39 research outputs found

    Fuzzy superpixels for polarimetric SAR images classification

    Get PDF
    Superpixels technique has drawn much attention in computer vision applications. Each superpixels algorithm has its own advantages. Selecting a more appropriate superpixels algorithm for a specific application can improve the performance of the application. In the last few years, superpixels are widely used in polarimetric synthetic aperture radar (PolSAR) image classification. However, no superpixel algorithm is especially designed for image classification. It is believed that both mixed superpixels and pure superpixels exist in an image.Nevertheless, mixed superpixels have negative effects on classification accuracy. Thus, it is necessary to generate superpixels containing as few mixed superpixels as possible for image classification. In this paper, first, a novel superpixels concept, named fuzzy superpixels, is proposed for reducing the generation of mixed superpixels.In fuzzy superpixels ,not al lpixels are assigned to a corresponding superpixel. We would rather ignore the pixels than assigning them to improper superpixels. Second,a new algorithm, named FuzzyS(FS),is proposed to generate fuzzy superpixels for PolSAR image classification. Three PolSAR images are used to verify the effect of the proposed FS algorithm. Experimental results demonstrate the superiority of the proposed FS algorithm over several state-of-the-art superpixels algorithms

    Fuzzy Superpixels based Semi-supervised Similarity-constrained CNN for PolSAR Image Classification

    Get PDF
    Recently, deep learning has been highly successful in image classification. Labeling the PolSAR data, however, is time-consuming and laborious and in response semi-supervised deep learning has been increasingly investigated in PolSAR image classification. Semi-supervised deep learning methods for PolSAR image classification can be broadly divided into two categories, namely pixels-based methods and superpixels-based methods. Pixels-based semi-supervised methods are liable to be affected by speckle noises and have a relatively high computational complexity. Superpixels-based methods focus on the superpixels and ignore tiny detail-preserving represented by pixels. In this paper, a Fuzzy superpixels based Semi-supervised Similarity-constrained CNN (FS-SCNN) is proposed. To reduce the effect of speckle noises and preserve the details, FS-SCNN uses a fuzzy superpixels algorithm to segment an image into two parts, superpixels and undetermined pixels. Moreover, the fuzzy superpixels algorithm can also reduce the number of mixed superpixels and improve classification performance. To exploit unlabeled data effectively, we also propose a Similarity-constrained Convolutional Neural Network (SCNN) model to assign pseudo labels to unlabeled data. The final training set consists of the initial labeled data and these pseudo labeled data. Three PolSAR images are used to demonstrate the excellent classification performance of the FS-SCNN method with data of limited labels

    Two-Phase Object-Based Deep Learning for Multi-Temporal SAR Image Change Detection

    Get PDF
    Change detection is one of the fundamental applications of synthetic aperture radar (SAR) images. However, speckle noise presented in SAR images has a negative effect on change detection, leading to frequent false alarms in the mapping products. In this research, a novel two-phase object-based deep learning approach is proposed for multi-temporal SAR image change detection. Compared with traditional methods, the proposed approach brings two main innovations. One is to classify all pixels into three categories rather than two categories: unchanged pixels, changed pixels caused by strong speckle (false changes), and changed pixels formed by real terrain variation (real changes). The other is to group neighbouring pixels into superpixel objects such as to exploit local spatial context. Two phases are designed in the methodology: (1) Generate objects based on the simple linear iterative clustering (SLIC) algorithm, and discriminate these objects into changed and unchanged classes using fuzzy c-means (FCM) clustering and a deep PCANet. The prediction of this Phase is the set of changed and unchanged superpixels. (2) Deep learning on the pixel sets over the changed superpixels only, obtained in the first phase, to discriminate real changes from false changes. SLIC is employed again to achieve new superpixels in the second phase. Low rank and sparse decomposition are applied to these new superpixels to suppress speckle noise significantly. A further clustering step is applied to these new superpixels via FCM. A new PCANet is then trained to classify two kinds of changed superpixels to achieve the final change maps. Numerical experiments demonstrate that, compared with benchmark methods, the proposed approach can distinguish real changes from false changes effectively with significantly reduced false alarm rates, and achieve up to 99.71% change detection accuracy using multi-temporal SAR imagery

