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Resumo

Nos últimos anos tem-se assistido a um crescente interesse por parte da sociedade em aprofundar
o conhecimento relativo ao desporto, bem como uma crescente necessidade em extrair informação
útil de eventos desportivos. O interesse neste tipo de informação está patente em diversos sectores,
quer para melhorar a experiência dos adeptos face aos jogos, quer para melhorar o conhecimento
ao nível do desempenho físico e táctico dos jogadores/ das equipas por forma a ter mecanismos que
permitam um treino adequado e mais focado ou ainda como ferramenta para auxílio na educação
de futuros profissionais do desporto. Para colmatar tais limitações, esta dissertação foi estruturada
com o intuito de estudar, desenhar e implementar metodologias que permitam o desenvolvimento
de um sistema de visão capaz de realizar análise complexa de jogos desportivos.

Com vista a alcançar este objectivo foi proposto e testado um sistema com múltiplas câmaras
aplicado ao caso específico do andebol. A modularidade da solução proposta permitiu a sua vali-
dação em diferentes eventos com diferentes requisitos em termos de número de câmaras.

Numa primeira fase é efectuada a gravação dos jogos, que são posteriormente processados
para extrair as posições dos jogadores em coordenadas do campo recorrendo a metodologias de
detecção e seguimento.

A detecção dos jogadores é feita através de um modelo das cores do equipamento dos jo-
gadores baseado em Lógica Difusa. Este modelo é inicialmente obtido com a ajuda de um op-
erador, sendo posteriormente actualizado automática e dinamicamente no decorrer do jogo para
garantir que a cada instante reflecte as cores das equipas que são afectadas pelas condições de
iluminação. A natureza Difusa do modelo é dupla, na medida em que permite atribuir aos pixéis
graus de pertença a cada equipa, mas também iniciar e controlar a adaptabilidade dos modelos de
cor.

A detecção dos jogadores propriamente dita começa pela detecção dos pixéis que constituem
o "primeiro plano" através da subtracção do fundo. Este fundo resulta de uma imagem vazia do
campo que é constantemente actualizada. Ao efectuar esta subtracção inicial consegue-se limitar
a área de campo a ser pesquisada em mais detalhe e como tal reduzir consideravelmente o tempo
de processamento.

As áreas que resultam da subtracção do fundo são depois processadas usando os modelos de
cor, e a cada pixel é atribuído um grau de pertença a cada equipa. Pixéis adjacentes são então
agrupados e as zonas resultantes filtradas através de restrições de tamanho. A detecção é ainda
melhorada através de Filtros de Kalman, um filtro por cada jogador.

Dos passos anteriores resultam as posições dos jogadores em coordenadas do campo, que
são depois utilizadas para extrair informação de baixo nível relativa ao desempenho físico dos
jogadores (distância percorrida e velocidade), bem como à identificação de áreas preferenciais de
ataque e defesa, ou a corredores usados para transição de fase.

Esta informação base é ainda usada por algoritmos mais complexos que permitem identificar
a fase do jogo (ataque, defesa, transição ofensiva-defensiva e transição defensiva-ofensiva) e a
táctica defensiva adoptada (defesa a uma linha, duas linhas ou três linhas).
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A fase de jogo é obtida através de um classificador Difuso do tipo Mandani que tendo em
conta a fase de jogo anterior, a velocidade e posição longitudinais da equipa, determina a fase de
jogo actual. Neste classificador, as entradas são primeiro fuzzificadas para então passarem por
um conjunto de regras "SE-ENTÃO" que determinam a fase de jogo actual. A defesa táctica é
identificada por um método de minimização de erro que aproxima as posições dos jogadores a
círculos à volta da área de baliza.

Por último, é proposto um modelo do jogo de andebol baseado numa rede de Petri hierárquica
e colorida que inclui três camadas que incrementalmente adicionam mais detalhe ao modelo. A
primeira camada traduz uma vista genérica e indica se o jogo está a decorrer ou se está parado,
a segunda camada pormenoriza cada um destes modos de jogo e a terceira modela as interacções
entre jogadores durante situações de ataque e defesa.

Testes efectuados durante uma competição oficial de andebol demonstraram a validade da
arquitectura proposta, com taxas de exactidão de detecção de jogadores acima de 95%. Adicional-
mente, os testes validaram que o uso de espaços de cor adaptativos baseados na metodologia
Difusa proposta conseguem caracterizar melhor as propriedades de cor dos equipamentos dos jo-
gadores, o que contribui para taxas de seguimento mais elevadas.

Os testes efectuados ao classificador Difuso demonstraram que é capaz de identificar alter-
ações de fase de jogo com uma exactidão acima de 86% e o início de fase tem um desalinho
temporal de em média 1.9s. Por outro lado, a estratégia defensiva é detectada com uma exactidão
acima dos 85%.

Para além desta validação, a metodologia proposta foi ainda usada para aferir o esforço físico
de árbitros de andebol durante competições oficiais, bem como para monitorizar atletas durante
sessões de treinos de basquetebol.



Abstract

Over the last years, society has increased the interest for having more knowledge and useful infor-
mation from sports events. The interest on such information can arise from different sectors, either
to improve the fans’ immersion into the game, to enhance the knowledge from a performance or
tactical point of view in order to better train the athletes or even to provide a more adequate back-
ground when teaching students. Having these concerns in mind, this thesis was formulated with
the purpose of studying, designing and implementing methodologies to support the development
of a vision based system to perform high level game analysis.

In order to achieve this goal, a multiple camera architecture applied to the specific handball
case was proposed and tested in different sports halls. The modularity of the proposed system was
validated under different configurations (number of cameras).

On the proposed system, the games are first recorded and only then processed in order to
extract the players’ coordinates on the field using detection and tracking methodologies.

Player detection is achieved using a Fuzzy inspired model of the players’ vests colours. An
initial model is obtained with the aid of an operator intervention. This model is then dynamically
and automatically adapted to the light conditions that affect the colour properties. The Fuzzy
nature of the model is twofold: it allows categorizing pixels with a given belonging degree, but
also to trigger and control the adaptability of the colour models.

The players’ detection starts by initially identifying foreground pixels by means of background
subtraction. This background model results of an initial empty image of the court that is dynami-
cally updated. By first removing the background it is possible to narrow the possible areas where
players can be, which accelerates the overall processing time.

The obtained foreground areas are then scanned using the aforementioned colour model and
each pixel is categorized into each of the teams with a given belonging degree. Adjacent pixels are
afterwards grouped and the generated areas are filtered using area constraints. Detection is further
enhanced with tracking using a vector of Kalman filters, one filter per player.

The players’ positions on the field, obtained from this detection and tracking methodology, are
then used to obtain low level information that allows to evaluate the players’ physical effort during
the match (distance travelled and speeds achieved), as well as to define preferable areas of attack,
defence and transitional corridors.

More complex algorithms are used to identify the game phase (attack, defence, defensive
offensive transition and offensive defensive transition) and the defensive team formation (one de-
fensive line, two defensive lines or three defensive lines).

The game phase algorithm is based on a Mandani Fuzzy Logic classifier that uses as inputs
the previous game phase and the longitudinal velocity and position of the teams to evaluate the
current game phase. These inputs are fuzzified and afterwards pass through an "IF-THEN" rule
database in order to determine the current game phase. The defensive system is identified based
on an error minimization algorithm, which approximates the players’ positions to circles around
the goal area.
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Finally, a handball game model based on a Hierarchical Coloured Petri Net is proposed. The
model includes three layers that gradually add more detail. On the first layer it is possible to
have a generic view of whether the game is stopped or on, the second layer details each of these
modes and the deepest layer provides information about the players’ interactions during attack and
defensive situations.

Tests conducted during a handball professional competition proved the architecture concept
with an accuracy for player tracking above 95%. Moreover, tests validated that by using adaptive
colour subspaces based on the Fuzzy inspired methodology it was possible to better define the
teams’ colour properties, which contributed to the high tracking rates.

Tests on the phase detection methodology showed that the Fuzzy Logic classifier correctly
identifies phase change events with an accuracy above 86% and a time misalignment of 1.9s. On
the other hand, the defensive strategy is classified with an accuracy above 85%.

Besides the initial player study purpose, the system was also used to assess the physical effort
of handball referees during competitions and athletes during basketball training sessions.
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Chapter 1

Introduction

Sports have always played an important role in our society, first as a mean to prepare men for

hunting or fighting, then as a leisure activity or even as part of a competition.

Due to its importance in our society, sports have embraced technology in order to provide a

more immersive experience to fans by allowing different views, zooms of specific situations and

even the recording for posterior visualization.

On the other hand, there is also interest by the sports community on bringing the benefits of

scientific and technological development into the sports domain in order to provide mechanisms

for performing a more accurate and systematic analysis of the game, as well as to create new

mechanisms to aid training and decision making.

At the amateur level, users have now at their disposal several gadgets that allow localization

and effort evaluation (which includes speed, distance, motion information and time spent in prac-

tice).

Concerning high level competitions a small advantage of one team regarding another can be

of great importance and decisive for a match or even a complete championship. Therefore, at

this level there is great care in trying to benefit from all sources of information in order to gain

advantage over an opponent.

On a more academic level, sport teachers are also showing interest on having mechanisms to

aid during teaching and keep track of the evolution of the taught/trained issues.

An automatic tool able to perform a high level analysis of sport games could provide useful

material to all of the aforementioned groups. Such tool should be as non-intrusive as possible so

that it would not interfere in the game environment, allowing players to move as freely as possible

without any extra weight.

Pursuing this aim, the Faculty of Engineering of the University of Porto (FEUP) in collabo-

ration with the Faculty of Sports of the University of Porto (FADEUP) have developed a project

mostly focused on handball to address problems related with player tracking and game analysis.

1



2 Introduction

1.1 Motivation and Goals

As already referred, sports are taking considerable importance in our society, not only due to the

increasing interest by fans, but also due to the amount of economic transactions that are at stake.

These two factors have contributed for a quest from most professional sport teams to rely on

high level game analysis. The focus of this analysis can either be on the players as an individual

person or as part of a team.

Nowadays, this analysis is mainly done through visual observation from experts since video

is the least intrusive technology. However the existing software usually requires considerable user

intervention which delays the process of obtaining results on useful time.

An indoor sport is played in a sports hall that has very specific characteristics. Usually the

same sports hall can be used for several sports such as handball, basketball or volleyball. Further

complexity on the handball and basketball cases arises from the fact that they are invasion sports,

where teams are not segregated on the two halves of the field, but actively compete with each other

throughout the field.

Team sports have in common the fact that players wear similar equipment, move very rapidly,

are constantly changing their trajectory, interact with each other which often causes occlusions or

merging making it even more difficult to track the players.

Of course, each of these sports has its own specificities, for example handball is a very fast

game, with the main action zone near the 6 meter line. It is a high contact game where occlusion

between players of the same team and different teams often occurs. Statistics indicate that an

handball player can achieve velocities of around 7m/s and the ball 28m/s.

Taking into account this need from the sports community, and given the complexity adjacent

to the game itself, the focus of this thesis was to study and explore algorithms and techniques to

develop a non-invasive automatic image processing system for team sports with application on

indoor sports that is able to detect and track the players and perform game and tactical analysis.

1.2 Thesis Statement and Objectives

Concerning the motivation and goals behind this thesis it is defended that:

”It is possible to perform high level game analysis for indoor sports combining the information

obtained from a vision system with game models.”

From this statement some questions arise, namely:

Q1 What architecture should be used to achieve this goal?

Q2 What information should be extracted from the vision system?

Q3 How to extract that information?

Q4 How to model game concepts?
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Q5 How to extract metrics from the models?

In order to answer these questions the following objectives were outlined:

• propose a non-invasive image acquisition system adequate for an indoor sport’s hall

• devise methodologies to perform player detection and tracking given the proposed non-

invasive acquisition system

• develop algorithms for detecting the game concepts and extracting metrics associated with

them

• define a model for the handball game, able of modelling the game flow, but also the players

interactions

• validate the proposed methodologies in real game situations, by collecting data at official

competitions

1.3 Scientific Contributions

During the course of this thesis the following scientific contributions were performed:

• Design and definition of a modular architecture able to collect video footages from different

setups (number of cameras), process the video information and provide useful metrics to the

final user.

• Development of an adaptable colour calibration method based on a region growing method

combined with Fuzzy categorization, which is able to absorb the positional and temporal

colour variations of the teams’ equipment.

• Development of an indoor player tracking system, which was used to track not only the

handball players, but also to assess the referees effort during official competitions and

evaluate the classification of traditional observation methods.

• Study and development of methodologies to classify the handball game phase, as well as

the defensive team formation.

• Conceptualization and development of a handball game model based on a Hierarchical

Coloured Petri Net. The hierarchical nature of the module allows it to be modular and

easily adaptable to other indoor sports, such as basketball.

1.4 Document Structure

This document is organized into six chapters. Each chapter comprises a small introduction de-

scribing its contents followed by the content itself.



4 Introduction

Chapter 1, Introduction, is subdivided into 4 sections that introduce the subject of this thesis,

including the motivation and the goals inherent to it. It also provides the context of the problem

and the thesis statement.

Chapter 2, Methodologies and Fundamentals, provides a theoretical background regarding

methodologies and techniques commonly used in image processing systems as well as image

recognition and knowledge representation. The aim of this chapter is to provide a solid theoretical

background to better understand the subsequent chapters. Emphasis is given to image segmen-

tation, object recognition and tracking as well as modelling languages and formalisms. A brief

overview on CPN Tools, a tool to handle Coloured Petri Nets, is also provided.

Chapter 3, Related Research, presents a literature review on systems that have been devised to

tackle the player detection and tracking problem, as well as the issue of high level game analysis.

This chapter also highlights the main open issues.

Chapter 4, Methodology, explains the proposed solution, including the algorithms developed

to perform the player detection and tracking. This chapter also presents a game model based on

Hierarchical Coloured Petri Nets and the approach used to perform high level game analysis.

Chapter 5, Experimental Validation, describes the experiments taken in order to validate the

proposed methodologies.

Chapter 6, Conclusions, summarizes the main conclusions and contributions of this thesis. It

also launches possible directions for future developments.



Chapter 2

Methodologies and Fundamentals

This chapter intends to present some of the methodologies and concepts that are usually adopted

in this kind of systems, which come from different areas such as image processing, data mining,

machine learning and artificial intelligence.

2.1 Video Segmentation

Video segmentation is the first step, and probably the most critical, in any video (image) processing

system, because the quality of the final result is highly dependent on a good segmentation. There

are two main categories of video segmentation:

• Temporal segmentation - Segments the video into meaningful temporal sequences. It is

usually used as the first step of video annotation and segments the video taking into account

similarities/dissimilarities between successive frames (Koprinska and Carrato (2001)).

• Spatial segmentation - Aims to divide the content of each frame into homogeneous regions

that correspond to independent objects.

Due to the nature of this thesis, we are more concerned with spatial segmentation, therefore,

for more details on temporal segmentation please refer to Koprinska and Carrato (2001).

2.1.1 Spatial Video Segmentation

Spatial video segmentation inherits many of the methodologies used for image segmentation, with

the added benefit of allowing the incorporation of the temporal characteristics inherent to video.

Spatial segmentation methods are based on two basic properties of the image, discontinuity

and similarity (Gonzalez and Woods (2002)). Discontinuity methods are characterized by partition

the image based on the detection of intensity changes such as edges, while similarity methods,

segment the image into regions that are similar in some predefined characteristics.

5
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According to Monteiro (2008) and Vantaram and Saber (2012), colour image segmentation

techniques can be divided into two main categories, feature domain and image domain. These cat-

egories can be further refined into Clustering, Histogram Thresholding, Region Based, Boundary

Based and Motion Based methodologies (Figure 2.1).

Figure 2.1: Overview of image segmentation techniques (adapted from Monteiro (2008) and Van-
taram and Saber (2012)).

