28 research outputs found

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    International Conference on Mathematical Analysis and Applications in Science and Engineering – Book of Extended Abstracts

    Get PDF
    The present volume on Mathematical Analysis and Applications in Science and Engineering - Book of Extended Abstracts of the ICMASC’2022 collects the extended abstracts of the talks presented at the International Conference on Mathematical Analysis and Applications in Science and Engineering – ICMA2SC'22 that took place at the beautiful city of Porto, Portugal, in June 27th-June 29th 2022 (3 days). Its aim was to bring together researchers in every discipline of applied mathematics, science, engineering, industry, and technology, to discuss the development of new mathematical models, theories, and applications that contribute to the advancement of scientific knowledge and practice. Authors proposed research in topics including partial and ordinary differential equations, integer and fractional order equations, linear algebra, numerical analysis, operations research, discrete mathematics, optimization, control, probability, computational mathematics, amongst others. The conference was designed to maximize the involvement of all participants and will present the state-of- the-art research and the latest achievements.info:eu-repo/semantics/publishedVersio

    14th Conference on Dynamical Systems Theory and Applications DSTA 2017 ABSTRACTS

    Get PDF
    From Preface: This is the fourteen time when the conference “Dynamical Systems – Theory and Applications” gathers a numerous group of outstanding scientists and engineers, who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without a great effort of the staff of the Department of Automation, Biomechanics and Mechatronics. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and the Ministry of Science and Higher Education. It is a great pleasure that our invitation has been accepted by so many people, including good colleagues and friends as well as a large group of researchers and scientists, who decided to participate in the conference for the first time. With proud and satisfaction we welcome nearly 250 persons from 38 countries all over the world. They decided to share the results of their research and many years experiences in the discipline of dynamical systems by submitting many very interesting papers. This booklet contains a collection of 375 abstracts, which have gained the acceptance of referees and have been qualified for publication in the conference proceedings [...]

    Classification and detection of Critical Transitions: from theory to data

    Get PDF
    From population collapses to cell-fate decision, critical phenomena are abundant in complex real-world systems. Among modelling theories to address them, the critical transitions framework gained traction for its purpose of determining classes of critical mechanisms and identifying generic indicators to detect and alert them (“early warning signals”). This thesis contributes to such research field by elucidating its relevance within the systems biology landscape, by providing a systematic classification of leading mechanisms for critical transitions, and by assessing the theoretical and empirical performance of early warning signals. The thesis thus bridges general results concerning the critical transitions field – possibly applicable to multidisciplinary contexts – and specific applications in biology and epidemiology, towards the development of sound risk monitoring system

    Vibration, Control and Stability of Dynamical Systems

    Get PDF
    From Preface: This is the fourteenth time when the conference “Dynamical Systems: Theory and Applications” gathers a numerous group of outstanding scientists and engineers, who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without a great effort of the staff of the Department of Automation, Biomechanics and Mechatronics. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and Ministry of Science and Higher Education of Poland. It is a great pleasure that our invitation has been accepted by recording in the history of our conference number of people, including good colleagues and friends as well as a large group of researchers and scientists, who decided to participate in the conference for the first time. With proud and satisfaction we welcomed over 180 persons from 31 countries all over the world. They decided to share the results of their research and many years experiences in a discipline of dynamical systems by submitting many very interesting papers. This year, the DSTA Conference Proceedings were split into three volumes entitled “Dynamical Systems” with respective subtitles: Vibration, Control and Stability of Dynamical Systems; Mathematical and Numerical Aspects of Dynamical System Analysis and Engineering Dynamics and Life Sciences. Additionally, there will be also published two volumes of Springer Proceedings in Mathematics and Statistics entitled “Dynamical Systems in Theoretical Perspective” and “Dynamical Systems in Applications”