    Adaptive Fuzzy Learning Superpixel Representation for PolSAR Image Classification

    Get PDF
    The increasing applications of polarimetric synthetic aperture radar (PolSAR) image classification demand for effective superpixels’ algorithms. Fuzzy superpixels’ algorithms reduce the misclassification rate by dividing pixels into superpixels, which are groups of pixels of homogenous appearance and undetermined pixels. However, two key issues remain to be addressed in designing a fuzzy superpixel algorithm for PolSAR image classification. First, the polarimetric scattering information, which is unique in PolSAR images, is not effectively used. Such information can be utilized to generate superpixels more suitable for PolSAR images. Second, the ratio of undetermined pixels is fixed for each image in the existing techniques, ignoring the fact that the difficulty of classifying different objects varies in an image. To address these two issues, we propose a polarimetric scattering information-based adaptive fuzzy superpixel (AFS) algorithm for PolSAR images classification. In AFS, the correlation between pixels’ polarimetric scattering information, for the first time, is considered through fuzzy rough set theory to generate superpixels. This correlation is further used to dynamically and adaptively update the ratio of undetermined pixels. AFS is evaluated extensively against different evaluation metrics and compared with the state-of-the-art superpixels’ algorithms on three PolSAR images. The experimental results demonstrate the superiority of AFS on PolSAR image classification problems

    Optimum graph cuts for pruning binary partition trees of polarimetric SAR images

    Get PDF
    This paper investigates several optimum graph-cut techniques for pruning binary partition trees (BPTs) and their usefulness for the low-level processing of polarimetric synthetic aperture radar (PolSAR) images. BPTs group pixels to form homogeneous regions, which are hierarchically structured by inclusion in a binary tree. They provide multiple resolutions of description and easy access to subsets of regions. Once constructed, BPTs can be used for a large number of applications. Many of these applications consist in populating the tree with a specific feature and in applying a graph cut called pruning to extract a partition of the space. In this paper, different pruning examples involving the optimization of a global criterion are discussed and analyzed in the context of PolSAR images for segmentation. Through the objective evaluation of the resulting partitions by means of precision-and-recall-for-boundaries curves, the best pruning technique is identified, and the influence of the tree construction on the performances is assessed.Peer ReviewedPostprint (author's final draft

    Automated High-resolution Earth Observation Image Interpretation: Outcome of the 2020 Gaofen Challenge

    Get PDF
    In this article, we introduce the 2020 Gaofen Challenge and relevant scientific outcomes. The 2020 Gaofen Challenge is an international competition, which is organized by the China High-Resolution Earth Observation Conference Committee and the Aerospace Information Research Institute, Chinese Academy of Sciences and technically cosponsored by the IEEE Geoscience and Remote Sensing Society and the International Society for Photogrammetry and Remote Sensing. It aims at promoting the academic development of automated high-resolution earth observation image interpretation. Six independent tracks have been organized in this challenge, which cover the challenging problems in the field of object detection and semantic segmentation. With the development of convolutional neural networks, deep-learning-based methods have achieved good performance on image interpretation. In this article, we report the details and the best-performing methods presented so far in the scope of this challenge

    COMIC: An Unsupervised Change Detection Method for Heterogeneous Remote Sensing Images Based on Copula Mixtures and Cycle-Consistent Adversarial Networks

    Full text link
    In this paper, we consider the problem of change detection (CD) with two heterogeneous remote sensing (RS) images. For this problem, an unsupervised change detection method has been proposed recently based on the image translation technique of Cycle-Consistent Adversarial Networks (CycleGANs), where one image is translated from its original modality to the modality of the other image so that the difference map can be obtained by performing arithmetical subtraction. However, the difference map derived from subtraction is susceptible to image translation errors, in which case the changed area and the unchanged area are less distinguishable. To overcome the above shortcoming, we propose a new unsupervised copula mixture and CycleGAN-based CD method (COMIC), which combines the advantages of copula mixtures on statistical modeling and the advantages of CycleGANs on data mining. In COMIC, the pre-event image is first translated from its original modality to the post-event image modality. After that, by constructing a copula mixture, the joint distribution of the features from the heterogeneous images can be learnt according to quantitive analysis of the dependence structure based on the translated image and the original pre-event image, which are of the same modality and contain totally the same objects. Then, we model the CD problem as a binary hypothesis testing problem and derive its test statistics based on the constructed copula mixture. Finally, the difference map can be obtained from the test statistics and the binary change map (BCM) is generated by K-means clustering. We perform experiments on real RS datasets, which demonstrate the superiority of COMIC over the state-of-the-art methods

