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Abstract

Association rules in data mining are implications between attributes of objects that

hold in all instances of the given data. These rules are very useful to determine

the properties of the data such as essential features of products that determine the

purchase decisions of customers. Normally the data is given as binary (or crisp) tables

relating objects with their attributes by yes-no entries. We propose a relational

theory for generating attribute implications from many-valued contexts, i.e, where

the relationship between objects and attributes is given by a range of degrees from

no to yes. This degree is usually taken from a suitable lattice where the smallest

element corresponds to the classical no and the greatest element corresponds to the

classical yes. Previous related work handled many-valued contexts by transforming

the context by scaling or by choosing a minimal degree of membership to a crisp (yes-

no) context. Then the standard methods of formal concept analysis were applied to

this crisp context. In our proposal, we will handle a many-valued context as is, i.e.,

without transforming it into a crisp one. The advantage of this approach is that we

work with the original data without performing a transformation step which modifies

the data in advance.
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Chapter 1

Introduction

Data mining is the process of analyzing large data set to discover hidden and in-

teresting patterns or useful information for specific purposes. Data mining methods

can be categorized as finding association rules, classification rules, clustering rules,

sequential patterns, etc. and this classification is based on the classes of knowledge

gained from the data set [9]. Among them, the most commonly seen data mining

approach is the finding association rules or attributes implication.

An association rule or an attribute implication is a formula of the form A � B

where A and B are set of attributes. This kind of rule plays a significant role in data

analysis. In a Boolean context, the implication A � B means each object which has all

attributes in A also has all attributes in B. As an example, let us consider a data set of

customers purchasing items at a computer store. Let us furthermore assume that the

data supports the attribute implication {laptop} � {headphone, cooler, laptop bag}.

This rule indicates that a customer buying a laptop will also buy a set of headphones,

a cooler, and a laptop bag.

Formal Concept Analysis (FCA) is a conceptual framework based on the lattice

theory for analyzing, mining, and visualizing data. It was introduced by Rudolf Wille

in the mid-1980s. FCA deals with a formal context which is a binary relation be-

tween a set of objects and a set of attributes. We can interpret a formal context as a

table with rows and columns respectively corresponds to the objects and attributes.

The table entries contain 1 or 0 based on whether an object has or does not have

the corresponding attribute. FCA can produce two outputs from the formal context:

one is a lattice of formal concepts and another is a non-redundant basis of attribute

implications. The basis can be used to generate all implications valid in the given set

of data [11].
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It might not always be clear whether an object has a certain attribute or not.

Besides other sources of uncertainty, the attribute might not be clearly defined, or

we are not able to measure the given object precisely enough. Therefore, we are

interested in allowing fuzzy attributes, i.e., an attribute that an object may have

up to a certain degree. For example, a student may know programming completely

(represented by 1) or may not know anything about programming (represented by 0)

or may know programming to a certain extend (represented by value 2). The truth

degree by which an object has an attribute is usually taken from an appropriate

lattice L of truth degrees. A typical choice for L is the real unit interval [0,1] or some

subset of thereof [1].

FCA provides a way to handle a multi-valued context, i.e., a context with L

different from [0,1], by conceptual scaling. Conceptual scaling transformed a many-

valued context to a Boolean context in accordance with certain rules. We need to

interpret the derived concepts from the one-valued context as the concepts of multi-

valued context and this process is called conceptual scaling. In the scaling process,

all attributes of a many-valued context is interpreted by means of a scale. Let us

consider a multi-valued context shown in Table 1.1.

Table 1.1: Multi-valued context

age eligibility
James 20 1
George 44 0
Chelsie 80 1

Here age is a multi-valued attribute that must be scaled before applying basic FCA

framework. We can discretize the multi-valued attribute age into several binary-value

attributes as young(15-24 years), middle-aged(25-44 years), and old(above 44 years).

We can transform Table 1.1 into a table with yes/no attributes like the one in Table

1.2.

Table 1.2: Boolean context after conceptual scaling

young middle-aged old eligibility
James 1 0 0 1
George 0 1 0 0
Chelsie 0 0 1 1

In [6], they identified the problems of scalar-valued fuzzy relationship in repre-

senting the fuzzy formal context and proposed a solution using interval-valued fuzzy
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formal contexts (in short IVFF context). Generally, a fuzzy formal context is as-

signed a membership value from the scale L = [0,1] which determines to what extent

an object has an attribute. But It is difficult to precisely determine the truth value

from the scale L, and this scalar-valued representation of fuzzy context also unable

to handle incomplete context [4]. They identified the representation of a fuzzy formal

context using sub-interval from the scale L is convenient and it is also beneficial in

a handling incomplete context. The problem of their proposed work is to determine

the distinct intervals of the context.

A new scaling technique has been proposed in [2], namely scaling of general at-

tributes to fuzzy attributes, which consider a static set of the fuzzy attribute to

normalize the data. Conceptual scaling transforms the general attribute, e.g. nomi-

nal, ordinal, etc., to the Boolean attribute. But this kind of scaling is very sensitive to

the user’s selection of scale attributes and results in a large difference in the generated

concepts lattice with a small change in scale attribute. This effect can be diminished

by applying fuzzy attributes in scaling instead of a crisp attribute [2]. But one of the

disadvantages of their proposed scaling method is the arbitrariness of boundaries of

the fuzzy attribute set.

In [5], they convert the many-valued context to fuzzy by allowing multiple rele-

vance memberships value for each attribute. They used the concept of a fuzzy bag

instead of a traditional representation of documents as a vector of terms. They at-

tached additional information related to relevance by setting multiple membership

values to a single term. As a result, the quality of the conceptual hierarchy was

improved but their experimental results generated some irrelevant attribute impli-

cations. They adapted a pruning technique using threshold confidence to eliminate

them.

All these examples show that scaling produces errors and/or undesired results in

previous research works. The selection of the scale for the multi-valued attribute is

not mathematically compelling, it is a matter of interpretation. The disadvantage of

this kind of scaling is that it’s not simple to decide the boundaries between scale at-

tributes. Consequently, the experimental result will be biased by the user assumption

since there is no logical explanation behind the attribute boundary. The purpose of

this thesis is to construct and discuss a framework of L-fuzzy formal concept anal-

ysis in handling a multi-valued context without any data pre-processing. Previous

research works focused on different scaling technique to handle a multi-valued con-

text. The advantage of our approach is that we work with actual data without any

preparatory transformation step. Therefore, our approach does not introduce any
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bias into the data by choosing a certain scale. We use relational algebraic formu-

lations for generating the concepts and attribute implications from a given context.

This includes a Boolean as well as a multi-valued contexts.

We developed a library using Java programming language to prove the function-

ality of our proposed algebraic formulas. The program can dynamically handle any

context providing the corresponding lattice, source, and target information to de-

scribe the context. We can perform all the basic operations including generation of

concepts and attribute implications using our implementation. There is also a way

to save program output for future analysis.

We briefly describe the content of the thesis. Chapter 2 presents the minimum

mathematical background information which is necessary for reading the main text

of the work. The chapter is divided into four main sections, introducing lattices,

relations, L-fuzzy relations, and categories of relations. Chapter 3 briefly describes

Formal Concept Analysis and Fuzzy Formal Concept Analysis. We explain the back-

ground theory of concept analysis with examples in this chapter. In Chapter 4, we

will focus on concept lattice in allegories and attribute implications. The main con-

tribution of this thesis is explained in this chapter. In Chapter 5, we will discuss the

implementation of our approach. The first two sections summarize the basic functions

in our library. The last section describes the steps to operate the program. The last

chapter includes our concluding remarks and some ideas about future work.
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Chapter 2

Mathematical Preliminaries

This chapter will briefly introduce the main concepts and notations of lattice theory

and set theory with examples. These concepts will be used to develop our research

work. For more details we refer to [3, 7, 12, 13].

2.1 Lattices

Definition 2.1. A partially ordered set (or poset) is a set P together with a binary

relation x ≤ y satisfying the following properties:

1. For all x ∈ P, x ≤ x (Reflexivity),

2. For all x, y, z ∈ P, if x ≤ y and y ≤ x, then x = y (Antisymmetric),

3. For all x, y, z ∈ P, if x ≤ y and y ≤ z, then x ≤ z (Transitivity).

The symbol ≤ is read as “contains”,“includes”, or “is less than or equal to”.

Example 1. The set of all subsets P (X) of a set X is a partially ordered set where

x ≤ y means y includes x as a subset, i.e., for every element z, if it is an element

of x then it must be an element of y. For example, consider a three element set

{x, y, z} and all its eight subset: ∅, {x}, {y}, {z}, {x, y}, {y, z}, {z, x}, {x, y, z} with

the inclusion relation (⊆) as a order relation. This is a very simple mathematical

example of partially ordered set.

Definition 2.2. Let (L,≤) is a poset and S is an arbitary subset of L, i.e., S ⊆ L.

Then an element l ∈ L is called an upper bound (a lower bound) of S iff s ≤ l (l ≤ s)
for all s ∈ S.
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Figure 2.1: The greatest lower bound and the least upper bound of A = {6, 7} and
B = {4,5}

Example 2. Figure 2.1 illustrates that upper bounds (lower bounds) not need to be

unique. There may be more than one upper bounds (lower bounds). For example, the

upper bounds of {4,5} are {6,7, and 8}. On the other hand, the set {6,7} has only

one upper bound, the element {8}. The lower bounds of {6,7} are {1,2,3,4, and 5}
while the set {1,2} has no lower bound.

Definition 2.3. Let consider (L,≤) is poset and S ⊆ L. The least upper bound

(greatest lower bound) of S is an element u ≤ x (x ≤ u) for all upper bound (lower

bound) x of S.

Example 3. Least upper bound (greatest lower bound) may not exist but if they

do, they are unique. For example, the set {4,5} does not have a least upper bound

because the element 6 and 7 are incomparable, i.e., neither 6 nor 7 is smaller or equal

than all upper bound of {4,5}. The least upper bound of the set {1,2} is the element

3. The greatest lower bounds of {4,5} is 3 since it the greatest element among all

lower bounds while the set {1,2} has no greatest lower bound as there is no lower

bound of {1,2}.

Definition 2.4. An upper semilattice (lower semilattice) is a partially ordered set

(L,≤) in which for each pair (x, y) of their elements, the least upper bound or join

(x∨ y) (the greatest lower bound or meet (x∧ y)) exists. A partial order set (L,≤) is

called lattice iff it is both a lower and upper semilattice.
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Definition 2.5. An upper semilattice (lower semilattice) is called complete iff the

supremum ⋁X (infimum ⋀X) exists for all subsets.