Feature domain methods, also named spatially blind based methods (Vantaram and Saber

(2012)) do not take into account the spatial relation among pixels, instead they segment regions

based on a feature/attribute space. On the other hand, image based (or spatially guided) methods

perform segmentation by analysing the spatial relation among pixels.

Initially, authors used only one method to segment the images, but nowadays, the tendency

is to aggregate techniques from different categories in order to achieve better results. A typical

example of this is the JSEG algorithm (Deng and Manjunath (2001)) that initially clusters colours

into several representative classes, afterwards replaces each pixel with its corresponding colour

class label and only then applies a region growing process directly to the class map.

2.1.1.1 Clustering

Clustering in image processing is a classification methodology for grouping the image feature

space into a set of meaningful groups or classes called clusters, where data belonging to the same

cluster possess a higher degree of similarity, when compared to data from other clusters. Usually

the feature space is based on intensity, colour or texture and ignores the spatial relation between

pixels on the image.

As defined in Kotsiantis and Pintelas (2004), there are five main approaches for clustering:

• hierarchical clustering (also known as graph based segmentation methods) represented by

a hierarchical decomposition of the set of data (or objects) using a specific criteria. These

methods, depending on how the hierarchical decomposition is performed, either bottom-up

or top-down, can be further classified into agglomerative or divisive, respectively;

• partitioning clustering methods divide the data into k clusters based on some evaluation

criteria;
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• density-based partitioning methods allow clusters to grow into arbitrary shapes by using

density and connectivity functions;

• grid-based methods perform the clustering on a grid that is obtained by first quantizing the

clustering space into a number of finite cells;

• model-based methods try to optimize the fit between a model and the data.

Hierarchical clustering groups data objects into an hierarchy, and can be divided into (Forsyth

and Ponce (2003)): divisive methods, where the entire data set is regarded as a cluster and then

clusters are recursively split to yield a good clustering; and agglomerative methods where each

data item is regarded as a cluster and clusters are recursively merged to yield a good clustering.

Agglomerative methods use an inter-cluster distance to merge neighbour clusters, while divi-

sive clusters use this distance to split clusters. A good way to represent hierarchical clustering is

using a tree structure called dendrogram.

Partitioning clustering includes the well-known K-means (Hard Clustering) (Hartigan (1975)),

K-Medoids (Kaufman and Rousseeuw (1987)) and Fuzzy C-means (Fuzzy C-Clustering) (Bezdek

(1981)).

K-means is one of the simplest unsupervised clustering methods and starts with a random k

initial partition of the feature space (with j points). Each partition (i) is characterized by its centroid

(mean ci) and the objective is to minimize the within-cluster sum of squares of the data points x j

(equation 2.1), by exchanging, in each iteration, points to the cluster with the nearest centroid.

f (i, j) =
k

∑
i=1

data

∑
j=1

(x j− ci)
T (x j− ci) (2.1)

Fuzzy C-clustering is quite similar to K-means but allows pixels to belong to multiple classes

with different degrees of membership.

Density-based clustering algorithms are able to find clusters with arbitrarily shapes, handle

noisy data and only require one scan in order to find a solution. Examples of this class of algo-

rithms are DBSCAN (Ester et al. (1996)) (Density-Based Spatial Clustering of Applications with

Noise) or BRIDGE (which combines DBSCAN with K-means) (Dash et al. (2001)).

Grid-based clustering is especially suitable for very large datasets, due to the considerable data

reduction achievement obtained from quantization. Grid-based clustering WaveCluster algorithm

was used to perform mammographic segmentation (Barnathan (2012)).

Model-based clustering allows including knowledge about the domain and contrarily to K-

means offers more flexibility about the clusters models. A commonly used algorithm for model-

based clustering is the Expectation-Maximization algorithm (EM). This algorithm was first pro-

posed by Dempster et al. (1977) and consists in an iterative maximum-likelihood procedure for

parameter estimation from missing or incomplete data.
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2.1.1.2 Thresholding

As defined in (Sezgin and Sankur (2004)), thresholding techniques can be further subdivided into

six categories considering the information used to perform the segmentation: histogram shape,

clustering, entropy, object attribute similarity, spatial and local methods.

Histogram shape based methods exploit the histogram shape either by searching histogram

peaks and valleys, analysing the histogram concavities via the convex hull or approximating the

histogram shape by functions.

Histogram clustering based methods separate the grey-level samples into two classes (back-

ground and foreground). Approaches include:

• iteratively searching for the threshold value until finding an optimal point where the new

value is sufficiently near the previous one (Iterative Thresholding);

• assuming that an image can be characterized by a mixture distribution of foreground and

background pixels and solving a minimum error Gaussian density fitting problem or mini-

mizing the total misclassification error (Minimum Error Thresholding);

• using the cross-over point of fuzzy membership functions (Fuzzy Clustering Thresholding);

• or the most used histogram thresholding method, the Otsu method (Otsu (1979)), which

computes the optimal threshold by determining the intensity value that minimizes the weighted

within class variances of the two classes (Clustering Thresholding).

Entropy based thresholding methods determine the threshold value based on the grey level

distribution entropy, either by maximizing the entropy of the thresholded image, minimizing the

cross-entropy between the input grey-level image and the output binary image or using fuzzy

memberships to characterize how strongly a pixel belongs to the background or foreground and

minimizing the sum of fuzzy entropies.

Object attribute similarity methods determine the threshold value by measuring the similarity

of a specific characteristic (such as edges, grey-level moments or texture) between the original

image and the binarized image.

The main drawback of histogram thresholding is that not always histograms have obvious

peaks and the segmented regions may not be contiguous if spatial information is not taken into

consideration (Monteiro (2008)). Therefore, spatial thresholding methods (Sezgin and Sankur

(2004)) incorporate information about the neighbouring pixels such as local average grey levels,

quadtree thresholding or co-occurrence probabilities, among others.

Since images may not have uniform luminance (for example due to shadows or non-uniform

illumination), global threshold techniques like the ones previously referred may not be suitable.

Therefore, locally adaptive threshold techniques have emerged which try to surpass this limitation

by computing individual thresholds for each pixel using information from the neighbourhood of

the pixel.
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Histogram thresholding can be quite straightforward in grey scale images as long as the in-

tensity of pixels belonging to the background and foreground are somewhat different, however on

colour images this procedure is more complex and computationally costly because of the multi-

dimensionality of the colour space.

In order to overcome these problems, authors have developed methods for storing and dealing

with information on the 3D colour space, namely by using binary trees, where each node contains

the number of pixels with a given RGB (red, green, blue) range of values or by projecting the 3D

space onto a lower dimensional space (Cheng et al. (2001)).

2.1.1.3 Region Based

Region-Based techniques intend to split the image domain by progressively fitting statistical mod-

els to the image properties (colour, intensity, texture or motion) and are based on the fact that

adjacent pixels in a same region have similar visual features. There are four types of region-based

algorithms: region growing, region splitting, region merging and hybrid algorithms.

Region growing algorithms start with predefined seed pixels and gradually agglomerate pixels

around these seeds that satisfy a given criteria of intensity, colour or texture. This growth process

stops when no more pixels can be agglomerated into the regions. One advantage of these methods

is that the regions obtained are spatially connected and compact, however they are quite dependent

on a good seed choice (Monteiro (2008)).

On the other hand, region splitting methods start with a non-homogeneous image segmenta-

tion result and continuously split the regions until the desired homogeneity criteria is obtained.

Quadtree and Watershed transform are examples of splitting methods (Beucher and Lantuejoul

(1979)).

In Watershed transform, an image is seen as a topographic image immersed in a lake, with

holes pierced in local minima. The method starts by filling up basins with water starting at these

local minima. In the process different basins can merge with each other forming dams. The

stopping condition is achieved when the water level reaches the highest peak in the image. As

a result, the image is segmented into regions or basins separated by dams that correspond to the

watershed lines.

Region merging methods objective is to merge regions that satisfy a given homogeneity crite-

ria.

A very well-known algorithm that is considered hybrid (both growing and merging) is JSEG

(Deng and Manjunath (2001)). In JSEG colour segmentation and spatial segmentation are decou-

pled, so initially colours are quantized into several representative classes and pixels are replaced by

their corresponding colour class labels and only then a region growing process is applied directly

on this class map. Afterwards, the obtained regions are merged using colour similarity criteria.
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2.1.1.4 Boundary Based

As the name indicates, boundary based methods segment the image based on edges by locating

pixels where the intensity (colour) changes when compared to its neighbours. Edge-based methods

segment the image by finding the edges of each region using one of the well-known edge detectors

(Canny Canny (1986), Sobel Sobel (1970), Roberts Roberts (1963)). Afterwards it is usually

necessary to perform some edge linking in order to complete the boundaries.

Deformable models are also boundary based methods and can be classified (Monteiro (2008))

based on the implementation into:

• parametric, which represent curves and surfaces explicitly in their parametric form during

the deformation such as snakes;

• geometric, that represent curves and surfaces implicitly as a level set of a higher dimen-

sional scalar function. Active contours or level sets are well known methods of geometric

deformable models.

2.1.1.5 Motion Based

On videos, contrary to static images, besides the two physical components (x and y) there is also

the time component. Using this property it is possible to segment images based on motion along

time.

In order to perform this task there are two main approaches: background subtraction and

optical flow.

Background subtraction can be used in cases where a more or less fixed background can be

assumed. Several background subtraction techniques have been proposed in literature. The main

issue with these methods is to obtain a good estimate of the background.

The simplest method to model the background is to use a single static image without objects.

However this approach works rather poorly, because it does not take into account changes that

may occur in the background (for example light effects). More robust methods include estimating

the background model using a moving average (Heikkila and Silvén (1999)), median or even a

mixture of Gaussians (Grimson et al. (1998)).

Optical flow (Barron and Thacker (2005)) is based on the fact that when an object moves in

front of a camera, there is a corresponding change in the image. Therefore if a point p0 in an

object moves v0, then the image point pi can be assigned a vector vi to indicate its movement on

the image plane.

In order to compute the optical flow of an image two assumptions are made: there is colour

constancy, and pixels represented by I(x,y, t) perform a small motion (δx,δy) in δ t time. From

these two constraints equation 2.2 is obtained.

I(x,y, t) = I(x+δx,y+δy, t +δ t) (2.2)
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Since the displacement (δx,δy) is small enough it is possible to perform a 1st order Taylor

expansion of equation 2.2 into 2.3.

I(x+δx,y+δy, t +δ t) = I(x,y, t)+
∂ I
∂x

δx+
∂ I
∂y

δy+
∂ I
∂ t

δ t +HOT (2.3)

,where HOT represents the higher order terms which are small and can be ignored.

Further exploring equation 2.3 it is possible to obtain 2.4:

∂ I
∂x δx+ ∂ I

∂y δy ∂ I
∂ t δ t = 0↔ ∂ I

∂x
δx
δ t +

∂ I
∂y

δy
δ t +

∂ I
∂ t

δ t
δ t = 0

↔ ∂ I
∂x vx +

∂ I
∂y vy +

∂ I
∂ t = 0

assuming Ix =
∂ I
∂x , Iy =

∂ I
∂y and It = ∂ I

∂ t then

(Ix, Iy).(vx,vy) =−It ↔5I.v =−It

(2.4)

This equation has two unknowns and consequently does not have a unique solution. This is

the mathematical consequence of the aperture problem, which means that this first order system

can only detect motion perpendicular to the orientation of the contour that is moving.

To add an additional constraint, Horn uses a global regularization calculation (Horn and Schunk

(1981)). Their work assumes that images consist in objects undergoing rigid motion, and so, over

relatively large areas the optical flow will be smooth. Then they minimize the square of optical

flow gradient magnitude using 2.5.

∫
D
(5I.−→v + It)2 +λ

2
[
(
∂vx

∂x
)2 +(

∂vx

∂y
)2 +(

∂vy

∂x
)2 +(

∂vy

∂y
)2
]

dxdy (2.5)

,where5I = ( ∂ I
∂x ,

∂ I
∂y) is the spatial intensity gradient, It the pixel colour intensity,−→v = (vx,vy)

the image velocity at point (x,y) and λ a regularization constant.

In contrast, Lucas uses a local least squares calculation to provide the constraint of equation

2.6 (Lucas (1981)).

∑
x,y∈Ω

W 2(x,y) [5I(x,y, t).−→v + It(x,y, t)]
2 (2.6)

Where W 2(x,y) is a weighting function that attributes more weight to the central pixels,

5I(x,y, t) the spatial intensity gradient and −→v = (vx,vy) the image velocity at point (x,y) and

time instant t.

2.1.2 Object Tracking

Tracking is the process of locating the position (state) of a moving object(s) in time. The tracking

algorithm analyses the video frames and outputs the estimate of the position (state) of the moving

target(s) within each video frame.

Tracking is different from detection in a way that detection explores all possible object’s posi-

tions configurations since there is no prior knowledge on the state, while in tracking the objective

is to evaluate the existence of the object near a predicted location.
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The following subsections explain some of the methodologies that have been proposed to deal

with the tracking problem, which include CAMSHIFT, different types of graphs, Kalman Filters

and Particle Filters.

2.1.2.1 CAMSHIFT

The Continuously Adaptive Mean Shift (CAMSHIFT) algorithm (Bradski (1998)) is based on the

Mean Shift Algorithm (Comaniciu and Meer (1997)), a robust non-parametric iterative technique

for finding the mode of probability distributions. The block diagram of CAMSHIFT can be seen

in Figure 2.2. In this method for each video frame, the raw image is converted into a colour

probability distribution image via a colour histogram model of the colour being tracked. The

colour probability distribution is computed through a Histogram Back-Projection method. His-

togram Back-Projection is a primitive operation that associates the pixel values in the image with

the value of the corresponding histogram bin. The probability image is computed by comparing

the target histogram with any consecutive histogram and each pixel value is characterized by the

probability of the input pixel belonging to the target histogram.

Choose(initial
search(window

size(and(location
HSV(Image

Set(calculation
region(at(search
window(centre
but(larger(in
size(than(the
search(window

Colour(histogram
lookup(in(calculation
region

Colour(probability
distribution

Find(centre(of(mass
within(the(search
window

ConvergedYES NOReport X,
Y, Z, and

Roll

Use(/X,Y.(to(set
search(window
centre,2*area

1/2

to(set(size.

Centre(search(window
at(the(centre(of(mass
and(find(area(under(it

Figure 2.2: Block diagram of CAMSHIFT (adapted from Bradski (1998)).

Afterwards the centroid of the area is computed using the Mean Shift algorithm. The Mean

Shift uses the zeroth and first moments of the colour probability histogram. The search window in
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the next video image is then centred over this centroid and the size is adjusted as a function of the

zeroth moment. This algorithm has real practical applications for skin colour object tracking.

2.1.2.2 Graphs

Although most graphs fail on the initial definition of tracking (they do not limit the search, but

rather consist in a matching problem of the detected objects), they are commonly used on the

tracking phase.

There are several types of graphs depending on their characteristics. A simple graph, G, is

defined as G = (ℵ,A), where ℵ is a finite set of vertices of G, while A is a set of edges that

connect elements of ℵ.

A weighted graph, G = (ℵ,A), is a graph where each arc (i, j) has an associated weight wi j.

The weight can represent concepts such as affinity, distance or connection cost.

A directed weighted graph is similar to a weighted graph, however each arc has a well-

established direction.

Figure 2.3 illustrates these three types of graphs.

(a) (b) (c)

Figure 2.3: Examples of graphs: (a) simple graph (b) weighted graph (c) directed weighted graph.

2.1.2.3 Kalman Filter

The Kalman Filter (Welch and Bishop (2002)) was developed by Rudolf Kalman (Kalman (1960))

and consists in an efficient recursive filter that estimates the state of a dynamic system from a

series of incomplete and noisy measurements. It consists of two alternating operations: predicting

the new state and its uncertainty, and correcting it with the new measurement.

