869 research outputs found

    Fuzzy inequational logic

    Full text link
    We present a logic for reasoning about graded inequalities which generalizes the ordinary inequational logic used in universal algebra. The logic deals with atomic predicate formulas of the form of inequalities between terms and formalizes their semantic entailment and provability in graded setting which allows to draw partially true conclusions from partially true assumptions. We follow the Pavelka approach and define general degrees of semantic entailment and provability using complete residuated lattices as structures of truth degrees. We prove the logic is Pavelka-style complete. Furthermore, we present a logic for reasoning about graded if-then rules which is obtained as particular case of the general result

    Expanding FLew with a Boolean connective

    Full text link
    We expand FLew with a unary connective whose algebraic counterpart is the operation that gives the greatest complemented element below a given argument. We prove that the expanded logic is conservative and has the Finite Model Property. We also prove that the corresponding expansion of the class of residuated lattices is an equational class.Comment: 15 pages, 4 figures in Soft Computing, published online 23 July 201

    Two-valued states on Baer ∗^*-semigroups

    Get PDF
    In this paper we develop an algebraic framework that allows us to extend families of two-valued states on orthomodular lattices to Baer ∗^*-semigroups. We apply this general approach to study the full class of two-valued states and the subclass of Jauch-Piron two-valued states on Baer ∗^*-semigroups.Comment: Reports on mathematical physics (accepted 2013

    Probabilistic Argumentation. An Equational Approach

    Get PDF
    There is a generic way to add any new feature to a system. It involves 1) identifying the basic units which build up the system and 2) introducing the new feature to each of these basic units. In the case where the system is argumentation and the feature is probabilistic we have the following. The basic units are: a. the nature of the arguments involved; b. the membership relation in the set S of arguments; c. the attack relation; and d. the choice of extensions. Generically to add a new aspect (probabilistic, or fuzzy, or temporal, etc) to an argumentation network can be done by adding this feature to each component a-d. This is a brute-force method and may yield a non-intuitive or meaningful result. A better way is to meaningfully translate the object system into another target system which does have the aspect required and then let the target system endow the aspect on the initial system. In our case we translate argumentation into classical propositional logic and get probabilistic argumentation from the translation. Of course what we get depends on how we translate. In fact, in this paper we introduce probabilistic semantics to abstract argumentation theory based on the equational approach to argumentation networks. We then compare our semantics with existing proposals in the literature including the approaches by M. Thimm and by A. Hunter. Our methodology in general is discussed in the conclusion
    • …
    corecore