An complete upper semilattice has a greatest element ⋁L. Dually, a complete

lower semilattice has a lowest element ⋀L. We can define the notion of a semilattice

or lattice also algebraically. A set together with two binary ∧ and ∨ is a lattice iff it

satisfies the following properties:

1. x ∧ x = x, x ∨ x = x (idempotent),

2. x ∧ y = y ∧ x, x ∨ y = y ∨ x (commutative),

3. x ∧ (y ∧ z) = (x ∧ y) ∧ z, x ∨ (y ∨ z) = (x ∨ y) ∨ z (associative),

4. x ∧ y = x⇐⇒ x ≤ y, x ∨ y = y⇐⇒ x ≤ y (consistent).

Definition 2.6. A bounded lattice (L,∧,∨,0,1) is a lattice (L,∧,∨) with least element

0 and greatest element 1.

Definition 2.7. A distributed lattice is a lattice (L,∧,∨) in which the meet (∧) and

join (∨) operations are distribute over each other i.e., for all x, y, z ∈ L we have:

1. x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z),

2. x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

2.1.1 Complete Heyting Algebra

This class of lattices is interesting by providing a notion of complement or negation.

This is also known as a relative pseudo-complement.

Definition 2.8. Heyting algbera (H,∧,∨,�,0,1) is a bounded lattice (H,∧,∨,0,1)
with an binary operation (x � y) of pseudo-complement x relative to y or implication

which satisfy following properties for all x, y, z ∈ L:

1. z ≤ y � x⇐⇒ x ∧ z ≤ y.

Theorem 1. Complete Heyting algebra is a complete distributive lattice satisfying

following properties:

1. for all x ∶ x ∧⋁M = ⋀
y∈M

(x ∧ y).
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2.2 Relations

A relation R between two sets X and Y is a set of pairs of elements from X and Y ,

i.e., R ⊆ X × Y where X × Y denotes the set of pairs. If R is a relation between X

and Y we frequently write R ∶X → Y .

Example 4. Consider two set F and C representing the set of fruits, and their color

and taste respectively.

F = {Apple, Banana, Cherry, Lemon}
C = {Red, Green, Yellow, Sweet, Sour}

The relation between set F and C is denoted below as the subset of their Cartesian

product.

R = {(Apple, Red), (Apple, Green), (Apple, Sweet), (Apple, Sour), (Banana, Yellow),

(Banana, Sweet), (Cherry, Red), (Cherry, Sweet), (Lemon, Yellow), (Lemon, Sour)}

A Boolean matrix M with dimension m×n can be used to present the relation R

between two finite set F {f1, f2, . . . , fm} and C {c1, c2, . . . , cn} where the entries for

i ∈ {1,2, ..,m} and j ∈ {1,2, .., n} are given by

Mij=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if (fi, cj) ∈R

0 if (fi, cj) ∉R

We can generate the equivalent Boolean matrix from the relation mentioned in

previous example as follows:

M =

⎛
⎜⎜⎜⎜⎜⎜
⎝

Red Green Y ellow Sweet Sour

Apple 1 1 0 1 1

Banana 0 0 1 1 0

Cherry 1 0 0 1 0

Lemon 0 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

If it is clear from the context we may drop the row and column labels and simply write

M =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 1 0 1 1

0 0 1 1 0

1 0 0 1 0

0 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟
⎠
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2.2.1 Basic Operations

There are some fundamental operations called union, intersection, implication, com-

position, conversion, complement, left-residual, right-residual, symmetric quotient on

relations. In terms of matrices, these operations can be executed component-wise by

using the Boolean operations AND(∧), OR(∨), and NOT(¬) to the corresponding

entries in the matrices.

Definition 2.9. Given two relation P ∶ X � Y and Q ∶ X � Y of same type, we

define few basic operations as follows:

Union, P ∪Q ∶= {(x, y) ∈X × Y ∣ (x, y) ∈ P ∨ (x, y) ∈ Q}

Intersection, P ∩Q ∶= {(x, y) ∈X × Y ∣ (x, y) ∈ P ∧ (x, y) ∈ Q}

Implication, P � Q ∶= {(x, y) ∈X × Y ∣ (x, y) ∉ P ∨ (x, y) ∈ Q}

Conversion, P T ∶= {(y, x) ∈ Y ×X ∣ (x, y) ∈ P}

Complement, P ∶= {(x, y) ∈X × Y ∣ (x, y) ∉ P}

Identity, I = {(x,x) ∈X ×X ∣ x ∈X}

Example 5. Consider P and Q as following matrices to perform the operations

mentioned above

P =
⎛
⎜⎜⎜
⎝

1 1 0 1 1

0 0 1 1 0

1 0 0 1 0

⎞
⎟⎟⎟
⎠

and Q =
⎛
⎜⎜⎜
⎝

1 0 0 1 1

0 1 1 0 0

1 1 0 1 0

⎞
⎟⎟⎟
⎠

The union operation between P and Q returns following matrix

P ∪Q =
⎛
⎜⎜⎜
⎝

1 1 0 1 1

0 1 1 1 0

1 0 0 1 0

⎞
⎟⎟⎟
⎠

The intersection operation between P and Q returns following matrix

P ∩Q =
⎛
⎜⎜⎜
⎝

1 0 0 1 1

0 0 1 0 0

1 0 0 1 0

⎞
⎟⎟⎟
⎠

The implication operation between P and Q returns following matrix

P � Q =
⎛
⎜⎜⎜
⎝

1 0 1 1 1

1 1 1 0 1

1 1 1 1 1

⎞
⎟⎟⎟
⎠



10

The complementation of P will return following matrix

P =
⎛
⎜⎜⎜
⎝

1 0 1 1 1

1 1 1 0 1

1 1 1 1 1

⎞
⎟⎟⎟
⎠

The transpose of relation P will return following matrix

P T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 1

1 0 0

0 1 0

1 1 1

1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Definition 2.10. The relational composition P ;Q ∶ X → Z of P ∶ X � Y and Q ∶
Y � Z is defined by

R;S = {(x, z) ∈X ×Z ∣ ∃y ∈ Y ∶ (x, y) ∈ R ∧ (y, z) ∈ S}

Example 6. For example, consider two relation P and Q as follow:

P =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0

0 0 0 1

1 1 0 1

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

and Q =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 0

1 0 1

0 1 0

0 0 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

The composition of P and Q will return following relation.

P ;Q =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 0

1 0 1

1 0 1

0 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

Definition 2.11. The relation ε ∶X → P (X) is defined by (x, y) ∈ ε iff x ∈ y.

Example 7. For example, consider a set X = {x1, x2}. Then ε has the following

matrix representation:

ε =
⎛
⎝

∅ {x2} {x1} {x1, x2}
x1 0 0 1 1

x2 0 1 0 1

⎞
⎠
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Definition 2.12. The left residual P /Q ∶ X → Z of two relations P ∶ X � Y and

Q ∶ Z � Y is defined by

P /Q = {(x, z) ∈X ×Z ∣ ∀y ∈ Y ∶ (z, y) ∈ Q � (x, y) ∈ P}

Example 8. For example, consider two relation P and Q as follow:

P =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 0 0 1

0 1 0 1

1 1 0 1

0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

and Q =
⎛
⎜⎜⎜
⎝

0 0 0 1

1 0 1 0

0 1 0 1

⎞
⎟⎟⎟
⎠

The left residual of P and Q will return following relation.

P /Q =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 0 0

1 0 1

1 0 1

0 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

Intuitively, the matrix P /Q has a 1 at (i, j) iff the j-th row of Q is included in

the i-th row of P in the sense that if Q has a 1 at (j, k), then P has a 1 at (i, k).

Definition 2.13. The right residual P /Q ∶ Y → Z of two relations P ∶ X � Y and

Q ∶X � Z is defined by

P /Q = {(y, z) ∈ Y ×Z ∣ ∀x ∈X ∶ (x, y) ∈ P � (x, z) ∈ Q}

Example 9. For example, consider two relation P and Q as follow:

P =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 1 0 1

0 1 0 1

1 0 0 1

0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

and Q =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 1

1 0 1

0 1 1

0 1 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

The right residual of P and Q (P /Q) will return following relation.

P /Q =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 1

0 0 0

0 1 0

0 0 1

⎞
⎟⎟⎟⎟⎟⎟
⎠
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The matrix P /Q has a 1 at (i, j) iff the i-th column of P and the j-th column of

Q are coincide in the sense that if P has a 1 at (k, i), then Q has a 1 at (k, j).

Definition 2.14. The symmetric quotient P (syq)Q ∶ Y → Z of two relations P ∶X �
Y and Q ∶X � Z is defined by

syq(P,Q) = {(y, z) ∈ Y ×Z ∣ ∀x ∈X ∶ (x, y) ∈ P ↔ (x, z) ∈ Q}

Example 10. For example, consider two relation P and Q as follow:

P =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 1 0 1

0 1 0 1

1 0 1 1

0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

and Q =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 0 1

1 0 1

0 1 1

0 1 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

The symmetric quotient between P and Q will return following relation.

sqy(P,Q) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 0

0 0 0

0 1 0

0 0 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

We also need the projections from pair of set to the set. The projection operations

can be performed in two ways, one from the Cartesian product of two set to the first

component and another is to the second component which are called Pi(π) and Rho(ρ)
respectively.

We can define π and ρ as follow considering two sets X and Y :

π ∶X × Y �X ρ ∶X × Y � Y

For example, if X = {x1, x2} and Y = {y1, y2} are two classical set then π and ρ can

be defined as follow

π =

⎛
⎜⎜⎜⎜⎜⎜
⎝

x1 x2

(x1, y1) 1 0

(x1, y2) 1 0

(x2, y1) 0 1

(x2, y2) 0 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

ρ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

y1 y2

(x1, y1) 1 0

(x1, y2) 0 1

(x2, y1) 1 0

(x2, y2) 0 1

⎞
⎟⎟⎟⎟⎟⎟
⎠
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2.3 L-Fuzzy Relation

Fuzzy relations generalize classical relations by weighing the relationship between two

objects with a degree. For example, a fuzzy relation “friend” indicates the degree of

friendship between two person while classical relation describe whether two person

either being friend or not.

Definition 2.15. Let A and B are two sets and L a complete Heyting algbera. Then

we can define a L-fuzzy subset A′ of A as a function A′ ∶ A→ L. An L-fuzzy relation

between A and B is a function R ∶ A ×B → L.