The state estimation x ∈ ℜn of a discrete-time process is modelled by the linear stochastic

difference equation 2.7 with a measure z ∈ℜm (Equation 2.8).

xk = Axk−1 +Buk +wk−1 (2.7)

zk = Hxk + vk (2.8)
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Where A is the state model matrix, B is the input model matrix, H is the observation model

matrix, uk is the known input vector state at step k and the random variables wk and vk represent

the process and measurement noise. They are assumed to be independent (of each other), white,

and with normal probability distributions (Equation 2.9).

p(w)∼ N(0,Q)p(v)∼ N(0,R) (2.9)

The predicting operation of the Kalman Filter is responsible for projecting forward (in time)

the current state (x̂k−1) and error covariance (Pk−1) estimates to obtain the a priori estimates ( x̂−k
and P−k ) for the next time step according to equations 2.10 and 2.11.

x̂−k 1 = Ax̂k−1 +Buk (2.10)

P−k = APk−1AT +Q (2.11)

The correcting operation, (equation 2.12 and 2.13), incorporates a new measurement (zk) into

the a priori estimate to obtain an improved a posteriori estimate (x̂k ) and error covariance (pK).

Kk is the Kalman Gain and is obtained according to 2.14.

x̂k = x̂−k +Kk(zk−Hx̂−k ) (2.12)

Pk = (I−KkH)P−k (2.13)

Kk = P−k HT (HP−k HT +R)−1 (2.14)

The complete cycle of the Kalman Filter is illustrated by Figure 2.4.

One of the great limitations of the Kalman Filter is that it assumes the system is linear. In

order to overcome this limitation the Extended Kalman Filter (EKF) or the Unscented Kalman

Filter (UKF) can be used instead.

The Extended Kalman Filter linearizes the state around the current mean and covariance us-

ing the partial derivatives of the process and measurement functions to compute estimates and is

governed by the non-linear stochastic equations 2.15 and measure 2.16 that are linearized into

equations 2.17 and 2.18, respectively.

xk = f (xk−1,uk,wk−1) (2.15)

zk = h(xk,xk) (2.16)

xk ∼ x̃k +A(xk−1− x̂k−1)+Wwk−1, x̃k = f (x̂k−1,uk,0) (2.17)
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Figure 2.4: Complete cycle of the Kalman Filter (adapted from Welch and Bishop (2002)).

zk ∼ z̃k +H(xk−1− x̃k−1)+V vk, z̃k = h(x̂k,0) (2.18)

In equations 2.17 and 2.18, xk is an a posteriori estimate of the state at step k, wk and vk

represent the process and measurement noise, A is the Jacobian matrix of partial derivatives of f

with respect to x, W is the Jacobian matrix of partial derivatives of f with respect to w, H is the

Jacobian matrix of partial derivatives of h with respect to x and V is the Jacobian matrix of partial

derivatives of h with respect to v.

These premises lead to different equations as illustrated in Figure 2.5.
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In the EKF, the state distribution is approximated through the first-order linearization of the
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nonlinear system which can introduce large errors in the true a posteriori mean and covariance

values and lead to sub-optimal performance and sometimes divergence of the filter.

The Unscented Kalman Filter (Julier and Uhlmann (1997)) addresses this problem by using a

deterministic sampling technique known as the Unscented Transform (UT) to pick a minimal set

of sample points (called sigma points) around the mean. These sigma points are then propagated

through the non-linear functions, from which the mean and covariance of the estimate are then

recovered.

The result is a filter that more accurately captures the true mean and covariance with no extra

computational complexity. The usage of UT results in approximations that are accurate to the third

order for Gaussian inputs and at least to the second-order for non-Gaussian inputs. The cycle of

the Unscented Kalman Filter is presented in Figure 2.6.

i

ii

i

Figure 2.6: Complete life cycle of the Unscented Kalman Filter.

2.1.2.4 Particle Filter

Like the EKF and UKF, Particle Filters (Arulampalam et al. (2002)) are able to deal with non-linear

systems with the advantage of dealing with non-Gaussian distributions. However, it is important to

notice that if the assumptions for Kalman filters are valid, no Particle Filter can outperform them,
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additionally depending on the dynamic model, Unscented Kalman filters or Extended Kalman

filters may produce satisfactory results at lower computational costs (Arulampalam et al. (2002)).

The Sequential Importance Sampling (SIS) algorithm also known as Bootstrapping Filtering,

Condensation Algorithm, Particle Filtering or survival of the fittest, is a technique for implement-

ing a recursive Bayesian filter by Monte Carlo (MC) simulations. The required state transition

posterior density function (p(x0:k|z1:k)) is represented by a set of random samples with associ-

ated weights ( Equation 2.19), where the random measure is represented by {xi
0:k,w

i
k}

NS
i=1, and

consists of a set of support points {xi
0:k, i = 1, ...,NS} with associated weights {wi

k, i = 1, ...,NS}.
x0:k = {x j, j = 0, ...,k} is the set of all states up to time k, while δ is the Dirac delta function.

p(x0:k|z1:k)≈
NS

∑
i=1

wi
kδ (x0:k− xi

0:k) (2.19)

As the number of samples becomes very large, this MC characterization becomes an equivalent

representation of the usual functional description of the posterior density function and the SIS filter

approaches the optimal Bayesian estimate.

Usually it is not possible to draw samples xi
k directly from the posterior density function

p(xi
0:k|z1:k), therefore samples are obtained directly from a (different) density function q(xi

0:k|z1:k)

that obeys to equation 2.20 and can be chosen freely.

wi
k ∝

p(xi
0:k|z1:k)

q(xi
0:k|z1:k)

(2.20)

If the importance density function is chosen so that it obeys to equation 2.21, then the new

samples xi
0:k ∼ q(x0:k|z1:k) can be obtained by augmenting each of the existing samples xi

0:k ∼
q(x0:k−1|z1:k−1) with the new state xi

k ∼ q(xk|x0:k−1,z1:k) where the weight update follows equation

2.22.

q(xi
0:k|z1:k) = q(xk|x0:k−1,z1:k)q(x0:k−1|z1:k−1) (2.21)

wi
k ∝ wi

k−1
p(zk|xi

k)p(xi
k|xi

k−1)

q(xi
k|xi

0:k−1,z1:k
(2.22)

Furthermore, if q is only dependent on the last state and on the observation then the posterior

filtered density function can be approximated by equation 2.23.

p(xk|z1:k)≈
NS

∑
i=1

wi
kδ (xk− xi

k) (2.23)

The SIS algorithm is then a recursive propagation of weights and support points as each mea-

surement is received. Figure 2.7 represents the pseudo code for the SIS particle filter.

The main problem with the Sequential Importance Sampling algorithm is that after a few it-

erations, the weights are concentrated on a few particles (degeneracy problem). There are some
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Figure 2.7: Pseudo-code for SIS particle filter in Arulampalam et al. (2002).

options to overcome this problem, namely the usage of many samples, a good choice of the im-

portance density function or resampling.

The basic idea behind resampling is to eliminate particles that have small weights and to

concentrate on particles with large weights "Survival of the fittest". The resampling step involves

generating a new set {xi∗
k }

NS
i=1 by resampling (with replacement) NS times from an approximated

discrete representation of p(xk|z1:k) ( Equation 2.23) so that P(xi∗
k = x j

k) = wi
k. The pseudo-code

for the resampling algorithm is shown in Figure 2.8.

Figure 2.8: Pseudo-code for resampling algorithm in Arulampalam et al. (2002).

The resampling algorithm eliminates the degeneracy problem, however it continuously selects

particles with high weight which can cause loss of diversity or sample impoverishment. In order

to counteract these problems some new special cases of the SIS algorithm have been proposed.

These special cases can be derived from the SIS algorithm by an appropriate choice of importance
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sampling density and/or modification of the resampling step. Sampling Importance Resampling

(SIR), Auxiliary Sampling Importance Resampling (ASIR) or Regularized Particle Filter (RPF)

are just some examples.

2.2 Image Recognition

Image recognition is the problem of determining whether or not the image contains/represents

some specific object, scene or activity. This task is usually very simple for humans, nevertheless

it is still an open issue in computer vision where most image recognition methods can solve this

problem only for specific situations.

A typical image recognition system is composed of two main blocks: one that is responsible

for extracting the features of interest (Feature Extraction) and another that performs the classifica-

tion relying on the features extracted (Classifier).

Features can be classified into low-level, mid-level and high-level features (Coimbra (2013)).

Low-level features include specific image and video features such as colour, texture, shape and

motion. Mid-level features contain some subjectivity and usually are the result of a segmentation

process or identification. High-level features already have a semantic interpretation and knowl-

edge.

Sometimes the dimensionality of the extracted features can be too high and some of the fea-

tures may be correlated, therefore, features dimensionality can be reduced by redesigning the

features and selecting an appropriate subset among the existing features (feature selection) or

transforming them into a different feature space either by using Principal Components Analysis

(PCA) or Linear Discriminant Analysis (LDA) (Bishop (2006)). PCA seeks a projection that best

represents the data in a least squares sense, while LDA seeks a projection that best separates the

data in a least squares sense.

The purpose of the Classifier is to transform low-level features into high-level features that

can be understood by humans and used to take some kind of decision or action. Several classifiers

have been proposed as denoted in Figure 2.9.

Figure 2.9: Overview of types of classifiers.
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These classifiers will be discussed in the following subsections.

2.2.1 Bayesian Classifiers

Bayesian classifiers have their foundations on the probability theory and, on average, these classi-

fiers yield the lowest probability of performing classification errors (Gonzalez and Woods (2002)).

In fact, the average loss of assigning a sample x, to a given class w j when it came from wk is given

by equation 2.24, where Lk j represents the loss due to the misclassification and p(wk | x) the prob-

ability that sample x comes from class wk.

r j(x) =
w

∑
k=1

Lk j p(wk | x) (2.24)

Applying the Bayes theorem, P(A |B)=P(B |A)P(A)/P(B), we get equation 2.25, where p(x |
wk) is the probability density function of the samples from class wk and P(wk) is the probability

of occurrence of class wk.

r j(x) =
1

p(x)

w

∑
k=1

Lk p(x | wk)P(wk) (2.25)

The classifier has W possible classes to choose and this choice, for a Bayesian Classifier, is

made based on the class that minimizes the total average loss. Thus, sample x will be assigned to

class wi if ri(x)< r j(x) for j=1,2,. . . W, j 6= i.

2.2.2 Non-Bayesian Classifiers

Contrary to Bayesian classifiers, non-Bayesian classifiers use training data to learn the classifiers

directly without estimating any probabilistic structure. There are two main groups of non-Bayesian

classifiers: distance based and boundary based.

2.2.2.1 Distance Based Classifiers

Distance based classifiers use some kind of distance measure in order to classify a given sample.

The Nearest Neighbour Classifier partitions the feature space into cells consisting of all points

closer to a given training point than to any other training point. It classifies a sample by assigning

it the label associated with its closest neighbour, given a distance function. All points in such a cell

are labelled by the class of the training point, forming a Voronoi tesselation of the feature space.

The k-Nearest Neighbour Classifier assigns to the sample the label most frequently represented

among the k nearest samples, so the decision is based on examining the labels of the k-nearest

neighbours and taking a vote.

The closeness on these two classifiers is defined by some kind of distance measure such as the

Euclidean, Manhattan or Minkowski distance.
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2.2.2.2 Boundary Based Classifiers

Boundary based methods define a boundary between classes. An example of a boundary based

classifier is the Linear Discriminant Classifiers (Bishop (2006)). This classifier is based on dis-

criminant functions that take as input a vector x with the sample features and assign it to one of

K classes, denoted Ck. The linear discriminant analysis method consists in searching, some lin-

ear combinations of selected variables (by using weights - wk), which provide the best separation

between the considered classes (Equation 2.26).

yk(x) = wT
k x+ωk0 (2.26)

Linear Discriminant Analysis can also be seen as a way to perform dimension reduction, so

the input vector may have D-dimensions but it is projected into a one dimension space. In general,

the projection onto one dimension leads to a considerable loss of information and usually classes

that are well separated in the original D-dimensional space may become strongly overlapped in

one dimension. Therefore Fisher proposed a function that maximizes the separation between the

projected class means while also giving a small variance within each class, thereby minimizing

the class overlap. Fisher formulates equation 2.26 as 2.27 and defines the weights (w) as 2.28.

yk(x) = wT
k x (2.27)

wk ∝ S−1
Wk

(mk+1−mk) ,where

mk =
1

Nk
∑

n∈Ck

xn ; mk+1 =
1

Nk +1 ∑
n∈Ck+1

xn

Sw = ∑
n∈Ck

(xn−mk)(xn−mk)
T + ∑

n∈Ck+1

(xn−mk+1)(xn−mk+1)
T

,where Nk(+1) is the number of samples of class Ck(+1)

(2.28)

2.2.2.3 Neural Networks

A neural network, from a classification perspective, can be seen as a mapping function where a

d-dimensional input x is submitted to the network and a M-vectored network output y is obtained

to make the classification decision. A neural network is composed of a number of nodes connected

by links that have associated a weight (Russell and Norvig (1995)).

Each node receives signals from its inputs and computes a new activation level that sends to

each of its output links (Figure 2.10).

The output computation comprises two components: the first component consists in a weighted

(Wj, i) sum of the unit’s input values (a j) represented in 2.29 and the second on an activation

function, g, which transforms the weighted sum into the final values and serves as the unit’s
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Figure 2.10: A neural network node (adapted from Russell and Norvig (1995)).

activation value, ai, for the following level. Different functions can be used for g, namely the

step, sign or sigmoid functions.

ini =
n

∑
j=0

Wj,ia j = Wi.ai (2.29)

There are two main groups of network structures, the feed-forward and the recurrent networks.

In feed-forward networks, links are unidirectional and do not contain cycles, while in recurrent

networks the links do not have restrictions (Russell and Norvig (1995)).

Feed-forward networks do not have an internal state and in order to build the network it is only

necessary to define the structure and compute the weights associated to each link. Usually this is

done using a back-propagation learning algorithm.

Recurrent networks are much more complex and have internal state stored in the activation

levels. Examples of recurrent networks are the Hopfield networks (Sathasivam and Abdullah

(2008)) and the Boltzmann machines (Ackley et al. (1985)).

2.2.2.4 Support Vector Machines

A Support Vector Machine (SVM) (Burges (1998)) performs classification by constructing a N-

dimensional hyper plane that optimally separates the data into two categories. SVM models are

closely related to neural networks. In fact, a SVM model using a sigmoid kernel function is

equivalent to a two-layer, perceptron neural network.

Considering the training data xi,yi , i=1..l, yi ∈ −1,1 , xi ∈ Rd and supposing a hyper plane

that separates the data in two classes (−1,1) the points x which lie on the hyper plane satisfy

w.x+b = 0 and all data must satisfy the following constraints:

xi.w+b≥ 1 for yi = 1

xi.w+b≤−1 for yi =−1
(2.30)

Let d+ (d−) be the shortest distance from the separating hyper plane to the closest positive

(negative) example and d++ d− the "margin" of a separating hyper plane, then for the linearly
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separable case, the support vector algorithm simply looks for the separating hyper plane with the

largest margin, the "maximum margin hyper plane". The instances that are closest to the maximum

hyper plane are called support vectors. There is at least one support vector for each class but there

can be more.

 

margin 

Support vectors 

w.x+b=0 

H1 
H2 

Figure 2.11: Support vectors.

Furthermore, d+ and d− are equal to 1/||w||, therefore it is possible to find the hyper plane

which gives the maximum margin by minimizing ||w||2. To solve this problem the Lagrangian

multipliers method is used as denoted on equation 2.31.

Lp =
1
2
‖w‖2−

l

∑
i=1

αiyi(xi.w+b)+
l

∑
i=1

αi (2.31)

Equation 2.31 must be minimized with respect to w and b, and simultaneously require that the

derivatives of LP with respect to all the ai vanish, all subject to the constraint ai ≥ 0.