    Advanced techniques for classification of polarimetric synthetic aperture radar data

    Get PDF
    With various remote sensing technologies to aid Earth Observation, radar-based imaging is one of them gaining major interests due to advances in its imaging techniques in form of syn-thetic aperture radar (SAR) and polarimetry. The majority of radar applications focus on mon-itoring, detecting, and classifying local or global areas of interests to support humans within their efforts of decision-making, analysis, and interpretation of Earth’s environment. This thesis focuses on improving the classification performance and process particularly concerning the application of land use and land cover over polarimetric SAR (PolSAR) data. To achieve this, three contributions are studied related to superior feature description and ad-vanced machine-learning techniques including classifiers, principles, and data exploitation. First, this thesis investigates the application of color features within PolSAR image classi-fication to provide additional discrimination on top of the conventional scattering information and texture features. The color features are extracted over the visual presentation of fully and partially polarimetric SAR data by generation of pseudo color images. Within the experiments, the obtained results demonstrated that with the addition of the considered color features, the achieved classification performances outperformed results with common PolSAR features alone as well as achieved higher classification accuracies compared to the traditional combination of PolSAR and texture features. Second, to address the large-scale learning challenge in PolSAR image classification with the utmost efficiency, this thesis introduces the application of an adaptive and data-driven supervised classification topology called Collective Network of Binary Classifiers, CNBC. This topology incorporates active learning to support human users with the analysis and interpretation of PolSAR data focusing on collections of images, where changes or updates to the existing classifier might be required frequently due to surface, terrain, and object changes as well as certain variations in capturing time and position. Evaluations demonstrated the capabilities of CNBC over an extensive set of experimental results regarding the adaptation and data-driven classification of single as well as collections of PolSAR images. The experimental results verified that the evolutionary classification topology, CNBC, did provide an efficient solution for the problems of scalability and dynamic adaptability allowing both feature space dimensions and the number of terrain classes in PolSAR image collections to vary dynamically. Third, most PolSAR classification problems are undertaken by supervised machine learn-ing, which require manually labeled ground truth data available. To reduce the manual labeling efforts, supervised and unsupervised learning approaches are combined into semi-supervised learning to utilize the huge amount of unlabeled data. The application of semi-supervised learning in this thesis is motivated by ill-posed classification tasks related to the small training size problem. Therefore, this thesis investigates how much ground truth is actually necessary for certain classification problems to achieve satisfactory results in a supervised and semi-supervised learning scenario. To address this, two semi-supervised approaches are proposed by unsupervised extension of the training data and ensemble-based self-training. The evaluations showed that significant speed-ups and improvements in classification performance are achieved. In particular, for a remote sensing application such as PolSAR image classification, it is advantageous to exploit the location-based information from the labeled training data. Each of the developed techniques provides its stand-alone contribution from different viewpoints to improve land use and land cover classification. The introduction of a new fea-ture for better discrimination is independent of the underlying classification algorithms used. The application of the CNBC topology is applicable to various classification problems no matter how the underlying data have been acquired, for example in case of remote sensing data. Moreover, the semi-supervised learning approach tackles the challenge of utilizing the unlabeled data. By combining these techniques for superior feature description and advanced machine-learning techniques exploiting classifier topologies and data, further contributions to polarimetric SAR image classification are made. According to the performance evaluations conducted including visual and numerical assessments, the proposed and investigated tech-niques showed valuable improvements and are able to aid the analysis and interpretation of PolSAR image data. Due to the generic nature of the developed techniques, their applications to other remote sensing data will require only minor adjustments
    corecore