Fuzzy sets and relations can be represented using a two-dimensional matrix of

membership value between objects. Consider two set A = {a1, a2, ..., am} and B =
{b1, b2, ..., bn}. Then an m×n matrix of membership degree as follow can be define to

represent a fuzzy relation R.

R =

⎛
⎜⎜⎜⎜⎜⎜
⎝

b1 b2 ... bn

a1 R(a1, b1) R(a1, b2) ... R(a1, bn)
a2 R(a2, b1) R(a2, b2) ... R(a2, bn)
... ... ... ... ...

am R(am, b1) R(am, b2) ... R(am, bn)

⎞
⎟⎟⎟⎟⎟⎟
⎠

For example, consider the sets A = {a1, a2, a3} and B = {b1, b2, b3, b4}. Then the

following L is a complete Heyting algebra and the matrix is an L-fuzzy relation

between A and B.

R =
⎛
⎜⎜⎜
⎝

b1 b2 b3 b4

a1 1 a 0 1

a2 b 0 1 1

a3 1 c d 1

⎞
⎟⎟⎟
⎠

1

c d

a b

0

L =

Definition 2.16. A fuzzy set can be defined by a matrix with one row where the value

denote the membership degree of corresponding object/attribute.

Example 11. Let A is a fuzzy set on the universe of discourse U where U =
{Red, Green, Sweet}. According to above definition we can define A as follow.

A = {1,0,2} where the degree of Red is 1, the degree of Green is 0 and so on.
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2.3.1 Basic operations

Let P,Q ∶ A � B, R ∶ B � C, S ∶ D � B and T ∶ A � D be L-fuzzy relations. Then

we may introduce several operations as follows:

Union, (P ∪Q)(a, b) ∶= {((a, b), (P (a, b) ∨Q(a, b))) ∣ (a, b) ∈ A ×B}

Intersection, (P ∩Q)(a, b) ∶= {((a, b), (P (a, b) ∧Q(a, b))) ∣ (a, b) ∈ A ×B}

Implication, (P � Q)(a, b) ∶= {((a, b),MAX(l) ∣ ∀
l∈L

(a ∧ l) ≤ b and (a, b) ∈ A ×B}

Composition, (P ;R)(a, c) ∶= {((a, c), (⋁
b∈B

(P (a, b) ∧R(b, c)))) ∣ (a, c) ∈ A ×C}

Left Residue, (P /S)(a, d) ∶= {((a, d), (⋀
b∈B

(S(d, b) � P (a, b)))) ∣ (a, d) ∈ A ×D}

Right Residue, (Q/T )(b, d) ∶= {((b, d), (⋀
a∈A

(Q(a, b) � T (a, d)))) ∣ (b, d) ∈ B ×D}

Let us give an example for each of the operations above considering following

relations and lattice.

P =
⎛
⎜⎜⎜
⎝

b1 b2 b3

a1 0 0.5 1

a2 0.7 1 1

a3 1 0 0.5

⎞
⎟⎟⎟
⎠

Q =
⎛
⎜⎜⎜
⎝

b1 b2 b3

a1 0.7 0 0

a2 1 0.5 0.7

a3 0.5 0.5 0.7

⎞
⎟⎟⎟
⎠

R =
⎛
⎜⎜⎜
⎝

c1 c2 c3 c4

b1 1 0.5 0 1

b2 1 0.7 0.7 1

b3 0 1 0.5 0

⎞
⎟⎟⎟
⎠

S =

⎛
⎜⎜⎜⎜⎜⎜
⎝

b1 b2 b3

d1 1 0 0.7

d2 0 1 1

d3 0.5 0.7 0.5

d4 0.7 0.5 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

T =
⎛
⎜⎜⎜
⎝

d1 d2 d3 d4

a1 0.5 1 0 0

a2 0.7 0.5 1 0.7

a3 1 0 0 0.5

⎞
⎟⎟⎟
⎠

1

0.5

0.7

0

L =

We can perform now union(∪) and intersection(∩) operations using meet (∧)
and join(∨) respectively. The join/meet between two elements is simply their max-

imum/minimum element. The implication between two relation is also performed

with the help of the meet operation.
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P ∪Q =
⎛
⎜⎜⎜
⎝

b1 b2 b3

a1 0.7 0.5 1

a2 1 1 1

a3 1 0.5 0.7

⎞
⎟⎟⎟
⎠

P ∩Q =
⎛
⎜⎜⎜
⎝

b1 b2 b3

a1 0 0 0

a2 0.7 0.5 0.7

a3 0.5 0 0.5

⎞
⎟⎟⎟
⎠

P � Q =
⎛
⎜⎜⎜
⎝

b1 b2 b3

a1 1 0 0

a2 1 0.5 0.7

a3 0.5 1 1

⎞
⎟⎟⎟
⎠

The composition of L-fuzzy relation is done in similar way as matrix multiplication

in linear algebra instead of summing and multiplication we use meet and join respec-

tively.

P ;R =
⎛
⎜⎜⎜
⎝

c1 c2 c3 c4

a1 0.5 1 0.5 0.5

a2 1 1 0.7 1

a3 1 0.5 0.5 1

⎞
⎟⎟⎟
⎠

The left residue and right residue operation will return following matrices

P /S =
⎛
⎜⎜⎜
⎝

d1 d2 d3 d4

a1 0 0.5 0 0

a2 0.7 1 1 1

a3 0.5 0 0 0

⎞
⎟⎟⎟
⎠

Q/T =
⎛
⎜⎜⎜
⎝

d1 d2 d3 d4

b1 0.5 0 0 0

b2 1 0 0 1

b3 1 0 0 0.5

⎞
⎟⎟⎟
⎠

Definition 2.17. The symmetric quotient Q(syq)T ∶ B → D of two fuzzy relations

Q ∶ A � B and T ∶ A �D is defined by

syq(Q,T )(b, d) = {((b, d), ( ⋀
a∈A

(Q(a, b) ↔ T (a, d)))) ∣ (b, d) ∈ B ×D}

The symmetric quotient between Q and T defined above return the following
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result

syq(Q,T ) =
⎛
⎜⎜⎜
⎝

d1 d2 d3 d4

b1 0.7 0 0 0

b2 0 0 0 0.7

b3 0 0 0 0.7

⎞
⎟⎟⎟
⎠

To convert a fuzzy relation to crisp relation, we need to define two operations

called support(↑) and kernel(↓). Let consider P ∶ A ×B is a fuzzy relation, then P ↑

and P ↓ can be defined as follow

P ↑(x, y):=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 iff R(x, y) ≠ 0

0 otherwise
P ↓(x, y):=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 iff R(x, y) = 1

0 otherwise

Example 12. Let P is fuzzy relation as follow:

P =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 0.5 0.7 0

1 0.5 0 1

1 1 0 1

0 0.5 0 0.7

⎞
⎟⎟⎟⎟⎟⎟
⎠

Then support and kernel operations will return following binary relations respectively

P ↑ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 1 1 0

1 1 0 1

1 1 0 1

0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

and P ↓ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0

1 0 0 1

1 1 0 1

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

2.4 Categories of Relations

In this section, we focus on different types of categories and allegories. We also discuss

several constructions within categories or allegories that we need for our framework.

2.4.1 Category Theory

Category theory proposes a tool-set to formalize mathematical concepts and con-

struction. It uses labeled directed graph to explain the structure and theories in

mathematics which is called category. The nodes and directed labeled edge of the

graph are called object and morphism respectively.
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Definition 2.18. Category C consists of

1. a class of objects ObjC,

2. a class of morphisms, maps or arrows C[A,B] for every pair of objects A and

B where each morphism has source and target. A morphism f from a to b can

be stated as f ∶ a � b,

3. an associative binary operation ; called composition of morphism mapping each

pair of morphisms f in C[A,B] and g in C[B,C] to a morphism f ; g in C[A,C],

4. for every object A a morphism, IA such that for all f in C[A,B] and g in C[C,A]
we have IA ; f = f and g ; IA = g.

If f is a morphism in C[A,B], we will denote it by f ∶ A � B.

We can use diagrams to illustrate different relations in categories where node

and directed arrow represent object and morphism in category respectively. A path

of length two in the graph express the composition between the morphism denoted

by the edges in the path. For example, consider three morphism f ∶ A � B and

g ∶ B � C and h ∶ A×C in category C. Figure 5.3 represents the relation f ; g = h. i.e.

the composition between f and g is equal to h.

A B

C

f

g
h

Figure 2.2: Visual representation of categories.

2.4.2 Allegories

An allegory is an abstraction of the category Rel of sets and the morphisms are

considered to be binary relations between them. The following is a general definition

of allegories as defined in [14].

Definition 2.19. An allegory R is a category that satisfies the following.
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1. For all objects A and B, the class of morphisms R[A,B] is a lower semilat-

tice. The meet and the induced ordering are denoted by ⊓,⊑ respectively. The

elements in R[A,B] are called relations.

2. There is a monotone operation ⌣ (converse operation) such that for all relations

Q ∶ A � B and S ∶ B � C the following is true:

(Q;S)⌣ = S⌣;Q⌣ and (Q⌣)⌣ = Q.

3. For all relations Q ∶ A � B and R,S ∶ B � C the following is true:

Q; (R ⊓ S) ⊑ Q;R ⊓Q;S

4. For all relations Q ∶ A � B,R ∶ B � C and S ∶ A � C the following is true

(modular law):

Q;R ⊓ S ⊑ Q; (R ⊓Q⌣;S)

Lemma 2.1. Let R be an allegory, A,B,C be objects of R and Q,R ∶ A � B, S ∶ B �
C,T ∶ A � C, and U,V ∶ A � A. Then we have

1. IA = IA,

2. (Q ⊓R);S ⊑ Q;S ⊓R;S,

3. For both argument ; is monotone,

4. Q;S ⊓ T ⊑ (Q ⊓ T ;S⌣);S,

5. Q;S ⊓ T ⊑ (Q ⊓ T ;S⌣); (S ⊓Q⌣;T ),

6. Q ⊑ Q;Q⌣;Q,

7. I ⊓ (U ⊓ V ); (U ⊓ V )⌣ = I ⊓U ;V ⌣ = IA ⊓ V ;U⌣,

8. Q = (IA ⊓Q;Q⌣);Q = Q; (IB ⊓Q⌣;Q).

Definition 2.20. Let R be an allegory and relation Q ∶ A � B. Then we call

1. Q univalent iff Q⌣;Q ⊑ IB,

2. Q total iff IA ⊑ Q;Q⌣,
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3. Q a map iff Q is univalent and total,

4. Q injective iff Q⌣ is univalent,

5. Q surjective iff Q⌣ is total,

6. Q bijective iff Q⌣ is a map,

7. Q a bijective iff Q is a bijective map.

2.4.3 Distributive Allegories

Every R[A,B] in a distributive allegory is a distributive lattice with a least element.

