3,673 research outputs found

    Pitfall of the Detection Rate Optimized Bit Allocation within template protection and a remedy

    Get PDF
    One of the requirements of a biometric template protection system is that the protected template ideally should not leak any information about the biometric sample or its derivatives. In the literature, several proposed template protection techniques are based on binary vectors. Hence, they require the extraction of a binary representation from the real- valued biometric sample. In this work we focus on the Detection Rate Optimized Bit Allocation (DROBA) quantization scheme that extracts multiple bits per feature component while maximizing the overall detection rate. The allocation strategy has to be stored as auxiliary data for reuse in the verification phase and is considered as public. This implies that the auxiliary data should not leak any information about the extracted binary representation. Experiments in our work show that the original DROBA algorithm, as known in the literature, creates auxiliary data that leaks a significant amount of information. We show how an adversary is able to exploit this information and significantly increase its success rate on obtaining a false accept. Fortunately, the information leakage can be mitigated by restricting the allocation freedom of the DROBA algorithm. We propose a method based on population statistics and empirically illustrate its effectiveness. All the experiments are based on the MCYT fingerprint database using two different texture based feature extraction algorithms

    Privacy-Preserving Facial Recognition Using Biometric-Capsules

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)In recent years, developers have used the proliferation of biometric sensors in smart devices, along with recent advances in deep learning, to implement an array of biometrics-based recognition systems. Though these systems demonstrate remarkable performance and have seen wide acceptance, they present unique and pressing security and privacy concerns. One proposed method which addresses these concerns is the elegant, fusion-based Biometric-Capsule (BC) scheme. The BC scheme is provably secure, privacy-preserving, cancellable and interoperable in its secure feature fusion design. In this work, we demonstrate that the BC scheme is uniquely fit to secure state-of-the-art facial verification, authentication and identification systems. We compare the performance of unsecured, underlying biometrics systems to the performance of the BC-embedded systems in order to directly demonstrate the minimal effects of the privacy-preserving BC scheme on underlying system performance. Notably, we demonstrate that, when seamlessly embedded into a state-of-the-art FaceNet and ArcFace verification systems which achieve accuracies of 97.18% and 99.75% on the benchmark LFW dataset, the BC-embedded systems are able to achieve accuracies of 95.13% and 99.13% respectively. Furthermore, we also demonstrate that the BC scheme outperforms or performs as well as several other proposed secure biometric methods

    Bio-Cryptosystem Using Fuzzy Vault Scheme

    Get PDF
    — In recent years most challenging problem is protection of information from unauthorized users. The conventional Cryptographic systems are insufficient to provide a security. The main problem is how to protect private keys from attackers and Intruder such as in case of Internet Banking. Cryptographic systems have been widely used in many information security systems. Hence in this paper we have proposed a framework of Biometric based cryptosystems. It provide reliable way of hiding private keys by using biometric features of individuals. A fuzzy vault approach is used to protect private keys and to release them only when legitimate individual enter their biometric sample. The main advantage of this system is there is no need of storing biometric information. However, fuzzy vault systems do not store directly these templates since they are encrypted with private keys by using novel cryptography algorithm. In proposed framework we are combining iris features with the encryption algorithm that can be a new research direction. The proposed approach provides high security and also image information can be protected. DOI: 10.17762/ijritcc2321-8169.150712
    • …
    corecore