For the case where classes are not separable, SVM can be extended by incorporating posi-

tive slack variables (ζ ). To incorporate these slacks, the constraints established in equation 2.30

must be changed according to 2.32 and so it is necessary to minimize |w|
2

2 C ∑i ζi which yields

minimizing Lagrangian of equation 2.33. In this equation C is a parameter chosen by the user

that is directly proportional to the penalty errors intended, while µi are the Lagrange multipliers

introduced to enforce positivity to xi.

xi.w+b≥ 1−ζi for yi = 1

xi.w+b≤−1+ζi for yi =−1
(2.32)

Lp =
1
2
‖w‖2 +C

l

∑
i=1

αi{yi(xi.w+b)−1+ζi}+
l

∑
i=1

µiζi (2.33)

2.2.2.5 Decision Trees

Decision Trees (Mitchell (1997)) are hierarchical decision systems in which conditions are sequen-

tially tested until a class is accepted. To this end, the feature space is split into unique regions,

corresponding to the classes, in a sequential manner. Upon the arrival of a feature vector, the
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searching of the region to which the feature vector will be assigned is achieved via a sequence of

decisions along a path of nodes of an appropriately constructed tree.

In the decision tree representation, each internal node tests an attribute, each branch corre-

sponds to an attribute value and each leave assigns a classification. The basic decision tree learning

algorithm, ID3 (Iterative Dichotomiser 3), employs a top-down, greedy search through the space

of possible decision trees selecting the attribute that is most useful for classifying examples. In or-

der to measure the worth of an attribute, a statistical property known as information gain is defined.

This property measures how well a given attribute separates the training examples, according to

their target classification.

The information gain takes into account an entropy measure (Equation 2.34) and corresponds

to the expected reduction in entropy caused by partitioning the examples according to it (Equation

2.35).

E(s) =−p+log2 p+− (−p−log2 p−) (2.34)

G(s,a) = E(s)− ∑
v∈V (a)

|Sv|
|S|

E(sv) (2.35)

Where, p+ and p− represent the proportion of positive and negative samples of S, respectively,

Sv is a subset of S for which the attribute a takes the value v, |Sv| and |S| are the number of elements

in Sv and S.

2.2.2.6 Fuzzy Classifiers

As defined by Kuncheva (2000), "a fuzzy classifier is any classifier which uses fuzzy sets either

during its training or during its operation".

Fuzzy theory was proposed by Lofti Zadeh in 1965 (Zadeh (1965)), as a way of dealing with

vagueness and imprecision in pattern classification and information processing areas.

Considering the space of objects X, traditional set theory attributes to each object, x, a belong

(µA(x) = 1) or no belong (µA(x) = 0) degree to a given class A. On the other hand, on fuzzy

theory each object has a given belonging degree (or membership) µA(x) in the interval [0;1] to a

fuzzy set (class). In case of the object not belonging to the set then µA(x) = 0, if the object fully

belongs to the set then µA(x) = 1 and if 0 < µA(x)< 1, then x is considered to be a fuzzy member

of A. In addition, an object can belong to different fuzzy sets with different belonging degrees (for

example, we could have µA(x) = 0.5 and µB(x) = 0.3). This methodology is the basis for the

already mentioned Fuzzy C-Means algorithm.

Other Fuzzy classifiers use the entire fuzzy engine (Fuzzy if-then systems) that include the

fuzzification, fuzzy inference and finally the defuzzification steps as highlighted by Kuncheva

(2000).

On these classifiers, n inputs (x = [x1, ...,xn)
T ∈ ℜn) are first fuzzified, which correspond to

determining the degree of membership of each input to each fuzzy logic membership function.
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These membership functions establish the relationship between the values of an element and its

degree of membership in a set.

To better understand each of these steps, let’s consider the example given in Negnevitsky

(2001) to classify projects according to the project funding and staffing. The sets defined for the

project funding are inadequate, marginal and adequate, while the sets for project staffing are

small and large and take the membership functions defined in Figure 2.12.

According to the characteristics of the project, its risk can be classified as high, normal or low

according to the following rules:

• RULE1: IF project funding is adequate OR project staffing is small THEN risk is low

• RULE2: IF project funding is marginal AND project staffing is large THEN risk is normal

• RULE3: IF project funding is inadequate THEN risk is high

Considering a given project with a project funding of 35% and project staffing of 60%, the

fuzzification step results in a membership degree of 0.5, 0.2 and 0.0 to the inadequate, marginal

and adequate input sets, respectively, and a degree of membership of 0.1 and 0.7 to the small and

large output sets, respectively.
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Small Large

x1 y1

Figure 2.12: Fuzzification step (adapted from Negnevitsky (2001)).

Once the membership degrees have been determined it is possible to perform the rule evalu-

ation, that consists in evaluating the antecedents of the fuzzy rules, which are then applied to the

consequent membership function as illustrated in Figure 2.13. (Note: this is a Mandani-Assilian

model, where both the antecedents as well as the consequents are represented by linguistic terms.

On the Takagi-Sugeno fuzzy systems the consequents are a function, usually a polynomial).

The defuzzification step is the last one and obtains a crisp value out of the aggregated output

fuzzy set. One of the most common methods, consists in determining the centre of gravity of the

output fuzzy set (COG), according to equation 2.36.

COG =

∫ b
a µA(x)xdx∫ b
a µA(x)dx

(2.36)

In the example given the outcome of the defuzzification is 64.7 (Figure 2.14), which indicates

that the risk associated with the project is of 64.7%.
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Figure 2.13: Fuzzy inference step (adapted from Negnevitsky (2001)).
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Figure 2.14: Defuzzification step (adapted from Negnevitsky (2001)).

2.2.3 Multiple Classifiers

As stressed by Kuncheva (2005) "By combining classifiers we are aiming at a more accurate

classification decision at the expense of increased complexity."
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According to Gunes et al. (2010) there are three categories of classification systems based on

the type of operation among classifiers: combination, cooperation or selection classifiers.

On combination classifiers each classifier is applied in parallel and the resulting outputs are

combined using voting methods, unanimous consensus, maximum/minimum/mean/product rules,

Bayesian theory, Possibility theory, Belief Theory or Fuzzy Sets Theory.

Combination classifiers can only be effective if the outputs of the different classifiers are decor-

related, which can be achieved by using different feature spaces, training sets or classification

methods.

Two widely used techniques, Bagging (Breiman (1996)) and Boosting (Schapire et al. (1998)),

have been used to guarantee this decorrelation on the training sets space.

Boosting attributes weights to each instance in the training set. These weights are updated at

every training cycle according to the performance of the classifier. Initially, all weights are set

equally, but on each round, the weights of incorrectly classified samples are increased so that on

the next rounds the classifier effort will focus on the miss classified examples in the training set.

This method also assigns weights to each classifier prior to the combination phase.

Bagging is based on creating several individual classifiers by using the same classifier but

different subsets of the training set. These subsets are obtained using the bootstrap technique

which aims to reduce the error of statistical estimators.

Cooperation classifiers use the information from one classifier to aid other classifiers making

a decision. Usually cooperative systems can use different types of classifiers in the classification

process because the information transmitted between them is the decision vector.

Classifiers used in cooperation can be specialized in one the following three characteristics:

feature space, decision space or representation space. Neural networks are a good example of

classifiers cooperating.

Algorithms based on a selection of classifiers can be static or adaptive, depending if the system

of classifiers used at any k moment is that of the learning stage (first case) or is the one that best

fits the characteristics of the pattern being classified (second case).

2.3 Knowledge Modelling and Representation

According to the Free On-line Dictionary of Computing (Foldoc (1994)), knowledge representa-

tion is:

"The subfield of artificial intelligence concerned with designing and using systems for storing

knowledge - facts and rules about some subject.

A body of formally represented knowledge is based on a conceptualisation - an abstract view

of the world that we wish to represent. In order to manipulate this knowledge we must specify how

the abstract conceptualisation is represented as a concrete data structure. Ontology is an explicit

specification of a conceptualisation."
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Knowledge representation appears in different forms, first order predicate logic, frames, prop-

erty lists, semantic nets, direct representation, procedure/subroutine and procedure/production sys-

tems (Davis and Yen (1998)).

As stated on the Free On-line Dictionary of Computing this conceptualisation can be achieved

through ontologies, in fact using ontologies it is possible to specify knowledge in a conceptual

way in terms of symbols that represent concepts and their relations. These symbols and relations

are defined using a formal language. There are various ontology languages, based on different

knowledge representation formalisms.

2.3.1 Knowledge Representation Formalisms

First-order predicate logic is commonly used in mathematics to prove theorems. It uses qualifiers

and logical operators to describe objects, properties, situations, and relationships. It is a simple

formalism, flexible and modular, however lacks organizational principles and has problems on

representing procedural or heuristic knowledge.

Frames look much like modern classes, without the methods and have two main parts: slots

to hold variable data (properties or attributes) and fixed parts to hold static data. Data inside the

frame can be of any kind, including procedures. Frames organize knowledge for easy retrieval,

reference and maintenance.

Property lists organize data into named values and lists of properties (or attributes) to describe

the state of the world using several object types. All appropriate properties for an object are

grouped into a list, and lists are easily structured in LISP (List Processing Language), a popular

expert system programming language. However, property lists are not very effective for inference-

oriented operations.

On semantic nets, knowledge consists of a collection of objects, object properties, concepts

and events represented by nodes connected by arcs (relationships) that allow inheritance of proper-

ties. With a semantic net, important associations and relationships can be described explicitly and

the inheritance hierarchy is easy to understand and revise. However establishing an inheritance

hierarchy is a difficult task and finding a specific piece of information can be inefficient (heuristic

inadequacy).

Direct representation also called analogical representation is based on analogy and can repre-

sent knowledge about certain aspects of the world in natural ways. Representations such as maps,

models, diagrams and music sheets are direct representations of knowledge. Direct representation

facilitates searching because the important constraints are already known. However it tends to

represent specific instances inappropriately when generality is needed.

In the procedure/subroutine approach, knowledge is contained in procedures, small programs

that know how to do specific things. This formalism is good for representing heuristic knowledge,

modelling complex meta-problems, performing extended logical inferences and reasoning. Nev-

ertheless, procedures and subroutines are difficult to verify or change and the information needed

to control the subroutines can limit or even exclude significant alternatives or information.
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Procedural knowledge is related to the procedure of carrying out an action. In this case, knowl-

edge is represented by a collection of loosely coupled procedures, which may be organized into

sets. Procedural knowledge allows easily adding, removing or updating information and is consis-

tent with compiler design. Because of the complexity of the logic, program execution is inefficient

and the process is constrained by the predetermined control flow imposed by the program.

2.3.2 Ontologies

Besides knowledge representation, ontologies have also been used in data bases, software engi-

neering, electronic commerce and semantic web, among others. Therefore ontology specification

languages are usually divided into classical and web-based (Corcho and Gomez-Perez (2000)).

Classical languages include Ontolingua, Open Knowledge Base Connectivity (OKBC), Oper-

ational Conceptual Language (OCML), Frame Logic (FLogic), CycL and LOOM and web-based

include eXtensible Markup Language (XML), Resource Description Framework (RDF), XML-

Based Ontology Exchange Language (XOL), Simple HyperText Markup Language (HTML) On-

tology Extension (SHOE), Ontology Interchange Language (OIL), Defense Advanced Research

Projects Agency (DARPA) Agent Markup Language (DAM) and Web Ontology Language (OWL).

Ontologies are composed of concepts, relations and instances, which according to Grimm et al.

(2007), can be defined as:

• Concepts represent nodes in semantic networks, unary predicates in logic or concepts in

description logics. They represent the ontological categories that are relevant in the domain

of interest;

• Relations symbolize arcs in semantic networks, binary predicates in logic or roles in de-

scription logics. They semantically connect concepts, as well as instances, specifying their

interrelations;

• Instances map to individual nodes in semantic networks, or to constants in logic. They

represent the named and identifiable concrete objects in the domain of interest.

2.3.2.1 Classical Ontology Specification Languages

Ontolingua (Farquhar et al. (1997)) from the Stanford University is based on KIF (Knowledge

Interchange Format) (Genesereth and Fikes (1994)) and Frame Ontology. It is the ontology build-

ing language used by the Ontolingua Server. KIF provides definition of objects, functions and

relations and is based on the first-order predicate calculus, with a prefix notation. It allows the

representation of meta-knowledge and non-monotonic reasoning rules.

OKBC (Chaudhri et al. (1998)), Open Knowledge Base Connectivity, specifies a protocol for

accessing knowledge bases stored in frame knowledge representation systems and it is considered

complementary to language specifications developed to support knowledge sharing. It supports

network connections such as the direct access to knowledge databases.



30 Methodologies and Fundamentals

OCML (Domingue et al. (1999)) stands for Operational Conceptual Modelling Language and

was developed at the Knowledge Media Institute (United Kingdom). It provides mechanisms for

expressing items such as relations, functions, rules (with backward and forward chaining), classes,

instances and logical mechanisms for efficient reasoning. It is compatible with Ontolingua.

FLogic (Kifer et al. (1995)) or Frame Logic integrates frame-based languages and first-order

predicate calculus. It can represent most of the structural aspects of object-oriented and frame-

based languages.

LOOM (MacGregor (1991)) is a high-level programming language and environment intended

for constructing expert systems. It supports a "description" language for modelling objects and

relationships, and an “assertion” language for specifying constraints on concepts and relations,

and to assert facts about individuals.

2.3.2.2 Web-Based Ontology Specification Languages

XML (Bray et al. (2008)), eXtensible Markup Language, derives from Standard General Markup

Language (SGML). It envisions that it is easier making implementation and interoperability with

both SGML and HTML. XML allows users to define their own tags and attributes, define data

structures, extract data from documents and develop applications which test the structural validity

of a XML document. XML itself has no special features for the specification of ontologies, as it

just offers a simple but powerful way to specify a syntax for an ontology specification language.

RDF (Lassila and Swick (1999)), Resource Description Framework, has a strong relationship

with XML and was developed by the W3C (World Wide Web Consortium) for the creation of

metadata describing Web resources. One of the goals of RDF is to make it possible to specify

semantics for data, based on XML in a standardized and interoperable manner. The RDF data

model does not provide itself mechanisms for defining the relationships between properties (at-

tributes) and resources, this is done by RDFS (RDF Schema) (Brickley and Guha (2004)). RDFS

is a declarative language used for the definition of RDF schemas. It is based on some ideas from

knowledge representation (semantic nets, frames and predicate logic).

XOL (Karp et al. (1999)) was developed by Pangea Systems Inc. and SRI International. XOL

stands for XML-Based Ontology Exchange Language. It was designed to provide a format for

exchanging ontology definitions among a set of interested parties by acting as an intermediate lan-

guage for transferring ontologies among different database systems, ontology development tools

or application programs.

SHOE (Luke and Heflin (2000)), Simple HTML Ontology Extension, was developed by the

University of Maryland. SHOE is a HTML extension and its objective is to incorporate in Web

documents semantic knowledge and provide specific tags for ontology representation.

OIL (Fensel et al. (2000)), Ontology Interchange Language, is a standard proposal for de-

scribing and exchanging ontologies. It has been designed to provide most of the modelling primi-

tives commonly used in frame-based and description logic ontologies. It is compatible with RDF

Schema and allows defining concepts, relations, functions and axioms.
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DAML (Ouellet and Ogbuji (2002)) (DARPA Agent Markup Language) is an extension of

XML and RDF languages. It consists in a simple language for expressing more sophisticated RDF

class definitions than RDFS.

OWL (McGuinness and van Harmelen (2004)), Web Ontology Language, is recommended by

W3C when information needs to be processed both by applications and people. This language

can be used to explicitly represent concepts and their relationships. OWL is better in expressing

concepts than XML, RDF or RDFS.