The formal definition is:

Definition 2.21. A distributive allegory R is an allegory satisfying following prop-

erties for all relations Q ∶ A � B and R,S ∶ B � C

1. Every R[A,B] is a distributive lattice with a least element where union and the

least element are denoted by ⊔ and áAB respectively,

2. Q;áBC=áAC ,

3. Q; (R ⊔ S) = Q;R ⊔Q;S.

By adding the residual operation of a relation algebra to a distributive structure,

we can get a division allegory as defined in [14].

Lemma 2.2. Let R be a distributive allegory. If Q,R ∶ A � B and S ∶ B � C, we

have,

1. á⌣AB=áBA,

2. áCA;Q =áCB,

3. (Q ⊔R)⌣ = Q⌣ ⊔R⌣,

4. (Q ⊔R);S = Q;S ⊓R;S.
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2.4.4 Division Allegories

According to the hierarchy of allegories, the next step after distributive allegories are

division allegories. In the division allegories ; is a lower adjoint.

Definition 2.22. A distributive allegory R is called division allegory iff for all rela-

tions R ∶ B � C and S ∶ A � C there is a left residual S/R ∶ A � B such that for all

Q ∶ A � B the following holds

Q;R ⊑ S⇔ Q ⊑ S/R.

An upper right adjoint is also exists for ; in division allegory which is called right

residual. For relations Q ∶ A � B and S ∶ A � C, right residual is defined as follow

Q/S = (S⌣/Q⌣)⌣

The symmetric version of the residuals defined as

syq(Q,R) = (Q/R) ⊓ (Q⌣/R⌣)

The next lemma provides some basic properties of the symmetric quotient, and all the

proofs can be found in [14].

The following lemma shows some fundamental properties of symmetric quotients

[16].

Lemma 2.3. Let R be a division allegory. If Q ∶ A � B,R ∶ A � C,S ∶ A � D are

arbitrary relations and f ∶D � B is a mapping. Then we have

1. f ; syq(Q,R) = syq(Q; f⌣,R),

2. syq(Q,R)⌣ = syq(R,Q),

3. syq(Q,R); syq(R,S) ⊑ syq(Q,S).

Lemma 2.4. Let R be a division allegory. If Q,Q1,Q2 ∶ A � B, R,R1,R2 ∶ B �
C and S,S1, S2 ∶ A � C, then we have,

1. Q ⊑ (Q;R)/R and R ⊑ Q/(Q;R),

2. (Q/R); (R/S) ⊆ (Q/S),

3. (S/R);R ⊑ S and Q; (Q/S) ⊑ S,

4. S/(Q/S) ⊑ Q and (S/R)/S ⊑ R,
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5. Q2 ⊑ Q1, R2 ⊑ R1 and S2 ⊑ S1 implies S1/R1 ⊑ S2/R2 and Q1/S1 ⊑ Q2/S2,

6. (S1 ⊓ S2)/R = (S1/R) ⊓ (S2/R) and Q/(S1 ⊓ S2) = (Q/S1) ⊓ (Q/S2),

7. S/(R1 ⊔R2) = (S/R1) ⊔ (S/R2) and (Q1 ⊔Q2)/S = (Q1/S) ⊔ (Q2/S).

Lemma 2.5. Let R be a division allegory. If Q ∶ A � B,R ∶ B � C,S ∶ A � C,F ∶
D � A, and G ∶ C � E then we have,

1. S/IC = S and IA/S = S,

2. F ; (S/R) ⊑ (F ;S)/R and (Q/S);G ⊑ Q/(S;G),

3. If F and G⌣ are mappings, then in both properties of (2) equality holds,

4. S/R ⊑ (S;G)/(R;G) and Q/S ⊑ (F ;Q)/(F ;S),

5. If G and F ⌣ are total and injective, then in both properties of (4) equality holds.

2.4.5 Dedekind Category

Definition 2.23. A division allegory R is called Dedekind category iff every R[A,B]
is a complete Brouwerian lattice. Meet, join, the inducing ordering, the least and the

greatest element are denoted by ⊓,⊔,⊑,áAB,and ãAB respectively. Dedekind category

satisfies the following properties

1. There is a converse operation ⌣ (monotone operation) changing a relation Q ∶
A � B to Q⌣ ∶ B � A such that the following are true

(Q;R)⌣ = R⌣;Q⌣,

(Q⌣)⌣ = Q.

2. Satisfies the following modular law

(Q;R) ⊓ S ⊑ Q; (R ⊓ (Q⌣;S)).

3. For all S ∶ A � C and R ∶ B � C, there is a relation S/R ∶ A � B which is called

left residual such that for all X ∶ A � B the following is true

X;R ⊑ S⇔X ⊑ S/R.
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4. The right residual R/S can be formulated by R/S = (S/R)⌣ and it is identified

as

R;X ⊑ S⇔X ⊑ S/R.

Lemma 2.6. Let R be a Dedekind category. Then for all objects A and B in R the

following are true.

1. ã⌣AB=ãAB,

2. ãAA;ãAB=ãAB;ãBB=ãAB,

3. ãAB=ãAB;ãBA;ãAB .

Lemma 2.7. Let R be a Dedekind category, Q ∶ A � B,R ∶ B � C,S ∶ A � D

andT ∶D � C. Then the following are true

1. (Q ⊓ S;ãDB);R = Q;R ⊓ S;ãDC ,

2. IA ⊓Q;Q⌣ = IA ⊓Q;ãBA= IA⊓ ãAB;Q⌣.

Other important properties of Dedekind categories are related to partial identities,

and they are shown in next lemma [16].

Lemma 2.8. Let R be a Dedekind category, S ∶ A � A is a partial identities, and

R ∶ C � A, U ∶ A � B. Then the following are true

1. S = IA ⊓ S;ãAA= IA ⊓ ãAA;S,

2. R;S = R ⊓ ãCA;S and S;U = U ⊓ S;ãAB,

3. S⌣ = S.

The proof of the above lemma is an easy exercise, and can be found in [14, 16].

Since L–Rel[A,B] is a complete Heyting algebra, L–Rel forms a Dedekind category.

However, the language of Dedekind categories is not rich enough to define crispness

as property of relations.

Therefore, we need to define a new category that covers the crispness property

of L–fuzzy relations. Adding two arrow operations, the up-arrow (↑) and the down-

arrow (↓), gives us a new structure called the arrow category [15].
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2.4.6 Arrow Category

Definition 2.24. An arrow category A is an extension of Dedekind category with

áAB≠ãAB for all objects A and B together with operations ↑, ↓ satisfying the following

properties for all Q,R ∶ A � B,S ∶ B � A and T ∶ B � A

1. R↑,R↓ ∶ A � B,

2. (↑, ↓) is a Galois correspondence, i.e., Q↑ ⊑ R iff Q ⊑ R↓,

3. (S⌣;T ↓)↑ = S↑⌣;T ↓,

4. (Q ⊓R↓)↑ = Q↑ ⊓R↓.

Now we can show the algebraic theory of L-fuzzy relations using the next lemma as

defined in [14].

Lemma 2.9. Let L be a complete Heyting algebra with 0 ≠ 1. Then L–Rel together

with ↑ and ↓ is an arrow category.

The following lemma summarizes some basic properties of arrow categories as

shown in [14].

Lemma 2.10. Let A be an arrow category and Q,R ∶ A � B,S ∶ B � C,T ∶ A � C.

Then the following are true:

1. I↑A = IA ≠áAA,

2. R↓↑ = R↓,

3. R↓↑ = R↑,

4. ↑, ↓ are closure and kernel operations respectively,

5. R = R↑ iff R↓ = R↑ iff R↓ = R,

6. á↑AB=áAB and ããAB=ãAB,

7. (R⌣;S↑)↑ = R↑⌣;S↑,

8. R⌣↑ = R↑⌣ and R⌣↓ = R↓⌣,

9. (R;S↓)↑ = R↑;S↓ and (R↓;S)↑ = R↓;S↑,

10. (R;S↑)↑ = R↑;S↑ and (R↑;S)↑ = R↑;S↑,
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11. (Q ⊓R↑)↑ = Q↑ ⊓R↓,

12. For all nonzero ideal relations ↑ =ãAB holds,

13. R↓ � Q↑ = (R � Q↑)↓ ⊑ (R � Q)↓ and (R � Q)↑ ⊑ R↑ � Q↓,

14. Q↑/T ↓ = (Q↑/T )↓ ⊑ (Q/T )↓ and (Q/T )↑ ⊑ Q↓/T ↑,

15. T ↓/S↑ = (T /S↑)↓ ⊑ (T /S)↓ and (T /S)↑ ⊑ T ↑/S↓.

The full proof of above lemma can be found in [14]. The next lemma shows a

collection of closure properties of the class of crisp relations, and the proof can be

found in [14].

Lemma 2.11. Let A be an arrow category and Qi,Q,T ∶ A � B for i ∈ I,R ∶ A �
C,and S ∶ B � C crisp relations. Then the following are true:

1. ⊔
i∈I
Qi and ⊓

i∈I
Qi are crisp,

2. Q⌣ is crisp,

3. Q;S is crisp,

4. R/S and Q/R are crisp,

5. Q � T is crisp.

There are some other properties of an arrow categories and they are collected in

the following lemmas.

Lemma 2.12. Let A be an arrow category and Q ∶ A � B and R ∶ B � C crisp

relations. Then it satisfies the following

Q↓;R↓ ⊑ (Q;R)↓.

Lemma 2.13. Let A be an arrow category and Q ∶ A � B and R ∶ C � B crisp

relations. f ∶ A � C is a crisp map. Then the following holds:

1. f ;Q↓ = (f ;Q)↓,

2. f ; syq(Q,R)↓ = syq(Q; f ↓,R)↓,

3. f ; (Q/R)↓ = (Q; f⌣/R)↓,

4. (Q/R)↓; f⌣ = (Q/R; f⌣)↓.
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The next lemma shows another important property of symmetric quotients in

arrow categories.

Lemma 2.14. Let A be an arrow category and Q ∶ A � B and R ∶ C � B crisp

relations. If syq(Q,R)↓ is surjective, then the following holds:

Q; syq(Q,R)↓ = R.

