19,694 research outputs found

    Accuracy versus simplicity in online battery model identification

    Get PDF
    This paper presents a framework for battery modeling in online, real-time applications where accuracy is important but speed is the key. The framework allows users to select model structures with the smallest number of parameters that is consistent with the accuracy requirements of the target application. The tradeoff between accuracy and speed in a battery model identification process is explored using different model structures and parameter-fitting algorithms. Pareto optimal sets are obtained, allowing a designer to select an appropriate compromise between accuracy and speed. In order to get a clearer understanding of the battery model identification problem, “identification surfaces” are presented. As an outcome of the battery identification surfaces, a new analytical solution is derived for battery model identification using a closed-form formula to obtain a battery’s ohmic resistance and open circuit voltage from measurement data. This analytical solution is used as a benchmark for comparison of other fitting algorithms and it is also used in its own right in a practical scenario for state-of-charge estimation. A simulation study is performed to demonstrate the effectiveness of the proposed framework and the simulation results are verified by conducting experimental tests on a small NiMH battery pack

    Optimal Fuzzy Model Construction with Statistical Information using Genetic Algorithm

    Full text link
    Fuzzy rule based models have a capability to approximate any continuous function to any degree of accuracy on a compact domain. The majority of FLC design process relies on heuristic knowledge of experience operators. In order to make the design process automatic we present a genetic approach to learn fuzzy rules as well as membership function parameters. Moreover, several statistical information criteria such as the Akaike information criterion (AIC), the Bhansali-Downham information criterion (BDIC), and the Schwarz-Rissanen information criterion (SRIC) are used to construct optimal fuzzy models by reducing fuzzy rules. A genetic scheme is used to design Takagi-Sugeno-Kang (TSK) model for identification of the antecedent rule parameters and the identification of the consequent parameters. Computer simulations are presented confirming the performance of the constructed fuzzy logic controller

    Comparative performance of intelligent algorithms for system identification and control

    Get PDF
    This paper presents an investigation into the comparative performance of intelligent system identification and control algorithms within the framework of an active vibration control (AVC) system. Evolutionary Genetic algorithms (GAs) and Adaptive Neuro-Fuzzy Inference system (ANFIS) algorithms are used to develop mechanisms of an AVC system, where the controller is designed based on optimal vibration suppression using the plant model. A simulation platform of a flexible beam system in transverse vibration using finite difference (FD) method is considered to demonstrate the capabilities of the AVC system using GAs and ANFIS. MATLAB GA tool box for GAs and Fuzzy Logic tool box for ANFIS function are used to design the AVC system. The system is men implemented, tested and its performance assessed for GAs and ANFIS based algorithms. Finally, a comparative performance of the algorithms in implementing system identification and corresponding AVC system using GAs and ANFIS is presented and discussed through a set of experiments

    Nonlinear system identification and control using state transition algorithm

    Full text link
    By transforming identification and control for nonlinear system into optimization problems, a novel optimization method named state transition algorithm (STA) is introduced to solve the problems. In the proposed STA, a solution to a optimization problem is considered as a state, and the updating of a solution equates to a state transition, which makes it easy to understand and convenient to implement. First, the STA is applied to identify the optimal parameters of the estimated system with previously known structure. With the accurate estimated model, an off-line PID controller is then designed optimally by using the STA as well. Experimental results have demonstrated the validity of the methodology, and comparisons to STA with other optimization algorithms have testified that STA is a promising alternative method for system identification and control due to its stronger search ability, faster convergence rate and more stable performance.Comment: 20 pages, 18 figure

    One-Class Classification: Taxonomy of Study and Review of Techniques

    Full text link
    One-class classification (OCC) algorithms aim to build classification models when the negative class is either absent, poorly sampled or not well defined. This unique situation constrains the learning of efficient classifiers by defining class boundary just with the knowledge of positive class. The OCC problem has been considered and applied under many research themes, such as outlier/novelty detection and concept learning. In this paper we present a unified view of the general problem of OCC by presenting a taxonomy of study for OCC problems, which is based on the availability of training data, algorithms used and the application domains applied. We further delve into each of the categories of the proposed taxonomy and present a comprehensive literature review of the OCC algorithms, techniques and methodologies with a focus on their significance, limitations and applications. We conclude our paper by discussing some open research problems in the field of OCC and present our vision for future research.Comment: 24 pages + 11 pages of references, 8 figure
    corecore