    Design optimisation of complex space systems under epistemic uncertainty

    Get PDF
    This thesis presents an innovative methodology for System Design Optimisation (SDO) through the framework of Model-Based System Engineering (MBSE) that bridges system modelling, Constrained Global Optimisation (CGO), Uncertainty Quantification (UQ), System Dynamics (SD) and other mathematical tools for the design of Complex Engineered and Engineering Systems (CEdgSs) under epistemic uncertainty. The problem under analysis has analogies with what is nowadays studied as Generative Design under Uncertainty. The method is finally applied to the design of Space Systems which are Complex Engineered Systems (CEdSs) composed of multiple interconnected sub-systems. A critical aspect in the design of Space Systems is the uncertainty involved. Much of the uncertainty is epistemic and is here modelled with Dempster Shafer Theory (DST). Designing space systems is a complex task that involves the coordination of different disciplines and problems. The thesis then proposes a set of building blocks, that is a toolbox of methodologies for the solution of problems which are of interest also if considered independently. It proposes then a holistic framework that couples these building blocks to form a SDO procedure. With regard to the building blocks, the thesis includes a network-based modelling procedure for CEdSs and a generalisation for CEdgSs where the system and the whole design process are both taken into account. Then, it presents a constraint min-max solver as an algorithmic procedures for the solution of the general Optimisation Under Uncertainty (OUU) problem. An extension of the method for the Multi-Objective Problems (MOP) is also proposed in Appendix as a minor result. A side contribution for the optimisation part refers to the extension of the global optimiser Multi Population Adaptive Inflationary Differential Evolution Algorithm (MP-AIDEA) with the introduction of constraint handling and multiple objective functions. The Constraint Multi-Objective Problem (CMOP) solver is however a preliminary result and it is reported in Appendix. Furthermore, the thesis proposes a decomposition methodology for the computational reduction of UQ with DST. As a partial contribution, a second approach based on a Binary Tree decomposition is also reported in Appendix. With regard to the holistic approach, instead, the thesis gives a new dentition and proposes a framework for system network robustness and for system network resilience. It finally presents the framework for the optimisation of the whole design process through the use of a multi-layer network model.This thesis presents an innovative methodology for System Design Optimisation (SDO) through the framework of Model-Based System Engineering (MBSE) that bridges system modelling, Constrained Global Optimisation (CGO), Uncertainty Quantification (UQ), System Dynamics (SD) and other mathematical tools for the design of Complex Engineered and Engineering Systems (CEdgSs) under epistemic uncertainty. The problem under analysis has analogies with what is nowadays studied as Generative Design under Uncertainty. The method is finally applied to the design of Space Systems which are Complex Engineered Systems (CEdSs) composed of multiple interconnected sub-systems. A critical aspect in the design of Space Systems is the uncertainty involved. Much of the uncertainty is epistemic and is here modelled with Dempster Shafer Theory (DST). Designing space systems is a complex task that involves the coordination of different disciplines and problems. The thesis then proposes a set of building blocks, that is a toolbox of methodologies for the solution of problems which are of interest also if considered independently. It proposes then a holistic framework that couples these building blocks to form a SDO procedure. With regard to the building blocks, the thesis includes a network-based modelling procedure for CEdSs and a generalisation for CEdgSs where the system and the whole design process are both taken into account. Then, it presents a constraint min-max solver as an algorithmic procedures for the solution of the general Optimisation Under Uncertainty (OUU) problem. An extension of the method for the Multi-Objective Problems (MOP) is also proposed in Appendix as a minor result. A side contribution for the optimisation part refers to the extension of the global optimiser Multi Population Adaptive Inflationary Differential Evolution Algorithm (MP-AIDEA) with the introduction of constraint handling and multiple objective functions. The Constraint Multi-Objective Problem (CMOP) solver is however a preliminary result and it is reported in Appendix. Furthermore, the thesis proposes a decomposition methodology for the computational reduction of UQ with DST. As a partial contribution, a second approach based on a Binary Tree decomposition is also reported in Appendix. With regard to the holistic approach, instead, the thesis gives a new dentition and proposes a framework for system network robustness and for system network resilience. It finally presents the framework for the optimisation of the whole design process through the use of a multi-layer network model
    corecore