2.4.7 Relational constructions in Dadekind categories

This section describes about relational products and splitting which is a type of

relational construction in Dedekind categories [14].

Definition 2.25. Let A and B be objects of a Dedekind category. An object A ×B,

together with two relations π ∶ A × B � A and ρ ∶ A × B � B s called a relational

product of A and B iff the following holds

1. π⌣;π ⊆ IA,

2. ρ⌣;ρ ⊆ IB,

3. π⌣;ρ =ãAB,

4. π;π⌣ ∩ ρ;ρ⌣ = IA×B.

R has relational products iff for every pair of objects a relational product does exist.

Now if any direct products is given by the following projections π = A × B � A

and ρ = A ×B � B, we can define a new operator as an operation for relations [10].

Let P be relation D � A and Q be relation D � B, then the fork operator is

P <Q = P ;π⌣ ∩Q;ρ⌣

The fork operator is illustrated in Figure 2.3.

D

A A ×B B

P
P<Q

Q

Figure 2.3: A visual representation of the fork operator
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Definition 2.26. Let Q ∶ A � A be a symmetric idempotent relation, i.e., Q⌣ = Q
and Q;Q = Q. An object B together with a relation R ∶ B � A is called a splitting of

Q (or R splits Q) iff R;R⌣ = IB and R⌣;R = Q.

Splitting is unique up to isomorphism. If Q is a partial identity, the object B of

the splitting corresponds to the subset given by Q. Analogously, if Q is an equivalence

relation, B corresponds to the set of equivalence classes.

2.4.8 Fuzzy power

In this section, we going to describe the fuzzy power sets [17].

Definition 2.27. An object P (A) together with a relation ε ∶ A � P (A) is called a

relational power iff the following holds

1. syq(ε,ε) = IP (A),

2. syq(R,ε) is total for every R ∶ A � B.

The relational power is an abstract version of the power set of a set. In particular, it

emphasizes extensionality (syq(ε,ε) = I) as a basic property of sets.

Normally, in a fuzzy context we are usually interested in the L-power set LA of a

set, i.e., the set of (L-characteristic) functions from A to L. We will now look at the

definition of a relational power in terms of the set L.

Definition 2.28. An object PL(A) together with a relation ε ∶ A × PL(A) is called a

fuzzy relational power iff following holds

1. syq(ε,ε)↓ = IPL(A),

2. syq(R,ε)↓ is total for every R ∶ A � B.

Definition 2.29. The right residual relation e = ε/ε ∶ LX � LX relates two fuzzy

subsets A and B of X by e(A, B) = ⋀
x∈X

ε(x,A) � ε(x,B)

Please note that in the classical case, i.e., L=2, we have e(A,B) iff A ⊆ B.
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Chapter 3

Formal Concept Analysis

3.1 Formal Concept Analysis

In this section, we are going to discuss about background theory of formal concept

analysis. We proposed relational algebraic formulas later to explain the theory of

formal concept analysis and it is one of our main contribution in the thesis. The

basic notions of formal concept analysis are those of a formal context and a formal

concept [8].

Definition 3.1. A formal context K ∶= (G,M, I) is a tabular structure consisting of

two sets G and M and a binary relation I (also called Incidence relation) between the

two sets. The elements of G are called the objects and the elements of M are called

the attributes of the context.

In order to express that an object g is in a relation I with an attribute m, we

write gIm or (g,m) ∈ I and read it as “the object g has the attribute m”.

Table 3.1: Formal Context

Red Green Yellow Sweet Sour
Apple 1 0 0 1 1
Banana 0 0 1 1 0
Cherry 1 0 0 1 0
Lemon 0 0 1 0 1

Definition 3.2. The operator ∆ determines the set of attributes common to the every

objects in A ⊆ G. Correspondingly, for a set B ⊆ M , the operator ∇ determines the

the set of objects which have all attributes in B.
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Please note that ∆ and ∇ corresponds to the sets of lower and upper bounds in the

case of ordered set [3].

A∆ = {m ∈M ∣ ∀g ∈ A ∶ gIm}

B∇ = {g ∈ G ∣ ∀m ∈ B ∶ gIm}

Example 13. For example, let A = {Apple} and B = {Apple, Cherry} two object

subsets from Table 3.1. Now if we apply the derivation operator ∆ on these object

sets, we will get output as follow.

A∆ = {Red, Sweet, Sour}
B∆ = {Red, Sweet}

Let consider two attribute subsets C = {Sour} and D = {Yellow,Sweet} from Table

3.1. The derivation operator ∇ will produces following output

C∇ = {Apple, Lemon}
D∇ = {Banana}

Definition 3.3. A formal concept of the context (G,M, I) is a pair (A,B) with

A ⊆ G, B ⊆ M , A∆ = B and B∇ = A. The sets A and B are called the extent and

intent of the concept respectively. B(G,M, I) denotes the set of all concepts of the

context (G,M, I) which is defined as follow

B(G,M, I) = {(A,B) ∈ 2G × 2M ∣ A = B∇ ∧B = A∆}

Example 14. Let A = {Apple,Cherry} ⊆ G and B = {Red,Sweet} ⊆M .

A∆ = {Red,Sweet} and

B∇ = {Apple,Cherry}

Since A = B∇ and B = A∆, so we can conclude ({Apple,Cherry},{Red,Sweet}) is a

concept. On a contrary, ({Cherry},{Red,Sweet}) is not a concept.

Definition 3.4. If (A1,B1) and (A2,B2) are concepts of a context, then (A1,B1) is

called a subconcept of (A2,B2), provided that A1 ⊆ A2 (which is equivalent to B2 ⊆ B1)
[8].

We can denote this hierarchical relationship as (A1,B1) ≤ (A2,B2) where (A2,B2)
is called the super-concept of (A1,B1). The relation ≤ is called the hierarchical order

(or simply order) of the concepts. The set of all concepts of (G,M, I) ordered in

this way is denoted by B(G,M, I) and is called the concept lattice of the context

(G,M, I) which can be illustrated using a diagram called hasse diagram.
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Example 15. For example, consider two concepts as follow

(A1,B1) = ({Apple,Cherry},{Red,Sweet})
(A2,B2) = ({Apple,Banana,Cherry},{Sweet})

Here, (A1,B1) is a subconcept of (A2,B2) satisfying the condition {Apple,Cherry} ⊆
{Apple,Banana,Cherry}. Their hierarchy is denoted by (A1,B1) ≤ (A2,B2).

Definition 3.5. If (A1,B1) and (A2,B2) are two concepts of a context, then the

greatest common subconcept or infimum (least general superconcept or supremum)

can be defined using meet (join) as follow.

(A1,B1) ∧ (A2,B2) = (A1 ∩A2, (B1 ∪B2)∇∆)
(A1,B1) ∨ (A2,B2) = ((A1 ∪A2)∆∇, (B1 ∩B2))

Example 16. Let consider two concepts as follow

(A1,B1) = ({Apple,Cherry},{Red,Sweet})
(A2,B2) = ({Apple,Banana,Cherry},{Sweet})

The infimum and supremum of these two concepts is calculated below according to

the definition above

(A1 ∩A2) = {Apple,Cheery}, (B1 ∪B2)∇∆ = {Red,Sweet}
(A1 ∪A2)∆∇ = {Apple,Cheery,Banana}, (B1 ∩B2) = {Sweet}

(A1,B1) ∧ (A2,B2) = ({Apple,Cheery},{Red,Sweet})
(A1,B1) ∨ (A2,B2) = ({Apple,Cheery,Banana},{Sweet})

3.2 Fuzzy Formal Concept Analysis

Formal concept analysis can handle uncertain and vague information in the context.

There are lots of previous research works which exploit the fuzziness into FCA and

extend FCA model to fuzzy formal contexts. It is mainly the extension of the original

formal concept analysis by setting truth degree for the propositions “object g has

attribute m” in fuzzy formal contexts. Truth degree are taken from an appropriate

scale L[0,1] of truth degrees. Thus, the entries of a formal context representing

objects and attributes become degrees from L instead of Boolean values as is the

case of the basic setting of FCA. This extension is known as Fuzzy Formal Concept

Analysis(FFCA). In this section, we are going to explain some definitions from Fuzzy

Formal Concept Analysis (FFCA) as our proposed algebraic framework can handle

Boolean as well as fuzzy settings.
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Definition 3.6. A fuzzy formal context is an ordered triple Kf ∶= (G,M, If) in which

G and M are non-empty (classical) sets, and If fuzzy binary relation.

Let G and M be sets of objects and attributes, respectively, If be a fuzzy relation

between G and M . That is, If ∶ G ×M � L assigns to each g ∈ G and each m ∈M a

truth degree If(g,m) ∈ L to which object g has attribute m.

Definition 3.7. We can define two operator ∆ and ∇ respectively for a fuzzy set

A ∈ LG of objects and fuzzy set B ∈ LM of attributes as follow

A∆(m) = ⋀
g∈G

(A(g) � If(g,m))

B∇(g) = ⋀
m∈M

(B(m) � If(g,m))

Table 3.2: Fuzzy Formal Context

Red Green Yellow Sweet Sour
Apple 1 2 0 1 2
Banana 0 2 1 1 2
Cherry 1 0 0 1 2
Lemon 0 2 1 0 1

The fuzzy formal context represented in the Table 3.2 is based on a three element

lattice L in Figure 3.1

1

2

0

L =

Figure 3.1: Three element lattice

Example 17. Let A = {2,0,2,0} ⊆ G and B = {0,0,1,0,1} ⊆M are two fuzzy subsets

from Table 3.2.

A∆ = {0,0,0,1,2}
B∇ = {0,2,0,1}

Lets explain the detail calculation according to the Definition 3.7

A∆(Red) = A(Apple) → If(Apple, Red) ∧A(Banana) → If(Banana, Red) ∧A(Cherry) →
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If(Cherry, Red) ∧ A(Lemon) → If(Lemon, Red)
= (2→ 1) ∧ (1→ 0) ∧ (2→ 1) ∧ (0→ 0)
= 1 ∧ 0 ∧ 1 ∧ 1

= 0

A∆(Sour) = A(Apple) → If(Apple, Sour) ∧ A(Banana) → If(Banana, Sour) ∧
A(Cherry) → If(Cherry, Sour) ∧ A(Lemon) → If(Lemon, Sour)
= (2→ 2) ∧ (1→ 2) ∧ (2→ 2) ∧ (0→ 1)
= 1 ∧ 2 ∧ 1 ∧ 1

= 2

We can follow the same process as above for other attributes. Similiarly, we can

determine the degree of each object for the attribute set B.

