910 research outputs found

    Advanced Underground Space Technology

    Get PDF
    The recent development of underground space technology makes underground space a potential and feasible solution to climate change, energy shortages, the growing population, and the demands on urban space. Advances in material science, information technology, and computer science incorporating traditional geotechnical engineering have been extensively applied to sustainable and resilient underground space applications. The aim of this Special Issue, entitled “Advanced Underground Space Technology”, is to gather original fundamental and applied research related to the design, construction, and maintenance of underground space

    Advanced Theoretical and Computational Methods for Complex Materials and Structures

    Get PDF
    The broad use of composite materials and shell structural members with complex geometries in technologies related to various branches of engineering has gained increased attention from scientists and engineers for the development of even more refined approaches and investigation of their mechanical behavior. It is well known that composite materials are able to provide higher values of strength stiffness, and thermal properties, together with conferring reduced weight, which can affect the mechanical behavior of beams, plates, and shells, in terms of static response, vibrations, and buckling loads. At the same time, enhanced structures made of composite materials can feature internal length scales and non-local behaviors, with great sensitivity to different staking sequences, ply orientations, agglomeration of nanoparticles, volume fractions of constituents, and porosity levels, among others. In addition to fiber-reinforced composites and laminates, increased attention has been paid in literature to the study of innovative components such as functionally graded materials (FGMs), carbon nanotubes (CNTs), graphene nanoplatelets, and smart constituents. Some examples of smart applications involve large stroke smart actuators, piezoelectric sensors, shape memory alloys, magnetostrictive and electrostrictive materials, as well as auxetic components and angle-tow laminates. These constituents can be included in the lamination schemes of smart structures to control and monitor the vibrational behavior or the static deflection of several composites. The development of advanced theoretical and computational models for composite materials and structures is a subject of active research and this is explored here for different complex systems, including their static, dynamic, and buckling responses; fracture mechanics at different scales; the adhesion, cohesion, and delamination of materials and interfaces

    UFGM - 2006 Annual Report

    Get PDF
    INGV, SEZIONE DI CATANIAPublished2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attiveope

    Cumulative Contents No.1-No.49 (1959-2007)

    Get PDF

    Software for evaluating probability-based integrity of reinforced concrete structures

    Get PDF
    In recent years, much research work has been carried out in order to obtain a more controlled durability and long-term performance of concrete structures in chloride containing environment. In particular, the development of new procedures for probability-based durability design has proved to give a more realistic basis for the analysis. Although there is still a lack of relevant data, this approach has been successfully applied to several new concrete structures, where requirements to a more controlled durability and service life have been specified. A probability-based durability analysis has also become an important and integral part of condition assessment of existing concrete structures in chloride containing environment. In order to facilitate the probability-based durability analysis, a software named DURACON has been developed, where the probabilistic approach is based on a Monte Carlo simulation. In the present paper, the software for the probability-based durability analysis is briefly described and used in order to demonstrate the importance of the various durability parameters affecting the durability of concrete structures in chloride containing environment

    The Maunakea Spectroscopic Explorer Book 2018

    Full text link
    (Abridged) This is the Maunakea Spectroscopic Explorer 2018 book. It is intended as a concise reference guide to all aspects of the scientific and technical design of MSE, for the international astronomy and engineering communities, and related agencies. The current version is a status report of MSE's science goals and their practical implementation, following the System Conceptual Design Review, held in January 2018. MSE is a planned 10-m class, wide-field, optical and near-infrared facility, designed to enable transformative science, while filling a critical missing gap in the emerging international network of large-scale astronomical facilities. MSE is completely dedicated to multi-object spectroscopy of samples of between thousands and millions of astrophysical objects. It will lead the world in this arena, due to its unique design capabilities: it will boast a large (11.25 m) aperture and wide (1.52 sq. degree) field of view; it will have the capabilities to observe at a wide range of spectral resolutions, from R2500 to R40,000, with massive multiplexing (4332 spectra per exposure, with all spectral resolutions available at all times), and an on-target observing efficiency of more than 80%. MSE will unveil the composition and dynamics of the faint Universe and is designed to excel at precision studies of faint astrophysical phenomena. It will also provide critical follow-up for multi-wavelength imaging surveys, such as those of the Large Synoptic Survey Telescope, Gaia, Euclid, the Wide Field Infrared Survey Telescope, the Square Kilometre Array, and the Next Generation Very Large Array.Comment: 5 chapters, 160 pages, 107 figure

