empirical investigation based on the Analytic Hierarchy Process (AHP) and Grey Relation Analysis (GRA) with the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The results show Hong Kong is the optimal choice rather than China and Taiwan. Although cross-strait shipping is highly controlled by both sides of the strait, economic factors are still taken seriously in commercial activities. Further, to assist shipping companies to get direct shipping approvals from China and revising a package of financial measures under current shipping policies are recommended for the Taiwanese government

    Modeling and Optimization of Stochastic Process Parameters in Complex Engineering Systems

    Get PDF
    For quality engineering researchers and practitioners, a wide number of statistical tools and techniques are available for use in the manufacturing industry. The objective or goal in applying these tools has always been to improve or optimize a product or process in terms of efficiency, production cost, or product quality. While tremendous progress has been made in the design of quality optimization models, there remains a significant gap between existing research and the needs of the industrial community. Contemporary manufacturing processes are inherently more complex - they may involve multiple stages of production or require the assessment of multiple quality characteristics. New and emerging fields, such as nanoelectronics and molecular biometrics, demand increased degrees of precision and estimation, that which is not attainable with current tools and measures. And since most researchers will focus on a specific type of characteristic or a given set of conditions, there are many critical industrial processes for which models are not applicable. Thus, the objective of this research is to improve existing techniques by not only expanding their range of applicability, but also their ability to more realistically model a given process. Several quality models are proposed that seek greater precision in the estimation of the process parameters and the removal of assumptions that limit their breadth and scope. An extension is made to examine the effectiveness of these models in both non-standard conditions and in areas that have not been previously investigated. Upon the completion of an in-depth literature review, various quality models are proposed, and numerical examples are used to validate the use of these methodologies

    Fuzzy TOPSIS for Multiresponse Quality Problems in Wafer Fabrication Processes

    No full text
    The quality characteristics in the wafer fabrication process are diverse, variable, and fuzzy in nature. How to effectively deal with multiresponse quality problems in the wafer fabrication process is a challenging task. In this study, the fuzzy technique for order preference by similarity to an ideal solution (TOPSIS), one of the fuzzy multiattribute decision-analysis (MADA) methods, is proposed to investigate the fuzzy multiresponse quality problem in integrated-circuit (IC) wafer fabrication process. The fuzzy TOPSIS is one of the effective fuzzy MADA methods for dealing with decision-making problems under uncertain environments. First, a fuzzy TOPSIS methodology is developed by considering the ambiguity between quality characteristics. Then, a detailed procedure for the developed fuzzy TOPSIS approach is presented to show how the fuzzy wafer fabrication quality problems can be solved. Real-world data is collected from an IC semiconductor company and the developed fuzzy TOPSIS approach is applied to find an optimal combination of parameters. Results of this study show that the developed approach provides a satisfactory solution to the wafer fabrication multiresponse problem. This developed approach can be also applied to other industries for investigating multiple quality characteristics problems
    corecore