Definition 3.8. Let (G,M, If) be a fuzzy context. A pair (A,B) ∈ LG ×LM is called

a formal concept if A∇ = B and B∆ = A. The fuzzy sets A and B are called the extent

and intent of the concept respectively.

The set of all formal fuzzy concepts can be defined as follow

B(G,M, If) = {(A,B) ∈ LG ×LM ∣ A∆ = B ∧B∇ = A}
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Chapter 4

Relational Concept Analysis

4.1 Concept Lattice in Allegories

We will now formulate concept analysis in the language of relations. The advantage

is that same formulas can be applied in the classical and fuzzy situation. Often we

will explain the formulas just in the classical case. Our first goal is to show that it is

sufficient to consider sets of objects (resp. sets of attributes) instead of pairs of those

when dealing with formal concepts. In order to do so, we start with the the functions

∇ and ∆ mapping sets of objects to sets of attributes and vice versa.

Definition 4.1. Let R ∶ G � M be a relation and ε ∶ G � 2G(M � 2M) be the

is-element-relation. Then we can define operators ∆ and ∇ as follow

∆ = syq(R⌣/ε⌣,ε)↓

∇ = syq(R/ε⌣,ε)↓

The next lemma shows that the composition if the two function from the previous

definition can be written as a simple construction between the power objects. The

first composition operator ∆;∇ generates a relation between all object subsets from

the context which is true for the object subset and their corresponding closure set.

The other composition operator ∇; ∆ do the same operation on the attribute subset

from the context.

Lemma 4.1. Suppose R ∶ G � M be a relation and ε ∶ G � 2G(M � 2M) be the

is-element-relation. Then we have

1. ∆;∇ = syq(R/(ε/R),ε)↓

2. ∇; ∆ = syq(R⌣/(ε/R⌣),ε)↓
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Proof. 1) We immediately compute

∆;∇ = syq(R⌣/ε⌣,ε)↓; syq(R/ε⌣,ε)↓

= syq((R/ε⌣); syq(ε,R⌣/ε⌣)↓,ε)↓ Lemma 2.3(1-2)

= sqy(R/syq(R⌣/ε⌣,ε)↓;ε⌣,ε)↓ Lemma 2.5(3)

= syq(R/(R⌣/ε⌣)⌣,ε)↓

= syq(R/(ε/R),ε)↓

= syq(R⌣/(ε/R⌣),ε)↓.

2) is shown analogously.

Now we are going to define the partial identity on LG × LM of formal concepts.

In addition we define the corresponding partial identities on objects resp. attributes

only. We used the derivation and composition operators defined above to produce

concepts from Boolean context as well as multi-valued context.

Definition 4.2. Let R ∶ G � M be a relation and ε ∶ G � LG(M � LM) be the

is-element-relation. Then we define the partial identities iF ∶ LG × LM → LG × LM ,

iG ∶ LG → LG, iM ∶ LM → LM by

iF = π; ∆;ρ⌣ ∩ ρ;∇;π⌣ ∩ I,

iG = ∆;∇∩ I,

iM = ∇; ∆ ∩ I.

All three partial identities defined above are crisp relations and we have:

iF (A,B) ↔ A∆ = B ∧B∇ = A
iG(A) ↔ A∆∇ = A
iM(B) ↔ B∇∆ = B

We already known that a concept (A1,B1) is sub-concept of (A2,B2) iff A1 ⊆ A2

or equivalently B2 ⊆ B1. Now we going to prove that the two properties A1 ⊆ A2 and

B2 ⊆ B1 for two concepts (A1,B1) and (A2,B2) are equivalent using following lemma.

Lemma 4.2. Let R ∶ G �M be a relation. For A ⊆ G and B ⊆M , A∆ = B iff B∇ = A.

We can define this lemma algebraically as follow

iF ;π; e;π⌣; iF = iF ;ρ; e⌣;ρ⌣; iF



34

Proof. First, we have

e; ∆;ε⌣ = (ε/ε); syq(R⌣/ε⌣,ε)↓;ε⌣

= (ε/ε); (R⌣/ε⌣)⌣ Lemma 2.14 and 2.3(2)

= (ε/ε); (ε/R)

⊆ ε/R Lemma 2.4(2)

= (R⌣/ε⌣)⌣

= syq(R⌣/ε⌣,ε)↓;ε⌣ Lemma 2.14 and 2.3(2)

= ∆;ε⌣

So that ∆⌣; e; ∆;ε⌣ ⊆ ∆⌣; ∆;ε⌣ ⊆ ε⌣ follows since ∆ is univalent. Now we get

iF ;π; e;π⌣; iF = iF ; iF ;π; e;π⌣; iF ; iF

= iF ; i⌣F ;π; e;π⌣; iF ; iF

⊆ iF ;ρ; ∆⌣;π⌣;π; e;π⌣;π; ∆;ρ⌣; iF

⊆ iF ;ρ; ∆⌣; e; ∆;ρ⌣; iF

⊆ iF ;ρ; e⌣;ρ⌣; iF

The converse inclusion follows analogously.

C

LG ×LM

LG LM

D E

cF

iF

I <◯∆

iG
△
▽

∇ <◯I

iM

cG cM

Figure 4.1: A visual representation of the Lemma 3.3

The next lemma shows that set of concepts as pairs is isomorphic to the set of in-

tends resp. extend. Not every bijective order-preserving map is an order-isomorphism.
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In order to be isomorphic, the bijective order need to have an order-preserving inverse

map [8].

Lemma 4.3. Let cF ∶ C → LG×LM be the splitting of iF , cG ∶D → LG be the splitting

of iG, cM ∶ E → LM be the splitting of iM . Then the relations

1. cM ; (∇ <◯ I); c⌣F ∶ E → C,

2. cG; (I <◯∆); c⌣F ∶D → C are bijective maps.

Proof. 1) First we have

cM ; (∇ <◯ I); c⌣F ; cF ; (∇ <◯ I)⌣; c⌣M
= cM ; (∇ <◯ I); iF ; (∇ <◯ I)⌣; c⌣M
= cM ; (∇;π⌣ ∩ ρ⌣); (π; ∆;ρ⌣ ∩ ρ;∇;π⌣ ∩ I); (π;∇⌣ ∩ ρ); c⌣M
= cM ; ((∇;π⌣ ∩ ρ⌣);π; ∆;ρ⌣ ∩ (∇;π⌣ ∩ ρ⌣);ρ;∇;π⌣ ∩ (∇;π⌣ ∩ ρ⌣)); (π;∇⌣ ∩ ρ); c⌣M
= cM ; (∇; ∆;ρ⌣ ∩∇;π⌣ ∩∇;π⌣ ∩ ρ⌣); (π;∇⌣ ∩ ρ); c⌣M
= cM ; (∇; ∆;ρ⌣ ∩∇;π⌣ ∩ ρ⌣); (π;∇⌣ ∩ ρ); c⌣M
= cM ; (∇; ∆;ρ⌣; (π;∇⌣ ∩ ρ) ∩ ∇;π⌣; (π;∇⌣ ∩ ρ) ∩ ρ⌣; (π;∇⌣ ∩ ρ)); c⌣M
= cM ; (∇; ∆ ∩∇; ∆⌣ ∩ I); c⌣M
= cM ; (∇; ∆ ∩ I); c⌣M
= cM ; c⌣M ; cM ; c⌣M

= I.

For the opposite equation we first show

cF ; (∇ <◯ I)⌣; c⌣M ; cM ; (∇ <◯ I); c⌣F
= cF ; (π;∇⌣ ∩ ρ); iM ; (∇;π⌣ ∩ ρ⌣); c⌣F
= cF ; (π;∇⌣ ∩ ρ); (∇; ∆ ∩ I); (∇;π⌣ ∩ ρ⌣); c⌣F
⊆ cF ; (π;∇⌣;∇; ∆ ∩ π;∇⌣ ∩ ρ); (∇;π⌣ ∩ ρ⌣); c⌣F
⊆ cF ; (π;∇⌣;∇; ∆;∇;π⌣ ∩ π;∇⌣;∇;π⌣ ∩ ρ;∇;π⌣ ∩ π;∇⌣;∇; ∆;ρ⌣ ∩ π;∇⌣;ρ⌣ ∩ ρ;ρ⌣); c⌣F
⊆ cF ; (π;∇⌣;∇;π⌣ ∩ ρ;∇;π⌣ ∩ π;∇⌣;∇; ∆;ρ⌣ ∩ ρ;ρ⌣); c⌣F
⊆ cF ; (π;π⌣ ∩ ρ;∇;π⌣ ∩ π;∇;ρ⌣ ∩ ρ;ρ⌣); c⌣F
= cF ; (π;∇;ρ⌣ ∩ ρ;∇;π⌣ ∩ I); c⌣F
= cF ; IF ; c⌣F

= cF ; c⌣F ; cF ; c⌣F

= I,
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and then

I = cF ; c⌣F ; cF ; c⌣F

= cF ; iF ; c⌣F

= cF ; (π; ∆;ρ⌣ ∩ ρ;∇;π⌣ ∩ I); c⌣F
= cF ; (π; ∆;ρ⌣ ∩ ρ;∇;π⌣ ∩ π;π⌣ ∩ ρ;ρ⌣); c⌣F
= cF ; (π; ∆;ρ⌣ ∩ π;π⌣ ∩ ρ; (∇;π⌣ ∩ ρ⌣)); c⌣F
⊆ cF ; ((π; ∆;ρ⌣ ∩ π;π⌣); (π;∇⌣ ∩ ρ) ∩ ρ); (∇;π⌣ ∩ ρ⌣); c⌣F
= cF ; (π; ∆ ∩ π;∇⌣ ∩ ρ); (∇ <◯ I); c⌣F
⊆ cF ; (π;∇⌣ ∩ ρ); (∇;π⌣ ∩ ρ⌣);π; ∆ ∩ I); (∇ <◯ I); c⌣F
= cF ; (∇ <◯ I)⌣; (∇; ∆ ∩ I); (∇ <◯ I); c⌣F
= cF ; (∇ <◯ I)⌣; IM(∇ <◯ I); c⌣F
= cF ; (∇ <◯ I)⌣; c⌣McM ; (∇ <◯ I); c⌣F
= cF ; (∇ <◯ I)⌣; c⌣M ; cM ; (∇ <◯ I); c⌣F .

2) is shown analogously.

