65,882 research outputs found

    Texture classification based on DCT and soft computing

    Get PDF
    We present a classification method based on the discrete cosine transform (DCT) coefficients of texture image. Since the DCT works on gray level images, the color scheme of each image is transformed into gray levels. For classifying the images with DCT, we used two popular soft computing techniques, namely neurocomputing and neuro-fuzzy computing. We used a feedforward neural network trained by backpropagation algorithm and an evolving fuzzy neural network to classify the textures. The soft computing models were trained using 80% of the texture data and remaining was used for testing and validation purposes. A performance comparison was made among the soft computing models for the texture classification problem. We also analyzed the effects of prolonged training of neural networks. It was observed that the proposed neuro-fuzzy model performed better than neural network

    Fuzzy Neural Network Models For Multispectral Image Analysis

    Get PDF
    Fuzzy neural networks (FNNs) provide a new approach for classification of multispectral data and to extract and optimize classification rules. Neural networks deal with issues on a numeric level, whereas fuzzy logic deals with them on a semantic or linguistic level. FNNs synthesize fuzzy logic and neural networks. Recently, there has been growing interest in the research community not only to understand how FNNs arrive at particular decisions but how to decode information stored in the form of connection strengths in the network. In this paper, we propose fuzzy neural network models for classification of pixels in multispectral images and to extract fuzzy classification rules. During the training phase, the connection strengths are updated. After training, classification rules are extracted by backtracking along the weighted paths through the FNN. The extracted rules are then optimized using a fuzzy associative memory (FAM) bank. The data mining system described above is useful in many practical applications such as mapping, monitoring and managing our planet’s resources and health, climate change impacts and assessments, environmental change detection and military reconnaissance

    Models of neural networks with fuzzy activation functions

    Get PDF
    This paper investigates the application of a new form of neuron activation functions that are based on the fuzzy membership functions derived from the theory of fuzzy systems. On the basis of the results regarding neuron models with fuzzy activation functions, we created the models of fuzzy-neural networks. These fuzzy-neural network models differ from conventional networks that employ the fuzzy inference systems using the methods of neural networks. While conventional fuzzy-neural networks belong to the first type, fuzzy-neural networks proposed here are defined as the second-type models. The simulation results show that the proposed second-type model can successfully solve the problem of the property prediction for time – dependent signals. Neural networks with fuzzy impulse activation functions can be widely applied in many fields of science, technology and mechanical engineering to solve the problems of classification, prediction, approximation, etc

    Soft Computing Tool Approach for Texture Classification Using Discrete Cosine Transform

    Get PDF
    Texture can be considered as a repeating pattern of local variation of pixel intensities. Cosine Transform (DCT) coefficients of texture images. As DCT works on gray level images, the color scheme of each image is transformed into gray levels. For classifying the images using DCT, two popular soft computing techniques namely neurocomputing and neuro-fuzzy computing are used. A feedforward neural network is used to train the backpropagation learning algorithm and an evolving fuzzy neural network to classify the textures. The soft computing models were trained using 80% of the texture data and the remaining was used for testing and validation purposes. A performance comparison was made among the soft computing models for the texture classification problem. In texture classification the goal is to assign an unknown sample image to a set of known texture classes. It is observed that the proposed neuro-fuzzy model performed better than the neural network

    Individual And Ensemble Pattern Classification Models Using Enhanced Fuzzy Min-Max Neural Networks

    Get PDF
    Pattern classification is one of the major components for the design and development of a computerized pattern recognition system. Focused on computational intelligence models, this thesis describes in-depth investigations on two possible directions to design robust and flexible pattern classification models with high performance. Firstly is by enhancing the learning algorithm of a neural-fuzzy network; and secondly by devising an ensemble model to combine the predictions from multiple neural-fuzzy networks using an agent-based framework. Owing to a number of salient features which include the ability of learning incrementally and establishing nonlinear decision boundary with hyperboxes, the Fuzzy Min-Max (FMM) network is selected as the backbone for designing useful and usable pattern classification models in this research. Two enhanced FMM variants, i.e. EFMM and EFMM2, are proposed to address a number of limitations in the original FMM learning algorithm. In EFMM, three heuristic rules are introduced to improve the hyperbox expansion, overlap test, and contraction processes. The network complexity and noise tolerance issues are undertaken in EFMM2. In addition, an agent-based framework is capitalized as a robust ensemble model to house multiple EFMM-based networks. A useful trust measurement method known as Certified Belief in Strength (CBS) is developed and incorporated into the ensemble model for exploiting the predictive performances of different EFMM-based networks

    Usage of Simplified Fuzzy ARTMAP for improvement of classification performances

    Get PDF
    This study presents a simplified fuzzy ARTMAP (SFAM) for different classification applications. The proposed SFAM model is synergy of fuzzy logic and adaptive resonance theory (ART) neural networks. SFAM is supervised network consisting of two layers (Fuzzy ART and Inter ART) that build constant classification groups in answer to series of input patterns. Fuzzy ART layer takes a series of input patterns and relate them to output classes. Inter ART layer functions in such a way that it raises the vigilance parameter of fuzzy ART layer. By combining this two layers, SFAM is capable to perform classification very efficiently and giving very high performances. Lastly, the SFAM model is applied to different simulations. The simulation results obtained for the three different datasets: Iris, Wisconsin breast cancer and wine dataset prove that SFAM model has better performance results than other models for these classification applications

    Comparison between prediction capabilities of neural network and fuzzy logic techniques for L and slide susceptibility mapping.

    Get PDF
    Preparation of L and slide susceptibility maps is important for engineering geologists and geomorphologists. However, due to complex nature of L and slides, producing a reliable susceptibility map is not easy. In recent years, various data mining and soft computing techniques are getting popular for the prediction and classification of L and slide susceptibility and hazard mapping. This paper presents a comparative analysis of the prediction capabilities between the neural network and fuzzy logic model for L and slide susceptibility mapping in a geographic information system (GIS) environment. In the first stage, L and slide-related factors such as altitude, slope angle, slope aspect, distance to drainage, distance to road, lithology and normalized difference vegetation index (ndvi) were extracted from topographic and geology and soil maps. Secondly, L and slide locations were identified from the interpretation of aerial photographs, high resolution satellite imageries and extensive field surveys. Then L and slide-susceptibility maps were produced by the application of neural network and fuzzy logic approahc using the aforementioned L and slide related factors. Finally, the results of the analyses were verified using the L and slide location data and compared with the neural network and fuzzy logic models. The validation results showed that the neural network model (accuracy is 88%) is better in prediction than fuzzy logic (accuracy is 84%) models. Results show that "gamma" operator (X = 0.9) showed the best accuracy (84%) while "or" operator showed the worst accuracy (66%)
    corecore