162,180 research outputs found

    Multimodal decision-level fusion for person authentication

    Get PDF
    In this paper, the use of clustering algorithms for decision-level data fusion is proposed. Person authentication results coming from several modalities (e.g., still image, speech), are combined by using fuzzy k-means (FKM), fuzzy vector quantization (FVQ) algorithms, and median radial basis function (MRBF) network. The quality measure of the modalities data is used for fuzzification. Two modifications of the FKM and FVQ algorithms, based on a novel fuzzy vector distance definition, are proposed to handle the fuzzy data and utilize the quality measure. Simulations show that fuzzy clustering algorithms have better performance compared to the classical clustering algorithms and other known fusion algorithms. MRBF has better performance especially when two modalities are combined. Moreover, the use of the quality via the proposed modified algorithms increases the performance of the fusion system

    Fuzzy voting in clustering

    Get PDF
    In this paper we present a fuzzy voting scheme for cluster algorithms. This fuzzy voting method allows us to combine several runs of cluster algorithms resulting in a common fuzzy partition. This helps us to overcome instabilities of the cluster algorithms and results in a better clustering.Series: Report Series SFB "Adaptive Information Systems and Modelling in Economics and Management Science

    Comparison of different strategies of utilizing fuzzy clustering in structure identification

    Get PDF
    Fuzzy systems approximate highly nonlinear systems by means of fuzzy "if-then" rules. In the literature, various algorithms are proposed for mining. These algorithms commonly utilize fuzzy clustering in structure identification. Basically, there are three different approaches in which one can utilize fuzzy clustering; the �first one is based on input space clustering, the second one considers clustering realized in the output space, while the third one is concerned with clustering realized in the combined input-output space. In this study, we analyze these three approaches. We discuss each of the algorithms in great detail and o¤er a thorough comparative analysis. Finally, we compare the performances of these algorithms in a medical diagnosis classi�cation problem, namely Aachen Aphasia Test. The experiment and the results provide a valuable insight about the merits and the shortcomings of these three clustering approaches

    A Fuzzy Approach to Erroneous Inputs in Context-Free Language Recognition

    Get PDF
    Using fuzzy context-free grammars one can easily describe a finite number of ways to derive incorrect strings together with their degree of correctness. However, in general there is an infinite number of ways to perform a certain task wrongly. In this paper we introduce a generalization of fuzzy context-free grammars, the so-called fuzzy context-free KK-grammars, to model the situation of making a finite choice out of an infinity of possible grammatical errors during each context-free derivation step. Under minor assumptions on the parameter KK this model happens to be a very general framework to describe correctly as well as erroneously derived sentences by a single generating mechanism. Our first result characterizes the generating capacity of these fuzzy context-free KK-grammars. As consequences we obtain: (i) bounds on modeling grammatical errors within the framework of fuzzy context-free grammars, and (ii) the fact that the family of languages generated by fuzzy context-free KK-grammars shares closure properties very similar to those of the family of ordinary context-free languages. The second part of the paper is devoted to a few algorithms to recognize fuzzy context-free languages: viz. a variant of a functional version of Cocke-Younger- Kasami's algorithm and some recursive descent algorithms. These algorithms turn out to be robust in some very elementary sense and they can easily be extended to corresponding parsing algorithms

    Fuzzy Jets

    Get PDF
    Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets. To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets, are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variables. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities
    corecore