2.3.3 Petri Nets

Petri Nets (Petri (1966)), as highlighted by Bobbio (1990), are a very powerful tool for represent-

ing complex logical interactions between physical components or activities in a system. Their

advantages include an intuitive graphical formalism allied to a strong mathematical background

which allows simulating and demonstrating the system. PN have been used in the most varied

fields which range from communication protocols, manufacturing systems, software development,

chemical processes (Zurawski and Zhou (1994)) to sports (Perše et al. (2010)), (Bai et al. (2009)),

(Marin et al. (2010)).

A classical PN (Petri (1966)) consists of three types of components: places (circles), tran-

sitions (rectangles) and arcs (arrows). Places represent possible states of the system, transitions

are events or actions which cause the change of state and arcs connect a place to a transition and

vice-versa.

The state of a PN is defined by its marking (marked PN), which is accomplished by additional

components named tokens (black dots). The PN marking is defined by the set of tokens residing

in the different places. Moreover the PN marking allows defining its possible transitions (future

states). In fact, a transition can only be performed when all its input places contain at least one

token. The action performed by a transition is to remove a token from each input place and add a

token to each output place (see Figure 2.15).

P1 P2
T1 T2 P3

P1 P2
T1 T2 P3

P1 P2
T1 T2 P3

P1

P2

T1 P3

P1

P2

T1 P3

Figure 2.15: Example of two PN and their firing sequence.

Most systems cannot, however, be represented by classical PN, due to their complexity. There-

fore, high level PNs have emerged along the years:
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• Deterministic Timed Petri Nets (DTPNs) have a deterministic firing time or time interval

associated with each transition, place or arc (Wang (1998));

• Stochastic Timed Petri Nets (STPNs) are similar to DTPNs, but each transition is associated

with a random firing time (Wang (1998));

• Coloured Petri Nets (CPNs) (Jensen (1991)) include in each token a data value named token

colour. These colours can be used and modified by occurring transitions;

• Hierarchical Coloured Petri Nets (HCPNs) (Jensen (1992)) allow to construct a large model

by combining a number of small CP-nets into a large net by using substitution or place

transitions. Along with the definition of HCPNs, Jensen (1992) have also launched the basis

for a tool – CPN Tools – that allows for the implementation, simulation and analysis of

Hierarchical Coloured Petri Nets.

2.3.4 CPN Tools

This subsection intends to explain how the CPN Tools software works, so that the model defined

on chapter 4 (4.5) can be more easily understood.

CPN Tools is a software tool developed by the CPN group at Aarhus University in Denmark

from 2000 until 2010. Since then it has been managed by the AIS Group at the Eindhoven Uni-

versity of Technology. The first software version was developed by Kurt Jensen as part of his PhD

thesis and published in 1981 on Jensen (1981).

A typical image of CPN Tools is shown in Figure 2.16. The left side bar allows defining

several colour sets and variables as will be seen below, while on the main screen tab it is possible

to draw the HCPN with the respective transitions, arcs, places, among other instances.

The first step when defining a Petri Net on CPN Tools, consists in defining the colour sets and

variables. A colour set (colset) defines the colour properties of a token and can be classified as

simple or compound.

A simple colour set is only based on native colour sets, such as integers, strings, Booleans,

unit, enumerations and index. The syntax declaration for simple colour sets is given below:

colset name = type [ with user definitions];

, where the text between square brackets is optional. Using this notation it is possible to define the

following colour sets:

- colset PlayerID = int with 0..100;

- colset Team = with Team|TOpp;

- colset Ball = bool;

A compound colour set uses previously defined colour sets either by combining them as a

product of colour sets; a record, which is identical to the Cartesian product of the values; a list
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Figure 2.16: Example of the main screen of CPN Tools.

that allows to define a variable length colour set; an union to obtain a disjoint union of previously

defined colour sets or a subset of colour sets, according to the following syntax:

- colset name = product name1 ∗name2 ∗ ...∗namen;

- colset name = record id1 : name1 ∗ id2 : name2 ∗ ...∗ idn : namen;

- colset name = list name0[with int− exp1...int− exp2];

- colset name = union id1[: name1]+ id2[: name2]+ ...+ idn[: namen];

- colset name = subset name0withsubset− list;

With this syntax the following colour sets can be defined:

- colset Player = product PlayerID*Team;

- colset TeamPlayers = product Player*Player*Player*Player*Player*Player*Player;

- colset TeamBall = product Team*Ball*TeamPlayers;

Once the several colour sets are defined, it is possible to define the variables that will be used

throughout the HCPN. In CPN Tools a variable is an identifier whose value can change during the

execution of the model. A variable is defined as illustrated below:

var id1, id2, ..., idn : csname;

,where csname is the name of an already defined colour set.

With the previous defined colour sets it is possible to define variables such as:
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- var dTeam, dTeam2: Team;

- var dPlayer, dPlayer1, dPlayer2, dPlayer3, dPlayer4, dPlayer5, dPlayer6, dPlayer7, dPlayer8:

Player;

- var dTeamPlayers, dTeamPlayers2: TeamPlayers;

For readability purposes, all variables are preceded by a "d" in order to indicate that they refer

to data. This nomenclature allows to easily differentiating between a colour set and the respective

variable.

Besides the declarations already defined, the CPN Tools software also provides instances for

places, transitions and arcs as illustrated in Figure 2.17.

Transition Place 2Place 1

Figure 2.17: Instances provided by CPN Tool software.

Each place can have three types of inscriptions: place name, colour set and initial marking.

The place name is not mandatory, but it is useful to better understand the network. The colour set

inscription is very important because it determines the types of tokens that can be put in that place.

Like the place name, the initial marking inscription is optional and defines the set of tokens that

are assigned to the place. Figure 2.18, illustrates one place with the three available inscriptions.

name

colour set

initial marking

Figure 2.18: Inscriptions available for places on CPN Tool software: place name, colour set and
initial marking.

Transitions can have up to five optional inscriptions as depicted in Figure 2.19: transition

name, guard, time, priority and code segment. Like for places, it is not mandatory for a transition

to have a name, however it is recommended for readability reasons.

time

priority code segment

name

[guard]

Figure 2.19: Inscriptions available for transitions on CPN Tool software: transition name, guard,
time, code segment and priority.

The guard inscription is used for tests on the input arc inscription variables, which allows

enabling transitions with restrictions.

Time inscriptions allow to delay the transition activation by the amount defined on the inscrip-

tion, the time delay is preceded by the @+ expression. Time inscriptions can be formulated also
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as an expression that depends on the token’s value. Transitions can also have different priorities

in order to give priority to a transition over another and code segments which are executed when

the transition is fired. A transition code segment is composed of an input, an output and an action

field.

Arcs can only have one inscription that is the arc inscription. An arc inscription can evaluate

a multiset or a single element, and the arc expression must match the colour set of the destination

place in case of an output arc, or the source place in case of an input arc.

When using arc inscriptions, it means that a transition is only enabled if there is a binding so

that each input arc expression evaluates to one or more colours that are present on the correspond-

ing input place, in other words a transition is only enabled if there are tokens matching the values

of the arcs inscriptions and the guard of the transition evaluates to true.

Expressions on arcs can be as simple as a single true or false expression defining a single

element (Figure 2.20(a) describes a single element expression based on a Boolean colour set).

However, more complex expressions must use multisets as the ones illustrated in Figures 2.20(b)

and 2.20(c).

Ball Throwing Ball Catch

Ball Ball

true true

[dPlayerCatch=true]

(a)

TeamBall

[dGoalAreaFoul=false]

1`(dTeam,true,dTeamPlayers)++
1`(dTeam2,hfalse,hdTeamPlayers2)

TeamBall

1`(dTeam,true,hdTeamPlayers)++
1`(dTeam2,hfalse,hdTeamPlayers2) Prepare

GoalKeeperhThrowFoulhAtt

(b)

TeamBall Player

(dTeam,2false,2dTeamPlayers)

[dDefense=2false]

Enter
Defensive

Defend
Zone

1`(51(dTeamPlayers))2++21`(52(dTeamPlayers))2++
1`(53(dTeamPlayers))2++21`(54(dTeamPlayers))2++
1`(55(dTeamPlayers))2++21`(56(dTeamPlayers))2++
1`(57(dTeamPlayers))

(c)

Figure 2.20: CPN Tool arc inscriptions: (a) single element Boolean arc inscription (b) multiset arc
inscription with two elements (c) multiset arc inscription with seven elements.

In order to define multiset arc expressions it is necessary to use the multiset constructor that is

the back-quote operator (‘). This operator allows defining how many instances of a given colour

set are necessary to perform the binding.

Using Figure 2.20(b) as an example, it is possible to verify that for the arc expression to be

valid there must be an instance of (dTeam, true, dTeamPlayers) and another of (dTeam2, false,

dTeamPlayers2). These two instances are of colour set TeamBall which is the product of a Team
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(dTeam or dTeam2), a Ball (true or false) and a set of players (dTeamPlayers and dTeamPlayers2

are variables of colour set TeamPlayers).

Figure 2.20(c) illustrates an example which has access to the components of a compound

colour set. By using the operator #, each player of the dTeamPlayer variable can be accessed.

This transition also illustrates how a transition between two places with different colour sets can

be triggered.

When a transition takes place, tokens from the input arc (represented by the green circle and

the green comment) are transferred from the input place to the output place as illustrated in Figure

2.21. This transition is only enabled because both the arc inscription ((dTeam, false, dTeamPlay-

ers)), as well as the transition guard ([dDefence=false]) evaluate to true.

(a)

(b)

Figure 2.21: CPN Tool transition firing: (a) Petri net state prior to the transition takes place and
(b) Petri net state after to the transition takes place.

Has already been referred, large networks can become too complex and hard to read, therefore

CPN Tools provides mechanisms to simplify a network by allowing to define multiple layers by

means of substitution transitions.

Substitution transitions represent an entire piece of a portion of a net structure. Therefore, a

substitution transition does not represent a transition, but an entire network with other transitions

and places, connected via arcs.

The net represented by the substitution is stored in what is called a subpage, additionally the

net on the subpage is called a subnet or a sub-model.

Figure 2.22, illustrates an example of a superpage with a substitution transition (2.22(a)) and

the respective subpage (Figure 2.22(b)) with the corresponding subnet.
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dTeamBalldTeamBall Substitution
Transition

Sub Page

Exit

TeamBall

Player
Throw Off

TeamBall Sub Page

(a)

dTeamBalldTeamBalldTeamBalldTeamBall

[dFoul=true][dThrow=true]

Playing

TeamBall

Exit
Out TeamBall

Player
Throw Off

In TeamBallIn Out

(b)

Figure 2.22: CPN Tool substitution transition: (a) substitution transition superpage (b) substitution
transition subpage.

Places on the superpage that have a connection with the substitution transition are called sock-

ets (places Player Throw Off and Exit in Figure 2.22(a)). These sockets have a corresponding

counterpart on the subnet, which are called ports. Each port has an associated tag-type, which

indicates if the port is an input, an output or both an input and output.

Figure 2.22(b), shows two ports, one that is the input for the subnet, Player Throw Off, and

another that is the output of the subnet, Exit.

This subsection only described the concepts that are needed for Chapters 4 and 5, for a more

exhaustive description of the tool please refer to CPN Tools webpage (Tools (2015)) or to Jensen

and Kristensen (2009).

2.4 Summary and Conclusions

This chapter presented some of the most important methodologies and fundamentals used for

video segmentation, image recognition and knowledge representation.

Video segmentation is divided into two main groups, one based on the traditional detection

methods used by image segmentation, spatial video segmentation, and another that is more focused

on object tracking. The main difference between these two groups is related with the fact that the

first explores all the possibilities existing in the image/frame, while the latter uses prior knowledge

to predict the object next location, restricting the area to be searched.

Due to its long existing history, image segmentation techniques have a wide spectrum of meth-

ods, ranging from thresholding until motion based methods. On the other hand, object tracking

techniques are more recent and so, the variety of methods is less abundant.

The presented image recognition methods are subdivided into three main categories: Bayesian,

Non-Bayesian classifiers and the combination of different classifiers (multiple classifiers). Image

recognition is an evolving field of investigation, since most image recognition methods can only

provide good results on specific situations. Nevertheless, studies point that combining multiple

classifiers seems to be the right direction to be followed.
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This chapter also introduced the fundamentals of knowledge representation as well as several

modelling languages and formalisms. A more detailed section was devoted to CPN Tools, as it

will be widely explored on Section Game Mode (4.5).

The scope of this chapter was more focused on the concepts that will be used throughout this

document.



Chapter 3

Related Research

This chapter presents an overview on what has been done on the areas of player detection and

tracking, ball tracking and high level game analysis.

For several years, sports experts have performed hand annotation of games in order to collect

metrics and game statistics (Sampaio et al. (2006) and Spencer et al. (2005)). These techniques

usually require a huge time effort to collect the raw data, and generate enormous amounts of infor-

mation that are subjective to the operator and are only moderately reliable (Duthie et al. (2003) and

O’Donoghue (2010)). The use of technology as a way of minimising the aforementioned problems

(Franks et al. (1987)) was proposed in the late 1980s. Initially, it consisted of a support to hand

annotations where it would be possible to store information in databases, perform statistics and

record matches so that they could later be analysed by experts. Furthermore, recent advances have

led to systems that are able to perform Motion Analysis in an automated and time efficient way,

which means that all the positions of the game elements are extracted automatically, with added

benefits such as high repeatability and accuracy.

Motion Analysis in sports consists of knowing the location of all relevant elements in a sports

game. This is a complex task due to concerns with human safety and the fact that there are many

elements to track, often at high speeds and with frequent changes of direction. An additional

problem, is the presence of the ball, a somewhat small shared object that both teams compete to

manipulate in accordance to the specific game rules.

Two main technology categories are used for automatic Motion Analysis: (i) Intrusive Sys-

tems, where special tags or sensors are placed on the targets, and (ii) Non-Intrusive System, where

there are no extra objects inside the game, only on the surrounding environment.

Intrusive Systems use well known, stable, theoretical concepts that have already been widely

addressed, and most limitations are concerned with technological issues, namely with noise and

interference with signals (accuracy and dependability), battery life time and transmitter/receiver

size.

39
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For Non-Intrusive Systems, vision is the interesting approach, which is developing quickly by

delivering better images at higher rates and at affordable prices. The processing of such massive

amounts of information still presents a significant challenge due to the high dynamics in sports.

Due to the differences inherent to each of the two game elements (players and ball), namely

in terms of size and physical behaviour and to the necessity of applying either different image

processing techniques or different hardware devices, authors usually deal with them separately.

Therefore it seems appropriate to separate them into the following sections.

3.1 Player Detection and Tracking

3.1.1 Intrusive Systems

Intrusive systems make use of wireless sensors or tags. This property makes them sensitive to

degradation and interferences either by other objects or by Radio Frequency (RF) signal colli-

sions, among other detection problems. Additionally, and since RF signals are electromagnetic

waves, they lose signal quality when crossing different materials and suffer additional problems

with metals (reflected waves) and water (absorbed waves), as a consequence of basic physics –

Maxwell Laws (Alonso and Finn (1992)). Such issues can be mitigated if the technology is care-

fully implemented. However, there will always be limitations inherent to the basic principles of

the signals.

RF energy is regulated by legislation due to health concerns and interference between RF de-

vices. Localisation systems typically use the so-called industrial, scientific and medical frequency

part of the spectrum that is shared among many applications, such as Wi-Fi networks or Bluetooth

devices (Committee (2014) and NTIA (2011)).

Several technologies are available: Global Positioning Systems (GPS), Radio Frequency Iden-

tifiers (RFID), Ultra Wide Band (UWB), among others.

3.1.1.1 Detection

GPS Systems It is generally accepted that pure Global Positioning Systems (GPS) cannot be

used indoor due to signal degradation problems which occur when crossing walls and ceilings.

Therefore their main usage is devoted to outdoor sports such as rugby, soccer and football.

The position of a GPS receiver is calculated by measuring its distance to several GPS satellites.

