2,018 research outputs found

    Interval valued (\in,\ivq)-fuzzy filters of pseudo BLBL-algebras

    Full text link
    We introduce the concept of quasi-coincidence of a fuzzy interval value with an interval valued fuzzy set. By using this new idea, we introduce the notions of interval valued (\in,\ivq)-fuzzy filters of pseudo BLBL-algebras and investigate some of their related properties. Some characterization theorems of these generalized interval valued fuzzy filters are derived. The relationship among these generalized interval valued fuzzy filters of pseudo BLBL-algebras is considered. Finally, we consider the concept of implication-based interval valued fuzzy implicative filters of pseudo BLBL-algebras, in particular, the implication operators in Lukasiewicz system of continuous-valued logic are discussed

    Variable sets over an algebra of lifetimes: a contribution of lattice theory to the study of computational topology

    Full text link
    A topos theoretic generalisation of the category of sets allows for modelling spaces which vary according to time intervals. Persistent homology, or more generally, persistence is a central tool in topological data analysis, which examines the structure of data through topology. The basic techniques have been extended in several different directions, permuting the encoding of topological features by so called barcodes or equivalently persistence diagrams. The set of points of all such diagrams determines a complete Heyting algebra that can explain aspects of the relations between persistent bars through the algebraic properties of its underlying lattice structure. In this paper, we investigate the topos of sheaves over such algebra, as well as discuss its construction and potential for a generalised simplicial homology over it. In particular we are interested in establishing a topos theoretic unifying theory for the various flavours of persistent homology that have emerged so far, providing a global perspective over the algebraic foundations of applied and computational topology.Comment: 20 pages, 12 figures, AAA88 Conference proceedings at Demonstratio Mathematica. The new version has restructured arguments, clearer intuition is provided, and several typos correcte

    Almost structural completeness; an algebraic approach

    Full text link
    A deductive system is structurally complete if its admissible inference rules are derivable. For several important systems, like modal logic S5, failure of structural completeness is caused only by the underivability of passive rules, i.e. rules that can not be applied to theorems of the system. Neglecting passive rules leads to the notion of almost structural completeness, that means, derivablity of admissible non-passive rules. Almost structural completeness for quasivarieties and varieties of general algebras is investigated here by purely algebraic means. The results apply to all algebraizable deductive systems. Firstly, various characterizations of almost structurally complete quasivarieties are presented. Two of them are general: expressed with finitely presented algebras, and with subdirectly irreducible algebras. One is restricted to quasivarieties with finite model property and equationally definable principal relative congruences, where the condition is verifiable on finite subdirectly irreducible algebras. Secondly, examples of almost structurally complete varieties are provided Particular emphasis is put on varieties of closure algebras, that are known to constitute adequate semantics for normal extensions of S4 modal logic. A certain infinite family of such almost structurally complete, but not structurally complete, varieties is constructed. Every variety from this family has a finitely presented unifiable algebra which does not embed into any free algebra for this variety. Hence unification in it is not unitary. This shows that almost structural completeness is strictly weaker than projective unification for varieties of closure algebras

    Data mining using L-fuzzy concept analysis.

    Get PDF
    Association rules in data mining are implications between attributes of objects that hold in all instances of the given data. These rules are very useful to determine the properties of the data such as essential features of products that determine the purchase decisions of customers. Normally the data is given as binary (or crisp) tables relating objects with their attributes by yes-no entries. We propose a relational theory for generating attribute implications from many-valued contexts, i.e, where the relationship between objects and attributes is given by a range of degrees from no to yes. This degree is usually taken from a suitable lattice where the smallest element corresponds to the classical no and the greatest element corresponds to the classical yes. Previous related work handled many-valued contexts by transforming the context by scaling or by choosing a minimal degree of membership to a crisp (yes-no) context. Then the standard methods of formal concept analysis were applied to this crisp context. In our proposal, we will handle a many-valued context as is, i.e., without transforming it into a crisp one. The advantage of this approach is that we work with the original data without performing a transformation step which modifies the data in advance

    Exploring a syntactic notion of modal many-valued logics

    Get PDF
    We propose a general semantic notion of modal many-valued logic. Then, we explore the di culties to characterize this notion in a syntactic way and analyze the existing literature with respect to this frameworkPeer Reviewe
    corecore