161 research outputs found

    A Domain Independent Framework for Developing Knowledge Based Computer Generated Forces

    Get PDF
    Computer Generated Forces (CGFs) are important players in Distributed Interactive Simulation (DIS) exercises. A problem with CGFs is that they do not exhibit sufficient human behaviors to make their use effective. The SOAR approach has yielded a human cognitive model that can be applied to CGFs, but this is extremely complex. The product of the research reported in this thesis is a much less complex behavioral framework for a CGF that is easy to validate, revise, and maintain. To support this, an existing, domain independent CGF architecture is discussed and applied to an experimental CGF. Techniques for modeling the knowledge and behaviors of any CGF via semantic nets are presented. A process for transforming the semantic nets into fuzzy controllers is outlined, and pertinent issues regarding fuzzy controllers are discussed. Lastly, a method for making time critical decisions via fuzzy logic is presented

    Evaluation Functions in General Game Playing

    Get PDF
    While in traditional computer game playing agents were designed solely for the purpose of playing one single game, General Game Playing is concerned with agents capable of playing classes of games. Given the game's rules and a few minutes time, the agent is supposed to play any game of the class and eventually win it. Since the game is unknown beforehand, previously optimized data structures or human-provided features are not applicable. Instead, the agent must derive a strategy on its own. One approach to obtain such a strategy is to analyze the game rules and create a state evaluation function that can be subsequently used to direct the agent to promising states in the match. In this thesis we will discuss existing methods and present a general approach on how to construct such an evaluation function. Each topic is discussed in a modular fashion and evaluated along the lines of quality and efficiency, resulting in a strong agent.:Introduction Game Playing Evaluation Functions I - Aggregation Evaluation Functions II - Features General Evaluation Related Work Discussio

    Artificial intelligence: a light approach

    Get PDF

    Error minimising gradients for improving cerebellar model articulation controller performance

    Get PDF
    In motion control applications where the desired trajectory velocity exceeds an actuator’s maximum velocity limitations, large position errors will occur between the desired and actual trajectory responses. In these situations standard control approaches cannot predict the output saturation of the actuator and thus the associated error summation cannot be minimised.An adaptive feedforward control solution such as the Cerebellar Model Articulation Controller (CMAC) is able to provide an inherent level of prediction for these situations, moving the system output in the direction of the excessive desired velocity before actuator saturation occurs. However the pre-empting level of a CMAC is not adaptive, and thus the optimal point in time to start moving the system output in the direction of the excessive desired velocity remains unsolved. While the CMAC can adaptively minimise an actuator’s position error, the minimisation of the summation of error over time created by the divergence of the desired and actual trajectory responses requires an additional adaptive level of control.This thesis presents an improved method of training CMACs to minimise the summation of error over time created when the desired trajectory velocity exceeds the actuator’s maximum velocity limitations. This improved method called the Error Minimising Gradient Controller (EMGC) is able to adaptively modify a CMAC’s training signal so that the CMAC will start to move the output of the system in the direction of the excessive desired velocity with an optimised pre-empting level.The EMGC was originally created to minimise the loss of linguistic information conveyed through an actuated series of concatenated hand sign gestures reproducing deafblind sign language. The EMGC concept however is able to be implemented on any system where the error summation associated with excessive desired velocities needs to be minimised, with the EMGC producing an improved output approximation over using a CMAC alone.In this thesis, the EMGC was tested and benchmarked against a feedforward / feedback combined controller using a CMAC and PID controller. The EMGC was tested on an air-muscle actuator for a variety of situations comprising of a position discontinuity in a continuous desired trajectory. Tested situations included various discontinuity magnitudes together with varying approach and departure gradient profiles.Testing demonstrated that the addition of an EMGC can reduce a situation’s error summation magnitude if the base CMAC controller has not already provided a prior enough pre-empting output in the direction of the situation. The addition of an EMGC to a CMAC produces an improved approximation of reproduced motion trajectories, not only minimising position error for a single sampling instance, but also over time for periodic signals

    Artificial Intelligence for Small Satellites Mission Autonomy

    Get PDF
    Space mission engineering has always been recognized as a very challenging and innovative branch of engineering: since the beginning of the space race, numerous milestones, key successes and failures, improvements, and connections with other engineering domains have been reached. Despite its relative young age, space engineering discipline has not gone through homogeneous times: alternation of leading nations, shifts in public and private interests, allocations of resources to different domains and goals are all examples of an intrinsic dynamism that characterized this discipline. The dynamism is even more striking in the last two decades, in which several factors contributed to the fervour of this period. Two of the most important ones were certainly the increased presence and push of the commercial and private sector and the overall intent of reducing the size of the spacecraft while maintaining comparable level of performances. A key example of the second driver is the introduction, in 1999, of a new category of space systems called CubeSats. Envisioned and designed to ease the access to space for universities, by standardizing the development of the spacecraft and by ensuring high probabilities of acceptance as piggyback customers in launches, the standard was quickly adopted not only by universities, but also by agencies and private companies. CubeSats turned out to be a disruptive innovation, and the space mission ecosystem was deeply changed by this. New mission concepts and architectures are being developed: CubeSats are now considered as secondary payloads of bigger missions, constellations are being deployed in Low Earth Orbit to perform observation missions to a performance level considered to be only achievable by traditional, fully-sized spacecraft. CubeSats, and more in general the small satellites technology, had to overcome important challenges in the last few years that were constraining and reducing the diffusion and adoption potential of smaller spacecraft for scientific and technology demonstration missions. Among these challenges were: the miniaturization of propulsion technologies, to enable concepts such as Rendezvous and Docking, or interplanetary missions; the improvement of telecommunication state of the art for small satellites, to enable the downlink to Earth of all the data acquired during the mission; and the miniaturization of scientific instruments, to be able to exploit CubeSats in more meaningful, scientific, ways. With the size reduction and with the consolidation of the technology, many aspects of a space mission are reduced in consequence: among these, costs, development and launch times can be cited. An important aspect that has not been demonstrated to scale accordingly is operations: even for small satellite missions, human operators and performant ground control centres are needed. In addition, with the possibility of having constellations or interplanetary distributed missions, a redesign of how operations are management is required, to cope with the innovation in space mission architectures. The present work has been carried out to address the issue of operations for small satellite missions. The thesis presents a research, carried out in several institutions (Politecnico di Torino, MIT, NASA JPL), aimed at improving the autonomy level of space missions, and in particular of small satellites. The key technology exploited in the research is Artificial Intelligence, a computer science branch that has gained extreme interest in research disciplines such as medicine, security, image recognition and language processing, and is currently making its way in space engineering as well. The thesis focuses on three topics, and three related applications have been developed and are here presented: autonomous operations by means of event detection algorithms, intelligent failure detection on small satellite actuator systems, and decision-making support thanks to intelligent tradespace exploration during the preliminary design of space missions. The Artificial Intelligent technologies explored are: Machine Learning, and in particular Neural Networks; Knowledge-based Systems, and in particular Fuzzy Logics; Evolutionary Algorithms, and in particular Genetic Algorithms. The thesis covers the domain (small satellites), the technology (Artificial Intelligence), the focus (mission autonomy) and presents three case studies, that demonstrate the feasibility of employing Artificial Intelligence to enhance how missions are currently operated and designed

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    From approximative to descriptive fuzzy models

    Get PDF

    Combining rough and fuzzy sets for feature selection

    Get PDF
    • …
    corecore