This distance is obtained using trilateration (Wikipedia (2011)), and so GPSs are able to determine

the player’s position, speed and elevation.

Despite only being able to work outdoor, GPS systems represent a significant slice of the

available intrusive commercial systems: Minimax (Catapult Innovations (2009)), SPI Pro HPU

((GPSports, 2015)) and VIS Track – GPS (IMPIRE AG (2015)).

Minimax uses a small tag (19x50x88mm and 67g), that besides providing the player position

may, depending on the model, also include accelerometers, gyroscopes, magnetometers and a

heart rate detector. Models may provide measures at 5Hz or 10Hz frequencies. The manufacturer
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indicates errors of 40cm in 10m and 40m sprints while independent studies (Castellano et al.

(2011)) indicate that errors on distance covered can be as high as 3.9m (with a deviation of 1.1m)

for 15 and 30 meter distance. This manufacturer provides a dedicated software so that the end users

can analyse the obtained information (information available includes distance, velocity, real time

data and alarms, accelerations/decelerations, heart rate zones, tactical animations, among others).

This system is used by several soccer (Liverpool, Everton, and Blackburn Rovers) and rugby

(Canterbury Crusaders, Brisbane Broncos, Melbourne Storm) teams. Scientific studies have also

been conducted on Australian football (Farrow et al. (2008)) and field hockey (Gabbett (2010)),

among others.

SPI Pro X works at 15Hz and includes accelerometers and heart rate measurement devices.

Each tag measures 48x20x87mm and weights 76g. It has been used by several European soccer

clubs (Barcelona, Real Madrid, Chelsea, Liverpool), rugby (Wallabies, English Rugb, West Tigers)

and Australian football (Geelong, Brisbane). Although accuracy studies do not include the 15Hz

model, older models of 1Hz and 5Hz showed accuracies within 1% and 5% for straight-line runs

of 50m, respectively (Gastin and Williams (2010)). Studies using this system have been performed

in the Australian football league (Wisbey et al. (2010)) and rugby (Venter et al. (2011)).

VIS Track–GPS is the lightest system with 40g of weight and a size of 55x45mm. It operates

at 10Hz and provides a software for visualizing the raw data and performing data analysis. It has

been used by soccer teams (Borussia Dortmund, Sandhurst FC).

Using the same principles as the GPS, but for indoor environments, it is possible to find Pseu-

dolite (pseudo-satellites) based systems (Wang (2002)). A European project (European Space

Agency (2013); Väkevä et al. (2004)) developed and tested a Pseudolite based system composed

of static devices (Pseudolites, reference receivers and master control unit) that generate the naviga-

tion signals and mobile receivers that are capable of calculating their own positions. Even though

no tests have been made on real sports activities, the results for indoor environments (which in-

clude a sports hall) show promising results (distance root mean square as low as 2 cm).

Tag plus Antennae Systems RF localisation systems are based on nodes/tags placed on the

objects being tracked, which broadcast a signal that is picked up by a set of fixed nodes placed

at known points (Sathyan et al. (2011)), or antennae placed around the field (InMotio (2015); ISS

(2015a); Ubisense (2012); Wadell et al.; ZXY (2012)).

The tag’s position is not determined by the tag itself (contrary to GPS based systems), but

the information collected by the antennae is combined, depending on the system, using the signal

Time of Arrival (TOA), the Angle of Arrival (AOA) or Local Positioning Measurement technology

(Stelzer et al. (2004)) to determine its 3D position. If a tag is capable of "self-locating", which

means that localisation data is available "internally" in the tag of the tracked object, then, most

likely, there will be the need to record or transmit the data for latter manipulation. External locali-

sation (the environment has the positions of the tags to track) will probably make the tags cheaper

and lighter (but such tags are still battery operated).
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Due to the nature of electromagnetic waves, the systems’ behaviour may be different depend-

ing on the environment conditions. However, only Sathyan et al. (2011) highlight these concerns

by providing accuracies both for indoor (50cm) and outdoor (15cm) environments. The smaller

errors in outdoor environments can be explained by the inexistence of structures that interfere with

the signals, although rain or fog will also probably cause problems.

Despite its small use on the sports environment it is worth mentioning the Ubisense system,

which is a generic localization system that uses UWB frequencies and is able to detect the 3D

position of objects or persons within an accuracy of 15cm. This system has been used under the

Tennissense project (Conaire et al. (2009)).

Table 3.1 summarises the systems presented. It is important to highlight that most of these

systems are commercial and therefore the information provided about the system itself is based

on the manufacturer statements that most of the times does not include detailed information or

scientific studies about validity, objectivity or reliability, an issue already raised by Carling et al.

(2008).
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3.1.1.2 Tracking and Filtering

With Intrusive Systems, tracking is likely to be straightforward since each tag is always tracked

independently. Filtering methodologies such as the ones mentioned in section 3.1.2.2 will further

improve the measurements’ accuracy by reducing interferences and limiting effects of temporar-

ily unavailable data. However, data quality is generally good and simple formulations provide

adequate tracking.

3.1.2 Non-Intrusive Systems

One of the major problems of the aforementioned intrusive systems is that usually regulations do

not allow their usage on official games since they may interfere with the game, hence they tend

to be used only during training sessions or non-official games, therefore several works have been

developed using non-intrusive systems.

The most interesting non-intrusive systems are based on vision methodologies which require

advanced image processing methodologies in order to find and individualise players due to the high

contact and speeds involved in invasion sports. Table 3.2 provides an overview of the presented

methodologies and systems.

3.1.2.1 Detection

Two main sources for acquiring video streams are used: (i) television broadcast cameras and (ii)

dedicated cameras.

Besides the systems described in scientific literature it is possible to find systems that are

completely commercial (Barris and Button (2008)), mainly on the soccer domain, such as Pro-

Zone/Amisco (Prozone (2015)) or eAnalyse Pro (Espor (2015)), however they require great user

intervention to correct the players’ tracking and identify important events (Setterwall (2003)) and

usually the information provided by the manufacturer is scarce. Moreover, no similar solutions

seem to exist for indoor sports.

Broadcast Vision Systems Television broadcast systems are usually based on a single broadcast

camera focused on restricted areas where the most important events take place (generally the goal

area). Nevertheless, they are a good source of information because they are common and the

resulting streams can be used for multiple purposes.

Kasiri-Bidhendi and Safabakhsh (2009) use TV footage to track the players and the ball in

indoor soccer games, however they provide qualitative results (image coordinates).

Beetz et al. (2009); Hayet et al. (2005); Pallavi et al. (2008a); Tong et al. (2011); Zhu et al.

(2009) take advantage of television footages on the soccer domain. Frequently authors use one

single camera, however this approach has the negative aspect of not providing an entire view of

the playing area and only gives useful information on long shot images, therefore, Beetz et al.

(2009); Hayet et al. (2005) use multiple broadcast camera systems.
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The usage of television footages makes the homography computation more difficult, because

the cameras are constantly moving and there may not be reference points on the image that allow

its computation. To deal with this, Tong et al. (2011) use SIFT and RANSAC methods to estimate

the camera motion and deduce the new homography matrix values. The player detection precision

ranges from 88.65% to 92.38% while the tracking can reach 98.47%. The homography matrix

allows converting players’ positions from image coordinates into either a common reference or

into real world coordinates.

In order to only deal with meaningful frames, Pallavi et al. (2008a) first classify frames based

on colour features to detect long shot images (wide field of view). The results obtained on short

video sequences show high detection rates (average of 93%), however in some occlusion situations

the detection rate can drop down to 47%.

Hayet et al. (2005) use several broadcast cameras with rotating and zooming characteristics,

and so are much concerned with grouping all the data into a common reference frame, therefore

they continuously keep an updated homography matrix for each video stream in order to map

the points from the original frames into the reference frame. Although the results presented are

qualitative and for short periods of time, they show that their methodology is effective even under

severe occlusion of players from the same team.

One of the most interesting systems, Aspogamo, is presented by Beetz et al. (2007, 2009). This

system is able to analyse sports games using ontology models of the game with players’ positions,

motion trajectories and ball actions as primitives.

Another quite complete work is the one from Zhu et al. (2009). They are able to provide

information about ball trajectory, offensive players’ and defensive players’ trajectories and other

higher level information as will be discussed on Section 3.3. Player detection precision is around

83%.

Chen et al. (2012); Hu et al. (2011); Lu et al. (2011) use TV basketball footage. Hu et al. (2011)

work provides a reliable mapping between pixel and world coordinates (accuracy around 97%)

and the players’ tracking is performed with precision and recall of around 91% (most problems are

related with players of the same team merging with each other and interference from the audience).

Additionally, and using the extracted players’ trajectories, they formalise high level concepts such

as wide-open players and one-to-one or zone defence. Lu et al. (2011) are also capable of tracking

the players with 98% precision and 81% recall. By using a Logistic Regression classifier that

combines maximum stable extremal regions (MSER), scale invariant features transform (SIFT)

and interest points on colour histograms, they can uniquely identify each player (accuracy: 82-

85%), which is important in games where players can be replaced multiple times. Finally, Chen

et al. (2012) are able to determine the real world coordinates based on extracting the court lines

and determining the camera homography matrix with 91.47% of frames being well calibrated.

Players are tracked with average precision and recall rates of 89.71% and 89.20%, respectively.

The players’ trajectories are mapped into a real world court model for screen pattern recognition.

Okuma et al. (2004) applied a boosted particle filter for tracking and a cascaded AdaBoost al-

gorithm to learn hockey player characteristics. Results are presented as bounding boxes on images
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and therefore quantitative values are not available. In a more recent work Lu et al. (2009), have

enhanced the detection and tracking algorithms and included players’ action recognition (skating

up, down, right and left) using a Sparse Multimodal Logistic Regression Classifier. Actions were

recognized with an accuracy of 76.37%, and tracking with an average centre error distance of

0.1413 (this value does not have unit since it corresponds to the fraction of width of the ground

truth box).

Dedicated Cameras Dedicated camera systems place the cameras at strategic locations of the

sports halls, which allows a better and complete view of the field. Additionally, they make it easier

to have multi-camera systems. Such systems usually provide higher resolution (better accuracy)

comparatively to the previous ones and overlapped image regions that minimise occlusion and

merging problems. At the same time, using stereo vision it is possible to perform 3D localisation.

However, their setup (and calibration) can be somewhat complex.

There are various system configurations regarding the number and camera location: Needham

and Boyle (2001) use a single camera placed at the bottom line of an indoor soccer field. Their

results are compared with hand annotated values and the associated error is quite high (around 1

meter).

With multiple-camera systems this error can be reduced, so Barros et al. (2011) use two cam-

eras placed along the side line of a handball field with a high overlapped region, which reduces

the measurement errors down to less than 28 cm. Overlapped regions also enable high detection

(82%) and tracking (84%) rates because occlusion usually occurs only on one camera.

Kristan et al. (2009) developed the Sagit, which uses two fixed cameras placed at the top of the

sports hall to provide a "bird’s eye" view. This configuration makes it possible to reduce occlusion

and merging problems. The authors show that failure rates per player and per minute were quite

low - less than 1.1 in the worst test case - and positional accuracy values were estimated between

10 to 30 cm in squash games (Vučković et al. (2010)). Tests were performed both in handball as

well as in basketball matches.

Monier et al. (2009) also use dedicated ceiling mounted cameras to analyse basketball matches.

According to their results, a human operator needs to correct tracking data approximately 6.7 times

per each player in each 1000 frames.

Figueroa et al. (2006) use four cameras placed on the side lines which allows overlapped

regions and are able to compute the world coordinates of the players. The percentage of automat-

ically tracked frames in case of no occlusions achieved 78.5% and 15.5% in case of occlusions.

In order to further minimize occlusion effects Iwase and Saito (2003) propose a dedicated 8

camera system. Each camera is treated as an independent system and, whenever a player is not

detected, either due to occlusions, not detections or by being outside the angle of view a multi

camera process is activated and, in most of the cases, is able to correctly identify the players. The

geometrical relationships between the cameras are calculated based on planar homography. Their

system has a drawback since it only covers the penalty area and therefore they are not able to give

a good insight of the entire game.
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Alahi et al. (2009) and Delannay et al. (2009) use Apidis (Autonomous Production of Images

Based on Distributed and Intelligent Sensing Apidis (2008)). This dataset results from a project in

which a basketball court was equipped with a network of cameras and microphones. An example

of the footages recorded can be seen in Figure 3.1.

Figure 3.1: Apidis typical images in Apidis (2009).

Taking advantage of the setup, flexibility and cameras, Alahi et al. (2009) were able to min-

imise occlusion and merging problems. Moreover, they are able to determine the players’ 3D

positions in world coordinates. Results show that using more than one camera can tremendously

increase both the precision and recall rates for the player detection, from 62% and 57% with a

single camera system to 72% and 76% simply by adding an omnidirectional camera.

Delannay et al. (2009) were able to detect not only the players (accuracy above 90%), but also

to identify their numbers, with a recognition accuracy of 73%. More recently, Chen et al. (2011)

included the ball tracking (80% detection rate) and semantic analysis in this work.

Image Processing Techniques The typical image processing system starts by distinguishing

background from foreground, so that foreground features (game elements) can be detected. Several

methodologies have been applied, ranging from clustering where pixels are grouped together based

on similar features such as colours, to dynamic methods that adapt to illumination changes. In

these dynamic methods, each pixel of the empty field (the background) is modelled as Gaussian

variables that vary over time according to pixel colour change, a technique known as Mixture of

Gaussians, MOG (Bouwmans et al. (2008)).

The usage of adaptive methodologies is important because most sports halls have windows.

However, they are characterised by a learning constant that must be well tuned since it is respon-

sible for determining how fast it is able to adapt to illumination changes, to incorporate objects

which are moved, inserted or that were moving but have stopped in the background (Bouwmans

et al. (2008)).

Results from foreground/background detection must then be grouped into regions known as

blobs. Blobs may be further filtered using: physical clues, colour clustering, boosting classifiers

that use a series of weak classifiers to produce a stronger classifier, regions colour histograms
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(team colour, total area) or template matching (similar to comparing candidate players against a

given image template).

Alahi et al. (2009); Delannay et al. (2009) refine the foreground objects based on occupancy

maps generated from the multiple camera views. Both authors prove that multiple cameras greatly

increase the system’s precision, from 62% to 72% by adding an extra omnidirectional camera

(Alahi et al. (2009)).

Lu et al. (2011) besides detecting the players, also recognise them using Deformable Part

Models (that use a set of small known images for body parts – templates) and a Logistic Regression

Classifier (with MSER, SIFT and colour histograms).

Template matching and classifiers require training, which means that prior to processing the

game, a set of representative image samples must be collected and classified by a human operator.

Techniques based on background subtraction usually speed up the processing time, since only a

few regions need to be analysed with more complex methodologies.

3.1.2.2 Tracking and Filtering

After detection, targets must be tracked over time in order to produce usable trajectories. This is

especially challenging because Vision systems identify the presence of an "object", but generally

cannot identify the target(s) that may be merged together in that detected "object".

Methodologies such as Kalman Filtering (KF) (Kalman (1960)), Particle Filters (PF) (Gordon

et al. (1993)) or Markov Chain Monte Carlo based methodologies are often chosen because the

several existing variants are capable of dealing with non-linear movement, missing and noisy mea-

surements. KF is theoretically optimal and corresponds to a very efficient filter where all variables

are Gaussian probabilistic functions. The filter estimates state variables (such as positions) based

on movement equations and noisy measurements models. The PF samples, enable combinations

to find the most likely one (using Bayesian probability models).

Additional filtering techniques include CamShift (Bradski (1998)), weighted graphs, the Munkres

(or Hungarian) (Munkres (1957)) algorithm, level set contours or more naïve methodologies based

on velocity constraints. CamShift is based on the Mean Shift algorithm (Comaniciu and Meer

(1997)), which is capable of determining the change in the player’s centre of mass over time.