All concepts generated from the context are ordered using a hierarchical relation

which is called concept lattice. In the next definition we are defining the order on

concepts based on pairs, on objects sets and on attributes sets.

Definition 4.3. With the notation introduced so far we define

1. eF = cF ; (π; e;π⌣ ∩ ρ; e⌣;ρ⌣); c⌣F ∶ C → C

2. eG = cG; e; c⌣G ∶D →D

3. eM = cM ; e⌣; c⌣M ∶ E → E

The first relational formula in the above definition is the order on concepts, i.e.,

pairs of object and attribute sets. They are in relation iff the object sets are included

π; e;π⌣ and the attribute sets are in the opposite inclusion ρ; e;ρ⌣. In the second for-

mula eG is true for sets of objects that are part of a concept iff the first is included

in the second. The last formula is basically the same as second but for attribute sets

and the inclusion order is reversed here.
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In the above definition, we used both object and attribute set from the concept

in order to define the lectic order. In the next lemma, we are going to show that the

order on pairs is determined by the order on one of its components only.

Lemma 4.4. eF = cF ;π; e;π⌣; c⌣F = cF ;ρ; e⌣;ρ⌣; c⌣F

Proof. We only show eF = cF ;ρ; e⌣;ρ⌣; c⌣F . The other equation follows analogously.

eF = cF ; (π; e;π⌣ ∩ ρ; e⌣;ρ⌣); c⌣F
= cF ;π; e;π⌣; c⌣F ∩ cF ;ρ; e⌣;ρ⌣; c⌣F

= cF ; c⌣F ; cF ;π; e;π⌣; c⌣F ; cF ; c⌣F ∩ cF ;ρ; e⌣;ρ⌣; c⌣F

= cF ; iF ;π; e;π⌣; iF ; c⌣F ∩ cF ;ρ; e⌣;ρ⌣; c⌣F

= cF ; iF ;ρ; e⌣;ρ⌣; iF ; c⌣F ∩ cF ;ρ; e⌣;ρ⌣; c⌣F Lemma 3.2

= cF ; c⌣F ; cF ;ρ; e⌣;ρ⌣; c⌣F ; cF ; c⌣F

= cF ;ρ; e⌣;ρ⌣; c⌣F

Last but not least, we show that the bijections from Lemma 3.3 are monotonic.

We only state this result for the first bijection. The second monotonicity property is

again shown analogously.

Lemma 4.5. Let eF ∶ C → C and eM ∶ E → E are two order relation. The bijec-

tion relation cM ; (∇ <◯ I); c⌣F ∶ E → C is called monotone iff cM ; (∇ <◯ I); c⌣F ; eF ⊆
eM ; cM ; (∇ <◯ I); c⌣F or equivalently eM ⊆ cM ; (∇ <◯ I); c⌣F ; e⌣F ; (cM ; (∇ <◯ I); c⌣F )⌣.

Proof. First, we have

cM ; (∇ <◯ I); c⌣F ; e⌣F ; (cM ; (∇ <◯ I); c⌣F )⌣

= cM ; (∇ <◯ I); c⌣F ; e⌣F ; cF ; (∇ <◯ I)⌣; c⌣M
= cM ; (∇ <◯ I); c⌣F ; cF ;ρ; e⌣;ρ⌣; c⌣F ; cF ; (∇ <◯ I)⌣; c⌣M Lemma 3.2

⊆ cM ; (∇ <◯ I);ρ; e⌣;ρ⌣; (∇ <◯ I)⌣; c⌣M
= cM ; (∇ <◯ I);ρ; e⌣; ((∇ <◯ I);ρ)⌣; c⌣M
= cM ; e⌣; c⌣M

= eM .

This implies the assertion.
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4.2 Attribute Implication

In this section, we want to focus on attribute implications. As mentioned before,

attribute implications summarize properties of the given data in a way that can easily

be understood by a human. One of the main purposes of this section is to construct

and prove the algebraic formulas for generating a set of all attribute implications

from a Boolean context as well as a multi-valued context. Another goal is to define a

recursive function of implication basis from the context since sometimes we are only

interested in a small set of implications which followed by all other valid implications

in the context. Then we proposed a relational algebraic formula using the implication

basis to generate a valid implication set satisfying certain rules of all implications.

Definition 4.4. An attribute implication is an expression P � Q, where P,Q ⊆M ,

is true in K if each object which has all attributes from P has also all attributes from

Q.

We now want to express attribute implications algebraically. In order to do so

we define a relation MI so that in the case of classical relations, MI(A,B) is true iff

A → B is an implication. This means that if A ⊆ T then B ⊆ T for all sets of intents

of formal concepts.

Definition 4.5. A subset T ⊆ M respects an implication A � B if A ⊆ T or B ⊈ T
i.e. A ⊆ T � B ⊆ T . T respects a set MI of implications if T respects every single

implication in MI . We can define the set of implication MI algebraically as follow

MI = cM ; e⌣/cM ; e⌣

Here, the relation MI is an embedding between all attribute subsets from the

context. The first part of the formula i.e. cM ; e⌣ generates a relation from attribute

sets which are concept to all attribute sets. This relation is true iff an attribute set is

included in the attribute concept. The final relation MI is true for those attribute sets

which maintain a valid implication in respect to the formal context which supports all

attribute concepts in cM . We can easily construct all valid implications by traversing

the generated relation from the above formula .

The relation MI can alternatively computed by the following lemma. The purpose

of this lemma is to construct and prove an alternative form of relational algebra for

producing all valid implications from the context. The composition operator ∇; ∆
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has been used here for generating the attribute concepts as well as all attribute

implications.

Lemma 4.6. MI = ((∇; ∆ ∩ I); e⌣)/e⌣

Proof.

X ⊆MI = cM ; e⌣/cM ; e⌣

⇔ cM ; e⌣;X ⊆ cM ; e⌣

⇔ c⌣M ; cM ; e⌣;X ⊆ e⌣

⇔ (∇; ∆ ∩ I); e⌣;X ⊆ e⌣

⇔X ⊆ ((∇; ∆ ∩ I); e⌣)/e⌣

Another way of obtaining MI is given by the next lemma.

Lemma 4.7. An implication P � Q holds in (G,M, I) if and only if Q ⊆ P∇∆.

Relation algebraically we have.

MI = ∇; ∆; e⌣

Proof. First, we show (∇; ∆ ∩ I); e⌣;∇; ∆; e⌣;ε⌣ ⊆ ε⌣

(∇; ∆ ∩ I); e⌣;∇; ∆; e⌣;ε⌣

⊆ (∇; ∆ ∩ I); e⌣;∇; ∆;ε⌣

⊆ (∇; ∆ ∩ I);∇; ∆; e⌣;ε⌣ Theorem 4.1 of [3]

⊆ (∇; ∆ ∩ I);∇; ∆;ε⌣

= (∇; ∆)⌣;∇; ∆;∇; ∆;ε⌣ Lemma 3.5(a) of [3]

= (∇; ∆)⌣;∇; ∆;ε⌣ Theorem 4.1 of [3]

= (∇; ∆ ∩ I);ε⌣ Lemma 3.5 of [3]

⊆ ε⌣

This implies (∇; ∆ ∩ I); e⌣; ∆;∇; e⌣ ⊆ ε⌣/ε⌣ = e⌣, and, hence ∆;∇; e⌣ ⊆ (∇; ∆ ∩
I); e⌣/e⌣. From Lemma 3.6 we conclude ∆;∇; e⌣ ⊆MI . For the opposite inclusion we

show (∇; ∆)⌣; ((∇; ∆ ∩ I); e⌣/e⌣) ⊆ e⌣. Consider the following computation

(∇; ∆)⌣; ((∇; ∆ ∩ I); e⌣/e⌣)
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= (∇; ∆)⌣;∇; ∆; (∇; ∆)⌣; ((∇; ∆ ∩ I); e⌣/e⌣)

= (∇; ∆ ∩ I); (∇; ∆)⌣; ((∇; ∆ ∩ I); e⌣/e⌣) Lemma 3.5(a) of [3]

⊆ (∇; ∆ ∩ I); e⌣; ((∇; ∆ ∩ I); e⌣/e⌣) Theorem 4.1 of [3]

⊆ e⌣

From this we get, MI = (∇; ∆ ∩ I); e⌣/e⌣ ⊆ ∇; ∆; e⌣. The ultimate relation generated

from this lemma is true for an attribute set iff it is included in the closure of an

attribute set from the context.

Normally, the set of implications of a given context is huge. Furthermore, some

implications seem to follow easily from others. For those reasons, we are usually only

interested in the basis of implications, i.e., a set of implications that will imply using

certain simple rules all implications.

In this thesis, we are interested in the so-called Duquenne-Guigues or canonical

basis [8]. To define it, we need to denote some basic definition as follow.

Definition 4.6. A set A ⊆M is called pseudo-closed iff it satisfies the following two

conditions.

1. A ≠ A∇∆

2. For every pseudo-closed B ⊆ A we have B∇∆ ⊆ A

The definition above is actually recursive due to the reference to pseudo-closed

sets in Property 2. The base case of the recursion is given by sets that satisfy 1. and

do not contain any set of the form B∇∆. The Duquenne-Guigues basis is now given

as I ∶= {P → P∇∆ ∣ P is pseudo-closed}. Finally we present formulas for computing

the pseudo-closed sets relation algebraically.

We start with sets that do not contain and intend of a concept. Lets define the

above propositions algebraically as below

a = [(e ∩ I)/c⌣M ;ã] ∩ c⌣M ;ã
next(a) = a ∪ [((e ∩ I ∩ a;ã)/∇; ∆; e) ∩ I);ã ∩ c⌣M ;ã]

In the definition of a, the part before intersection is true for a set of attributes if

every strictly smaller set is not a concept. The second part says it is not a concept

itself i.e. not closed set. Then we input this initial result to the function next which

generates all pseudo-closed sets satisfying the same conditions by the second part of

the union and merges the new result with the previous one. We need to iterate the
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above function until nothing new and then finally we can determine our canonical

base B as follow.

First, let I be the fixed point of next starting from a and applying next. Then

B =I;ã ∩∇; ∆

The first part of the intersection in the above formula generates a relation that

contains all 1 in the row of all pseudo attribute sets from I. The next part of the

intersection produces closure of all attribute sets and finally, the union operation

results in true for the pseudo-closed attribute set and their corresponding closure set.

The relation B eventually holds all implication of the form P � P∇∆ where P is

pseudo-closed attribute set.