    Seismic vulnerability of aluminium and steel lattice domes

    Get PDF
    Les dômes en treillis sont utilisés dans la construction de stades et d'aéroports pour accueillir un grand nombre de personnes. Ces structures entrent dans la catégorie d'importance sismique élevée car elles servent d'abris en cas d'événement sismique. Il existe des informations basées sur la recherche concernant la performance sismique des dômes ; cependant, l'application pratique de ces informations pour la conception reste un défi de taille. Essentiellement, il n'y a pas de directives établies pour la conception sismique des dômes. L'utilisation d'alliages d'aluminium peut présenter une solution efficace pour les dômes exposés à des environnements agressifs tels que les installations de stockage de produits chimiques, les dômes couvrant de grands espaces tels que les stades, et pour les dômes où des formes extrudées spécialisées peuvent faciliter les connexions efficaces entre les éléments structurels. La préférence pour ce matériau s'explique par sa durabilité, son faible rapport résistance/poids et son extrudabilité. Cependant, les alliages d'aluminium sont également connus pour être plus susceptibles à la rupture par fatigue oligocyclique. La fatigue oligocyclique peut conduire à la rupture d'un élément structurel sous l'effet de cycles de déformation induits par un tremblement de terre. La vulnérabilité des dômes en aluminium aux mouvements du sol dus aux tremblements de terre peut être affectée par la résistance à la fatigue oligocyclique du matériau. Cette étude de recherche évalue la performance sismique et la vulnérabilité sismique d'un dôme en treillis en alliage d'aluminium, en comparaison avec un dôme en treillis en acier. La vulnérabilité sismique des dômes en aluminium et en acier sous la même charge de gravité est comparée en développant des fonctions de fragilité basées sur des analyses dynamiques incrémentales. Pour les analyses dynamiques incrémentales, une suite de onze mouvements de sol non échelonnés avec une accélération maximale du sol allant de 0,2 g à 0,82 g, a été considérée. Il a été observé que les caractéristiques modales des deux dômes étaient similaires. Il n'y avait pas de déformation plastique dans les deux dômes soumis à la suite sélectionnée de mouvements de sol non échelonnés. Cependant, il y avait des déformations plastiques dans les deux dômes soumis à la suite de mouvements du sol mis à l'échelle à des intensités sismiques plus élevées. Les dômes en aluminium ont subi un déplacement deux fois plus important que le dôme en acier pour toutes les intensités sismiques considérées. Les résultats ont montré que la rupture par fatigue est attendue dans les dômes en aluminium qui sont soumis à des tremblements de terre sévères, avec une accélération spectrale supérieure à 1,5 g. Il a également été observé que le dôme en aluminium démontré une bonne résistance sismique pour les intensités de mouvement du sol représentatives du spectre de conception de l'Ouest du Canada, en particulier Vancouver, BC.Lattice domes are used to construct stadiums and airports that accommodate many people. These structures fit into the high seismic importance category because they serve as shelters during seismic events. Information based on research regarding the seismic performance of domes exists; however, the practical application of this information for design remains a daunting challenge. Essentially, there are no established guidelines for the seismic design of domes. The use of aluminium alloys may present an effective solution for domes exposed to aggressive environments such as chemical storage facilities, domes covering large spaces such as stadiums, and for domes where specialized extruded shapes may facilitate efficient connections between structural elements. The preference for this material is due to its durability, low strength-to-weight ratio and extrudability. However, aluminium alloys are also known to be more susceptible to failure under low-cycle fatigue. Low cycle fatigue may lead to the rupture of a structural member under earthquake-induced strain cycles. The vulnerability of aluminium domes under earthquake ground motions may be affected by the low cycle fatigue resistance of the material. This research study assesses the seismic performance and seismic vulnerability of an aluminium lattice dome compared to a steel lattice dome. The seismic vulnerability of aluminium and steel domes under the same gravity load are compared by developing fragility functions based on incremental dynamic analyses. For the incremental dynamic analyses, a suite of eleven unscaled ground motions with peak ground acceleration ranging from 0.2 g and 0.82 g was considered. It was observed that the modal characteristics of both domes were similar. There was no plastic deformation in both domes subjected to the selected suite of unscaled ground motions. However, there were plastic deformations in both domes subjected to the suite of ground motions scaled to higher seismic intensities. The aluminium domes experienced twice as much displacement as the steel dome for all seismic intensities considered. The results also showed that fatigue failure is expected in aluminium domes subjected to severe earthquakes, with a spectral acceleration greater than 1.5 g. It was also observed that the aluminium dome showed a good seismic resistance for ground motion intensities representative of the design spectrum of western Canada, particularly Vancouver, BC
    • …
    corecore