Weighted graphs are composed of nodes with spatial information (size, shape and colour) and

edges with time information. The blob assignment is performed using minimal path searching.

The Munkres algorithm assigns each blob to a given player, minimising the assignment cost and

level set contours follow the players’ boundaries instead of the blob itself (for further information

on this subject, please refer to section 2.1.2).

The filtering and tracking methodologies play an important role when dealing with occlu-

sion and merging situations. Therefore, CamShift, for example, cannot perform well when players

from the same team merge together, even if for short periods of time (Hu et al. (2011)). Probabilis-

tic models are appropriate not only because the players’ movements on the field are non-linear,

but also because they can handle occlusion and merging situations, as long as they are not too

persistent (Yilmaz et al. (2006)).
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3.1.3 Conclusions

Intrusive Systems major problems are the usual interdiction in official matches, mounting and

calibration requirements, and attaching tags to targets, which likely restricts data collection to

home players at home matches. Drawbacks also include the systems’ accuracy dependence on

environmental conditions (for instance, metal parts, water vapour and human bodies can cause

problems with RF signals).

Their strengths include 3D localisation, high localisation rates (2000 per second), accuracies

as low as ±5 cm in large spaces (InMotio (2015)) and the ball tracking possibility (ISS (2015a),

Nandan (2013)).

Although GPS systems are quite common on rugby, soccer and Australian football, they are

not suitable for indoor sports due to the poor reception of GPS transmitters inside buildings. The

other two technologies, tag plus antennae and Pseudolites, can be used on indoor environments,

however only InMotio (2015) seems to have been used in a real handball sports match (Hökelmann

et al. (2008)) and the details available are scarce.

On non-intrusive systems, the raw data is provided in image coordinates which may not be

useful for performing more high level analysis or even extract statistical indicators. Therefore,

systems must compute the "homography", so that they can translate image positions into world

coordinates, however not all systems have this concern as demonstrated previously on Table 3.2.

Additional features include individually recognition of each player (Lu et al. (2011)) or shirt num-

ber identification (Delannay et al. (2009)). The ball position also plays an important role in game

analysis, but only Beetz et al. (2009); Chen et al. (2011); Kasiri-Bidhendi and Safabakhsh (2009);

Tong et al. (2011); Zhu et al. (2009) address this problem.

Most systems can deal with temporary data loss. However, user intervention is sometimes

needed to complete partial information or tracking mistakes. Tables 3.2 (shown previously) and

3.3 provide an overview of the methodologies and technologies used by each author. There, it is

possible to confirm that non-intrusive systems achieve detection rates ranging from 56% to 99%,

while measurement accuracies range from 0.05 m to 1.6 m when compared with ground truth

positions.
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3.2 Ball Detection and Tracking

Although some of the previous referred works already deal with the ball detection and tracking

problem, the high complexity associated with it impels researchers to develop specific methodolo-

gies and techniques. Therefore it seems pertinent to devote a section to detail a little bit what has

been done on this field.

3.2.1 Intrusive Systems

Since the ball has very small dimensions, compared with players, and is constantly being kicked

or grabbed it is very difficult to place a sensor on it. Therefore fewer systems exist when compared

with player tracking.

A goal detection line system (GLT) was developed by Cairos Technologies in conjunction with

Adidas (Cairos Technologies AG). This system is composed of a magnetic field placed underneath

the penalty area and behind the goal line, and a sensor placed in the ball (Teamgeist II) that

measures the magnetic fields and transmits the ball location to a computer which analyses the data

and determines if a goal was scored (Figure 3.2). In case of goal a signal is sent to the referee.

Figure 3.2: Cairos Technologies and Adidas goal detection system (Cairos Technologies AG).

Two of the player detection and tracking systems mentioned on Section 3.1.1 also offer ball

detection and tracking devices. Besides Minimax GPS sensors for player tracking, Catapult also

offers a special small tag with 15g (Catapult Sports), called e-tag (non GPS technology), that is

placed inside the ball and is detected by nearby Minimax devices.

The other supplier is Redfir, which according to Fraunhofer website (ISS (2015b)), uses tags

small enough that can be included on the balls.

Another system is being developed by Carnegie Mellon University in conjunction with Yinz-

Cam to be applied in American Football (Seabrook (2008)). A special small microchip was de-

signed and includes a small GPS and an accelerometer. Their prototype transmits information at

every second and has an accuracy of around 9 meters (30feet), however they are developing a new

prototype to transmit information four times per second and combine the GPS information with

information from fixed GPS receivers near the field in order to have more precise measures.
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Like already explained on Section 3.1.1.2, on Intrusive Systems the tracking method becomes

quite straightforward due to the unique tag placed on the ball.

3.2.2 Non-Intrusive Systems

On vision systems, like in the previous section, researchers have at disposal two main sources of

image information: TV broadcast images and images from dedicated cameras that are placed at

very specific locations.

Usually cameras used for TV broadcast have low frame rates and high shutter times which

can cause motion blur when the ball is moving too fast and even miss to capture some important

events. On the other hand, dedicated cameras are usually chosen with specific characteristics,

namely frame rate and sensor resolutions and placed at specific locations to provide a good view

of the field.

Liang et al. (2005) use images provided by TV broadcast. As mentioned before the lower

frame rates of these cameras and the long shutter times compels them to take into consideration

the motion blur caused by the ball speed and make use of the colour properties of the image.

Under the assumption that the ball is nearly white in long view shots, white pixels are first

segmented and candidate regions are defined using physical restrictions. They use candidate re-

gions from a set of consecutive frames to construct a weighted graph where nodes represent ball

candidates. The optimal path (which represents the true location of the ball) is extracted using

the Viterbi algorithm and a prediction stage is performed with a Kalman filter. Results show that

occlusion and motion blur problems are not well handled and the ball can be confused with the

players’ socks due to the colour similarity. Precision achieved is around 89%.

Images from broadcast TV images are also used by Pallavi et al. (2008b). Like in Pallavi

et al. (2008a), initially each frame is categorize into long, medium or close shot based on the ratio

between the grass pixels (green colour) and the field region using the YIQ colour space (allows

to minimize the effects caused by light changes). They only deal with long and medium shot

images since close shot images usually represent the face of a player and therefore do not contain

useful information. Afterwards, the first ball candidates are determined using the Circle Hough

Transform (CHT) with some radius restrictions in order to eliminate the ones that are less likely

to be a ball.

Due to the geometry of the ball it seems appropriate to use the CHT in order to perform its

detection, in fact this technique is widely used in applications where the objects to be detected

present a round shape which frequently happens in industrial and medical applications (Chaichana

et al. (2008); Huang et al. (2008); Staroveski et al. (2008)). However, the CHT requires a huge

computational effort and is very time consuming, which is not affordable in real time applications.

Therefore, like in this case, authors use it as basis but perform a few adjustments or include some

restrictions in order to fasten it.

Once the ball candidates are detected through the CHT, two paths are followed depending on

the type of image (long or medium shot).
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In case of a medium shot view, the velocity of every ball candidate is calculated through the

optical flow velocity method of Horn and Schunck. The candidate having the highest velocity is

labelled as being the ball while the others are discarded.

For long shot views they apply the opposite philosophy and instead of searching for the best

candidate try to eliminate the less probable candidates. To do so, a series of filters based on

previous defined heuristics are used in order to eliminate the weakest candidates. The remnant

ones will be used to build a directed weighted graph where the longest path represents the ball

trajectory.

The usage of the CHT and of predefined heuristics although providing good results can lead

to miss detections if the ball is partially occluded or if by some chance the ball behaves contrarily

to the heuristics. The time it takes to process a single frame is too long which makes impossible to

have real time processing. Also the usage of optical flow does not seem appropriate since in optical

flow it is assumed that the displacement is small, nevertheless results can achieve a precision of

83.1% for medium shots and 94.2% for long shots.

Like in Pallavi et al. (2008b), Tong et al. (2007) also start by classifying the type of view

(global view, medium view, close-up and out of view) based on the image dominant colour and

only deal with global views. Afterwards, a three level process is started which includes object

processing, intra-trajectory and inter-trajectory levels. At the object level, an image segmentation

based on the dominant colour is performed in order to extract non-field objects like ball, players,

line-marks and others objects in the scene. To discard non-probable candidates several filters are

applied based on the Hough transform, shape and size constraints and a colour clues support vector

machine.

Afterwards, several possible trajectories are generated at the intra-trajectory level through link-

ing the adjacent candidates in spatial-temporal domain with the aid of a predictive Kalman filter

stage. The unconfident trajectories are removed through trajectory filtering using length and time-

line relationship restrictions. To identify the true trajectories, the inter-trajectory level, constructs

a graph (nodes represent a trajectory and edges the distance between pairs of trajectories) where

the optimal path is found using the Dijkstra algorithm. In order to smooth and link up the final

ball trajectory, a cubic spline is used to interpolate the gap between two adjacent trajectories.

They performed tests in the FIFA 2006 championship and could achieve an accuracy of 80.3%.

Although their intention was to provide a real time framework they state that "The processing . . .

is beyond real-time with two threads on Intel Core 2 Dual machine with 2.4G CPU, 2.0G RAM.".

On the other side there are authors that use dedicated cameras. An example is given by

D’Orazio et al. (2004) who developed a system based on one dedicated camera which is able

to recognize the ball in soccer images with the intention of aiding referees to verify a goal event.

They are truly focused on providing a real time system that is able to recognize the ball in real

images where light conditions can vary and the background is constantly changing.

Two different techniques are combined, a fast circle detection based on directional CHT to

identify regions of interest (ROI) and a three layer neural network classifier to evaluate these ROIs

in order to accept or discard the hypothesis. The inputs of the neural network are the grey scale
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and a 3-level Haar Transform image of the ROIs. The usage of constraints based on a priori

knowledge of the ball dimensions and the influence on the shape of the ball due to light conditions

helps fastening and improving the algorithm.

Although their results seem very promising they consider that the ball is not visible if more

than 50% of its surface is occluded, which seems a very low value. Detection rates of 92% were

achieved with artificial light and 97% with natural light. More recently their work has evolved

from a single camera system to a four high frame rate camera system (D’Orazio et al. (2009))

(Figure 3.3). Having two cameras pointed to the ball allows them to detect its 3D position through

homography. The tracking is performed using simple constraints of ball velocity. Results are still

very scarce but seem promising on detecting goal events.

Supervisor
Node

Processing
Node 1Processing

Node 2

Processsing
Node 3

Processing
Node 4

Camera 1Camera 2

Camera 3 Camera 4

Figure 3.3: Camera distribution in D’Orazio et al. (2009).

The usage of cameras with such a high frame rate provides a more reliable picture of the ball

movement and minimizes the effect of motion blur. However, these cameras are highly expensive

and such high frame rates leave little time to perform the image processing.

In their new approach, first a moving object segmentation based on background subtraction

is performed in order to detect the ROIs and then apply their fast CHT and the neural network

classifier. This results in a much faster algorithm since the Hough Transform (HT) is not applied

to the entire image but only to the ROIs. Nevertheless, they only detect and track the ball near the

goal areas and cannot achieve real time processing.

Ren et al. (2009) also use a dedicated system based on cameras with 25 frames per second that

is able to see the entire field with 8 cameras (Figure 3.4).

For detecting and tracking moving objects they model the background using a two-step algo-

rithm. In the first step the background is modelled using a Gaussian Mixture Model and after-

wards is continuously updated using a faster running average algorithm. Afterwards, they apply

an image-plane Kalman tracker to filter noisy measurements and split merged objects.

From the previous step, result several moving objects that are assigned a likelihood based on

ground plane velocity, longevity, normalized size and colour features. This likelihood measure is

further refined using occlusion and backtracking reasoning. They are also able to extract the 3D
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Figure 3.4: Camera distribution in Ren et al. (2009).

ball position and use this information to improve the ball detection. Results show that backtracking

is a key feature of their algorithm and that the buffer size influences the accuracy achieved.

3.2.3 Conclusions

It is possible to verify that several methodologies have been used to detect the ball, and most of

them are based on different techniques that are not commonly used in the player case. Another

important aspect is that the usage of higher frame rate cameras (D’Orazio et al. (2009)) can give

a more reliable picture of the ball position, however the complexity of the methodologies applied

makes it hard to process the frames in the available time. Table 3.4 gives an overview of these

methodologies.

In the ball detection case it is possible to verify that non-intrusive systems do not have a high

expression due to the difficulties on placing sensors on the ball. Therefore, authors base their

research on vision systems, which can already achieve very high detection rates even with low

frame rate (25 fps) cameras (Ren et al. (2009)). However, tests have been performed in small data

samples.
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3.3 Game Analysis

High level sports analysis has been performed for a long time using manual methodologies such

as hand annotation, however this is a time consuming task, subjective to the person and methods

used to extract the metrics (provide low spatial and temporal resolution (Barros et al. (2011)).

The usage of automatic methodologies allows not only to speed up de process (all players can be

analysed simultaneously), but also reduces the error since the metrics are not extracted based on

averages or user subjectivity. Moreover, the effects of tiredness do not affect the process outcome.

This section provides an overview of the most common hand annotation techniques and presents

the existing automatic systems that are emerging.

3.3.1 Hand Annotation

Notational analysis as stated by Hughes and Franks (2008) ". . . is an objective way of recording

performance so that critical events in that performance can be identified and quantified in a consis-

tent and reliable manner" and has been used since the early days of sport. Although it has started

mainly on soccer and squash (Franks and Hughes (2004)), nowadays it is performed in nearly

every sport. Also according to the same authors, the first attempt to create and use a notational

system able to analyse multiple players is credited to Messersmith and Bucher (1939), who tried

to notate the distance traversed by big players during a basketball match.

Initially, notational analysis was based on hand annotation and several research works were

performed making use of it (for further details please refer to Franks and Hughes (2004)), however

this technique usually requires a huge time effort to collect the raw data and generates enormous

amounts of information that are subjective to the operator, somewhat difficult to handle and mod-

erately reliable (Duthie et al. (2003)).

Advances on technology opened the possibility of introducing new computerized tools to aid

sport experts during this process. The benefits of these tools include the possibility to deal with

huge amount of data more easily, in a shorter period of time and also with higher sampling fre-

quencies which translate into higher accuracies. Nevertheless, the developed solutions must be

carefully validated as highlighted by Franks and Hughes (2004).

For the specific case of handball, there is still not much data available and most works are

based on simple assumptions that make it impossible to analyse the behaviours and interactions

that can occur in a handball game. More in depth investigations, using hand annotation include

the study of attack organizations to assess their success on specific situations.

Yiannakos et al. (2005) estimated the players’ level of stamina using information about the

type of attack, the outcome of the shot and the offensive errors. Their test sample consisted of 15

matches with 1503 attacks.

Gruic et al. (2006) analysed the elements of situational attack efficiency, such as 9m shots

scored, 9m shots taken but missed, 6m shots scored, among others, in 60 handball matches and the

contribution of standard performance parameters to the final score. Besides a global analysis of

the 24 teams playing the championship, the study involved an inter-group analysis based on four
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qualification groups. Their results confirmed the statistically significant contribution of the cho-

sen predictor variables to the successfulness of the teams, however the structure of contributions

differed among the groups. More recently, the same methodology was applied to a women cham-

pionship and the same conclusions were drawn. Additionally, the authors highlighted the need

to modify the methodology since, as they state, only fragments of the complexity of the handball

game were analysed and they obtained a considerable variability on the parameters studied. Once

again, they pointed out that situation efficiency models are different between teams and almost

each match.

Although notational systems are intensively used on high level competition, especially to eval-

uate and study opponent teams, this information is usually kept in secret and therefore little infor-

mation is available.

3.3.2 Automatic Analysis

As demonstrated on the previous sections (Barros et al. (2011); Kristan et al. (2009)) have devel-

oped vision based systems able to automatically track handball players without interfering with

the game itself. Their analysis is still based on physiological parameters such as distance travelled

and players’ velocity. However, such systems enable the possibility to perform a more in depth

analysis of the game, not only because they provide information with higher sampling frequencies,

but also because they are able to extract the players’ positions on the field without being subjective

to an operator judgement.