Now we can use the implication basis B to generate all valid implications from the

formal context. In the next proposition, we stated all the required conditions need

to generate all implication sets using the implication basis.

Proposition 4.1. For all A,B,C ⊆M , we can produce all the implications recursively

satisfying following three conditions

1. If B ⊆ A then A � B

2. If A � B then A ∪C � B ∪C

3. If A � B and B � C then A � C

We do not do a proof of the above proposition here

We can define a function which takes implication basis as input and recursively

generates implications until nothing new as follow

Comp(B) = e⌣ ∪ J⌣; (π;B;π⌣ ∩ ρ;ρ⌣);J ∪B;B ∪B
J = syq(ε;π⌣ ∪ ε;ρ⌣,ε)↓

The first part in the above formula i.e. e⌣ satisfies the first condition in the proposi-

tion 4.1. The second part and third part of the union operation corresponds to the

next two conditions respectively in the proposition. Ultimately, we can generate all

implications from the implication basis B using the function defined above.
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Chapter 5

Implementation

5.1 General Information

5.1.1 System Overview

The FCA suite is an application that utilizes an intuitive user interface which makes

generating concepts and attributes implication easier. This program provides a graph-

ical user interface that allows a user to input formal context and store results elec-

tronically in excel format for further analysis.

This program takes objects, attributes and lattice information in the form of XML.

Then it dynamically generates a table with rows and columns equal to the number of

objects and attributes respectively. This table hold the formal context which is later

used for generating concepts and attribute implications.

5.1.2 System Description

We implemented a base project for testing and proofing algebraic formulas related

to the L-fuzzy formal concept analysis stated in the previous chapter. The project is

divided into multiple packages with java classes. There are a total of five packages in

our project where two packages related to lattice and their operations, another two

related to GUI and the other one contains the utility class. Here we have summarized

only the basic methods related to lattice and their operations.
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com.fca.lattice

This package holds the classes for representing lattice element with their associated

operations. Their is an abstract super-class named Lattice inherited by several class

shown in the class diagram (Figure 5.1). The list of basic methods and description

has been summarized in Table 5.1 below.

Modifier and Type Method and Description

int getNoOfElements()

This method helps to access the private field noOfElements.

void setNoOfElements(int noOfElements)

This method sets the value to the private field noOfEle-

ments.

abstract int GetOne()

This method returns the top element of lattice.

abstract int GetZero()

This method returns the bottom element of the lattice.By

Default, 0 is the value element of any lattice.

abstract int Implication(int elem1, int elem2)

This method determines the greatest element (x) such that

the meet of x and elem1 is less or equal to elem2.

abstract int Join(int elem1, int elem2)

This method determines the join or supremum of two ele-

ments.In other words, it returns the least element from the

set of elements where each element of that set is greater

than both input variables.

abstract int Meet(int elem1, int elem2)

This method determines the meet or infimum of two ele-

ments.

Table 5.1: Brief overview of lattice package
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Figure 5.1: Class Diagram of lattice package

com.fca.operations

This package holds the classes for representing operations for generating formal con-

cepts and attribute implications. Here we summarized the main methods with their

description in Table 5.2.
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Modifier and Type Method and Description

Relation union(Relation a)

This method determines the union of two relations with

same dimension. the output relation.

Relation intersection(Relation a)

This method determines the union of two relations with

same dimension.

Relation implication(Relation a)

This method determines the implication of two relation with

same dimension.

Relation composition(Relation a)

This method calculates the relative multiplication of two

relation.

Relation symmetricQuotient(Relation a)

This method calculates the intersection of left residue and

right residue to two relation R and S.

Relation transpose(Relation a)

This method flips the relation, that is it switches the row

and column by producing another relation.

Relation leftResidue(Relation a)

This method calculates the right residual of two relation R

and S which is the greatest of all relation X with (X.R) is

the subset of S.

Relation rightResidue(Relation a)

This method calculates the left residual of two relation R

and S (R/S) which is the greatest of all relation X with

(R.X) is the subset of S.

Relation up()

This function takes relation as a input. If the relation entry

getter than 0 then this makes the entry 1 otherwise keep

the same.

Relation down()

This function takes relation as a input. If the relation entry

equal to 1 then this makes the entry 1 otherwise keep the

same.

Relation equivalence()

This method returns the top element of lattice.

Table 5.2: Brief overview of operation package
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Modifier and Type Method and Description

Relation generateFullConcept()

This method generates concepts satisfying the condition

A∆ = B and B∇ = A. The generated concepts in the form

of relation where column and row represent object and at-

tribute subset respectively.

Relation generateObjectConcept()

This method generates concepts(A∆∇,A∆) satisfying the

condition A∆∇ = A. The generated concepts in the form

of relation where column and row represent object and at-

tribute subset respectively.

Relation generateAttributeConcept()

This method generates concepts(B∇∆,B∇) satisfying the

condition B∇∆ = B. The generated concepts in the form

of relation where column and row represent object and at-

tribute subset respectively.

Relation generateCanonicalBase()

This method produces the implication basis of the context.

Relation generateImplicationUsingLemma()

This function generates all the implications using lemma.

Relation generateImplicationsUsingBasis()

This methods generates all the implication using implication

basis.

Table 5.3: Brief overview of operation package

5.2 User Manual

5.2.1 Load source and target

Firstly, the user needs to input the source and target information in the XML format

shown in Listing 5.1 and 5.2 respectively. The title tag represents the object/target

name which will show as row and column name of the table in the GUI. There are

two clickable buttons marked on the GUI shown in Figure 5.2 which will redirect the

user to browse the source and target XML file respectively. The program can not

handle any other file format except XML.
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Figure 5.2: GUI for loading source and target

<?xml version=” 1 .0 ” encoding=”UTF−8”?>

<source>

<t i t l e>Apple</ t i t l e>

<t i t l e>Mango</ t i t l e>

<t i t l e>Banana</ t i t l e>

</source>

Listing 5.1: XML format for source

<?xml version=” 1 .0 ” encoding=”UTF−8”?>

<target>

<t i t l e>Red</ t i t l e>

<t i t l e>Green</ t i t l e>

<t i t l e>Yellow</ t i t l e>

</target>

Listing 5.2: XML format for target

5.2.2 Load lattice

The lattice information must also be submitted in the form of XML shown in listing

5.3. The meet, join and implication tag represent the element-wise meet, join and im-

plication value which will be used for generating concepts and attribute implications.

The value should be placed row-wise separated by a comma in the corresponding tag.
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Lets explain the process of making XML to represent the lattice. The meet, join and

implication of Boolean lattice can be shown by a two-dimensional array as follow.

Meet =
⎛
⎝

0 1

0 0 0

1 0 1

⎞
⎠

Join =
⎛
⎝

0 1

0 0 1

1 1 1

⎞
⎠

Implication =
⎛
⎝

0 1

0 1 1

1 0 1

⎞
⎠

Now we need to take the values from the matrix to the corresponding tag in XML

and should be placed row-wise separated by a comma. The Listing 5.3 represents the

data from the above matrices. For example, the meet tag holds the value from the

Meet matrix and the values are placed row-wise. The process is similar to join and

implication.

<?xml version=” 1 .0 ” encoding=”UTF−8”?>

<l a t t i ce>

<elements>2</elements>

<meet>0 ,0 ,0 ,1</meet>

<join>0 ,1 ,1 ,1</ join>

<implication>1 ,1 ,0 ,1</ implication>

</ l a t t i ce>

Listing 5.3: XML format for Boolean lattice

Figure 5.3: GUI for creating relation

5.2.3 Create relation

After giving the source, target and lattice information, we are ready to generate the

context in the form of a table. We can fill-up the table by selecting the element from
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the combo box at the lower right corner which represents the lattice elements.

Select operation

There is a total of five operations related to concept analysis. We can generate intent

concepts, extent concepts, full concepts, implications base and all implications using

implication basis. The split operation removes those rows from the result which

has no entry greater than zero. Generated concepts will be displayed in a different

window shown in Figure 5.5. They are presented in the form of a table where rows

and columns represent the object and attribute subset respectively. The nonzero

entry in the diagonal represents the degree of concept while row and column are the

concept extent and intent respectively.
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Figure 5.4: GUI for representing attribute implications

There is an option in the menu bar for saving the result in the excel format. Im-

plications are shown on two separate windows, one represents implications in tabular

form and another summarizes the implications in the form of P � Q as shown in

Figure 5.4. We can also save the implications in excel format.



51

Figure 5.5: GUI for representing concepts



52

Chapter 6

Conclusion

In this thesis, we have proposed a general framework for generating formal concepts

and attribute implications from an L-fuzzy formal context. Normally Formal Concept

Analysis (FCA) handles multi-valued context by applying conceptual scaling. Our

proposed algebraic approach can process a multi-valued context without any scaling

i.e. keeping the data as-is. One of the advantages of our approach is that the generic

relation formulas in our framework can be used to process Boolean as well as Fuzzy

context. Another benefit of our model is that there is no chance of biasness in the

experimental result. We have seen FCA deals with fuzzy context by applying concep-

tual scaling but there is logical explanation behind the selection of scale attributes

to pre-process the data. In the example of conceptual scaling, we considered the age

range 15-24 years as young but there is no logical reason supporting this selection.

The experimental results will change according with the variation in the user selec-

tion of scale attributes. In contrast, our proposed framework deals with fuzzy context

with any data pre-processing which results in unbiased experimental outcome.

We can generate interesting patterns from the data source in the form of associ-

ation rules or attribute implication using our proposed framework. The advantage

of our solution is that it can generate a non-redundant implication basis as well as

all valid implications in the context. In the case of a fuzzy formal context, the to-

tal number of implications would be enormous and difficult to read all implications.

That’s why we are sometime interested in implication basis which we can generate

all implications.

Currently, our implementation is unable to handle a large context. For a set S,

a context of the form (S,S) will be called a contranominal scale. In case of contra-

nominal scale with m objects (and m attributes), the maximum number of concept

extent and concept intent would be 2m. Our proposed solution takes exponential time
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in the worst case to generate all concepts from a formal context which is a fact for

a large formal context. The time complexity for generating all concept extents and

intents is O(∣G∣2∣M ∣) and O(∣G∣∣M ∣2) respectively where G and M are object and

attribute set respectively. We are using our implementation to prove the concepts

of formal concept analysis. Future work will focus on improving the computational

complexity of our proposed formulas. After improving the computational complexity,

we will able to process large context as well. We hope that our work will contribute

to expanding the data mining research using L-fuzzy formal concept analysis.
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