When talking about automatic game analysis two main groups arise: semantic analysis and

high level game analysis. An interesting comparison between these two concepts is proposed by

Zhu et al. (2009) "Semantic analysis aims at detecting and extracting information that describes

"facts" . . . tactic analysis . . . aims to recognize and discover tactic patterns and match strategies

that teams or individual players used in the game."

Most of the existing approaches on sport’s video analysis are concentrated on semantic analy-

sis by annotating and indexing video footages, which is generally oriented to audience (Bai et al.

(2009); Buitelaar et al. (2008); Duan et al. (2005); Wang et al. (2008)). Although semantic analy-

sis can also be useful to coaches since it has the ability to delimitate specific events such as goal

situations or attack events, it lacks on the ability to provide further information related with tactics

and the game itself.

Recently, some groups with more or less complexity are exploring this high level game/tactics

analysis (Beetz et al. (2009); Chin et al. (2005); Kang et al. (2006); Perše et al. (2009); Taki et al.

(1996); Zhu et al. (2009)).

Taki et al. (1996) evaluate the cooperative movement of players and the ability of the team to

make space using two concepts: minimum moving time pattern and dominant region, that assent

on low level features such as player’s position, velocity and acceleration. Additionally, the ball

dominant regions can also be calculated which allows detecting high quality passes. Despite,

providing two interesting metrics to evaluate teamwork, the way these two concepts are evaluated
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on real game situations is lightly addressed on the paper and it would be important to compare

these results with hand annotated information.

Chin et al. (2005) model basketball defensive strategies as matrices that represent the spatial-

temporal relationships among players, additionally they provide a similarity measure which allows

detecting similar defensive strategies of clips stored in a database. In order to use this system, the

video under analysis has to be clipped by a user and each clip must have a similar number of

frames. It would be interesting if the system could automatically detect defence clips and similar

defensive strategies even for clips with considerably different sizes.

In order to overcome this static property, Perše et al. (2009) use a template based recognition

method. Templates of the team activities are stored prior in a database (using a graphical interface)

and are represented as semantic descriptions (chains of symbols), which confers them more flex-

ibility. Additionally, they are able to segment basketball games according to its phases (offense,

defence and timeouts) using GMM. Tests on real games gave phase rates detection from 88% to

94% and tests on a specific test sample gave activity recognition of 100% (screen, move and player

formation).

More recently, their work has evolved (Perše et al. (2010)) and the activity templates were used

to create Petri Nets (PN) which express not only the sequential relations among actions (between

several players), but also encode temporal information concerning each action by learning from

training data. With this methodology they are able to determine the activity the team performed (as

long as the template is in the database) and at which stage it ended. Nevertheless, tests were only

made for specific projected situations and not in real game situations, where the random factors

cannot be so well controlled.

Beetz et al. (2009) perform game analysis using ontology models of the game with players’

positions, motion trajectories and ball actions as primitives. One of the strongest and innovative

points of this system is the definition of an hierarchical ontology of game models (Figure 3.5), that

contains a static part independent of the class of soccer games, and a dynamic part that is learnt

using machine learning techniques (decision/regression trees, clustering). This dynamic property

makes the system very flexible and allows it to be used in different contexts (e.g. Junior vs. Senior

leagues). They are able to define tactical set-ups, assess models for situations, tactical behaviours,

and identify attack and defensive systems. FIFA soccer world championship 2006 was their test

data set.

Zhu et al. (2009) use ball and players’ positions to perform tactical analysis on soccer attack

events (that are detected using web-casting) by formalizing route patterns using field partitioning

and interaction patterns such as cooperative attack (unhindered or interceptive attack) and indi-

vidual attack (direct or dribbling attack). The correct identification of these concepts ranges from

70% for dribbling attack to 93% for cooperative attack. Despite formalizing and classifying attack

situations, they do not provide metrics in order to assess its performance, for example it would be

interesting to evaluate which attack is more effective for a given team.

Kang et al. (2006) propose a model to quantitatively express the strategic performance of

soccer players. Their model is based on the trajectories of all game elements, including the ball,
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Figure 3.5: Aspogamo model hierarchy from Beetz et al. (2009).

and defines/formalizes several concepts such as kicks and receives, possible regions, catchable

regions, and safe/competing regions. Associated with these concepts they define metrics that

allow evaluating and comparing players’ performance. However, the validation of these concepts

was not performed on real game data but rather on data from a simulated soccer game.

Bai et al. (2009) propose the use of perception concepts (either aural, visual or motion) and

Petri Nets to semantically describe the match and detect events. They were able to model complex

concepts such as scored goal, yellow and red cards in soccer; fast breaks and fouls in basketball

and try in rugby with a precision that ranges from 71.4% to 100%.

Still on the Petri Nets field, Marin et al. (2010) implemented a soccer model based on a Hi-

erarchical Coloured Petri Net. Their model defines at any time, the efficiency and also the errors

that occurred per team – number of good passes, efficiency of the shots at the goal, fouls taken,

fouls given, among others.

Another interesting work is presented by Duch et al. (2010). Their analysis is based on the

statistical information provided by UEFA for the European Cup 2008 soccer tournament. Using

methods from social network analysis they were able to quantify the performance of players and

teams. Their analysis is not concentrated on a single game but rather on a series of games.

They used a directed network of "ball flow" between players. In this network, nodes represent

players and arcs are weighted according to the number of passes successfully completed between

two players. Two additional nodes are included to represent "shots to goal" and "shots wide". A

player node is connected to these two nodes by arcs weighted according to the number of shots.

The team’s performance is inferred from the players’ performance. They are able to extract

metrics such as passing accuracy, shooting accuracy, flow centrality (probability that each path

definable on the network finishes with a shot) and match performance (normalized value of the

logarithm of the player’s flow centrality in the match) to determine the players and team perfor-

mances.

Figures 3.6 and 3.7 illustrate the kind of information provided by this work. In Figure 3.6 G

letter represents "shots to goal", W "shots wide" (Duch et al. (2010)).
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Figure 3.6: Passing accuracy of the game Italy vs. Spain (Duch et al. (2010)).

Figure 3.7: Time evolution of the performance of players and teams (Duch et al. (2010)).

Another interesting area is the one that explores robotic soccer. For this specific case, the

players’ positions as well as the ball are known and so events such as successful/missed passes,

end line shots, intercepted shots, goal, outsides among other can be determined using specific

algorithms such as the ones explored on Abreu et al. (2012, 2010); Almeida et al. (2012).

On the area of Robotic Soccer there is also a large amount of work on areas related with

game modelling, such as coordination and strategy definition (Reis and Lau (2000); Reis et al.

(2000)), coaching (Reis and Lau (2001)), setplays (Cravo et al. (2014); Mota and Reis (2007)) and

formation/tactical analysis and recognition (Abreu et al. (2014); Faria et al. (2010).

3.3.3 Conclusions

Most indoor systems are only concerned with assessing the players’ effort (distance covered, ve-

locity) and usually do not take the following step of performing high level game analysis. More-

over, the few works that truly perform game and tactical analysis are still in early stages and

usually focused on very specific set plays, rely on user video clipping or were tested either on

specific situations or simulated data.
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3.4 Summary and Conclusions

In order to perform motion analysis, it is necessary to have each player position over time which

can be obtained by two different approaches: Intrusive Systems and Non-Intrusive Systems (com-

parison summarised in Table 3.5).

Table 3.5: Taxonomy and summary regarding player detection techniques.

Intrusive GPS Cannot be used on indoor environments
Sensor complexity and weight

Tag+Antennae Likely to have problems with interferences, metals,
fog, rain, other RF systems (cellular antennas, . . . )

Non-Intrusive Broadcast Affordable if games are broadcasted (very expensive
otherwise)
Partial view of the field

Dedicated cam-
eras

Dedicated setup (not easy to relocate and may not be
allowed in the other teams’ sports halls)
Usually cover the entire playing area
Multi-cameras minimise occlusion and enable 3D lo-
calisation

Intrusive systems are more insensitive to crowded fields, contact between players and can

provide 3D measurements at high rates. However, nearby objects, structures and apparatuses that

operate at similar frequencies can cause interferences and therefore their use in specific sports halls

may be compromised. Also their usage in official competitions may be restricted or dependent on

agreements, and most players do not like to wear devices that may interfere with their performance.

Recent advances show that Vision based non-intrusive systems can be very promising, not

only due to the costs involved (intrusive systems are usually more expensive), but also because

they can be used to track the visitor team without restrictions, even at official matches.

One of their major drawbacks is that they require sophisticated methodologies to extract the

players’ positions. Due to this limitation, most existing systems were either tested on limited

datasets or require user intervention in order to correct the tracking and, therefore, a totally auto-

mated application is still not available. Moreover, not all systems provide the players’ positions

in real world coordinates, which is of the utmost importance if game analysis is to be performed,

because the spatial relations between players cannot be truly assessed with image coordinates.

Systems from both categories are not easily portable and require mounting and calibration.

Another aspect that must be highlighted is the relevance of knowing the ball position since it

improves how game analysis and team performance evaluation is performed, and from what has

been seen is an issue that is far from being solved.

With motion information from all game elements it is possible to characterise the players’

effort by extracting measurements such as covered distance, preferred field zones (Barros et al.

(2011); Monier et al. (2009)) or speed profiles (Monier et al. (2009)).
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Chapter 4

Methodology

4.1 Proposed Architecture

A three module software system is proposed, one responsible for acquiring the images from the

multiple camera system (Acquisition System) and another for the off-line processing of the video

streams (Processing System). This last one detects and tracks the players and generates a log file

with the players’ positions, so that they can be used to perform game analysis and infer game

statistics. Finally, the last module (Visualizer and Annotator) is able to merge the video streams

and the log file to create a global image of the field with the players highlighted, as well as to

perform high level game analysis. Figure 4.1 illustrates the architecture described.

The interaction between the different modules is performed by means of logs that assure all

the information necessary is passed between them. Figure 4.2, clarifies these interactions.
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Figure 4.1: System’s architecture (from Santiago et al. (2013)).
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Figure 4.2: Data flow information.

4.1.1 Acquisition System

The challenges of defining a vision system able to identify and track the game elements in an

invasion team game are huge due to the dynamic and spatial characteristics of the game itself. In

fact, handball is played in an area of 20 by 40 meters and it is quite a dynamic game, with high

physical contact among players and rapid movements (a player can achieve velocities higher than

5m/s). These characteristics impose a careful choice on the system’s architecture, which includes

choosing not only the cameras and their disposition but also defining the software design.

The system must cover the entire handball field including the extra border, the obtained image

should have enough resolution to correctly detect all players and capture images with a frame rate

adequate to the involved speeds. The problem’s particularities and the sport’s hall characteristics

place the ceiling as the best spot to set the camera system, since there is no interference from the

crowd, a single player never fills the entire field of view of the camera and a bird’s eye perspective

usually means less occlusion and/or merging situations (this solution was also adopted by Kristan

et al. (2009) and Monier et al. (2009)).

On the other hand, placing the cameras on the ceiling generally forces the usage of multi-

camera systems for additional resolution. Although this choice may result in a more complex

system, it also carries the advantage that some parts of the field are covered by more than one

camera, which provides two views of the same portion of the field that can be used to overcome

or minimize occlusion situations.

Given the enumerated characteristics, the proposed system uses, depending on the configura-

tion, 1, 2 or 3 Gigabit Ethernet cameras DFK 31BG03.H model from Imaging Source. Resolution

is 1024 x 768 pixels and the camera can deliver up to 30 frames per second. The used lenses
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Figure 4.3: Images collected from the two camera’s system.

are Computar T2Z1816CS Vari-focal lens with focal distances ranging from 1.8mm-3.6mm (wide

angle lens).

When compared with other implementations, the presented architecture and hardware choice

allow an "easy" set-up that can be transferred between sports halls. The choice for industrial grade

Gigabit Ethernet interfaced cameras allows reliability with digital quality, high data rate and low

cost: no frame grabber, common hardware, low cable costs while still allowing large distances.

The chosen Vari-focal lenses have an interesting price and allow (manual) "zooming", and there-

fore cope with different pavilions, that have ceilings at different heights. These advantages come

at the expense of an important image distortion.

Figure 4.3 shows the images collected from a two camera’s system . It can be seen that the

barrel effect is wide due to the usage of the aforementioned inexpensive lenses. The mentioned

combination offered excellent performance at an interesting cost at the time of the start of the

project, in 2010. Fig. 5.1, illustrates the same system using three cameras at the Académico’s

Sports Hall in 2012.

4.1.2 Processing System

The processing system is responsible for analysing the videos collected by the Acquisition System,

detecting the players on the field and tracking them.

The first step on this system consists in identifying which areas correspond to foreground and

which areas correspond to background. In order to make this process as independent from the

light conditions as possible, background is modelled using an adaptive method able to cope with

light changes.

Afterwards, the detected foreground zones are analysed based on their colour properties in

order to identify the players. Having in mind the same adaptive line of thought, a Fuzzy catego-

rization methodology is used that allows to continuously model the players’ colour properties.

Finally the tracking is accomplished by converting the players’ positions into real world coor-

dinates by means of the cameras’ homographies and using a vector of Kalman Filters.

The result of the Processing System is a log file with the players’ real world positions during

the game as well as their velocity.
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The detailed description of the methodologies and algorithms used during the processing step

are given on Sections 4.2 and 4.3.

4.1.3 Visualizer and Annotator

The Visualizer and Annotator system is an important tool for the end user, since it allows visual-

izing the videos from the cameras in a single undistorted and meaningful image, observing player

and team statistics, detecting game events and annotating the game.

4.1.3.1 Video Visualization

The images coming from the cameras (as can be seen in Figure 4.3) are deeply affected by dis-

tortion due to the used lenses and contain a high overlapped region, and therefore constitute an

awkward view of the field. In order to provide an image that is useful for the user it is necessary

to build a unified image that shows a natural view of the scene.

Since the cameras homographies have already been computed (to convert the players coor-

dinates into real world coordinates) they can be used to generate this image, by first converting

the input video streams into a common reference, which is the real world and afterwards convert

them into one common reference on the image plane. The visualization tool also allows the user

to navigate throughout the video by providing forward, backward and go to options.

4.1.3.2 Player and Team Statistics

One of the first and most straightforward information that can be extracted from motion analysis

is the player and team statistics concerning position and speed which allows characterizing not

only the players’ effort but also preferable playing areas and attack corridors. This information is

shown in different ways:

• Tabular form with total distance covered and time spent on the field, maximum and average

velocities (Figure 4.4(a));

• Positional and speed maps. On positional maps, colours indicate the frequency the player

occupies a given area, while on speed maps it is possible to choose the range of speeds to

be shown (Figure 4.4(b));

• Tactical maps of both teams during a user defined time frame (Figure 4.4(c)).
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(a) (b)

(c)

Figure 4.4: (a) Player effort in tabular form (b) positional map indicating the zones occupied by
the player (c) tactical map of both teams during a time frame defined by the user.

4.2 Player Detection

Player detection is achieved through colour identification and is composed of three steps. The

first step (Section 4.2.1) consists in the user based colour calibration of each team, using a region

growing method allied with a Fuzzy categorization methodology. This calibration is responsible

for subdividing the colour space into subspaces, which are not necessarily disjoint since there may

be colours common to both teams (for example, it is common to have teams with white stripes).

The second step (Section 4.2.2) consists in detecting foreground regions through a dynamic

background subtraction method, which uses an empty image of the field and a dynamic threshold

that is continuously and locally updated at each new frame.

After the foreground pixels are identified, their colour is compared against the colour sub-

spaces and classified into one of the teams (Section 4.2.3). In case there is a belonging tie between

teams, information of adjacent pixels is used in order to break the tie. Additionally, the teams’

colour subspaces are updated with new information.

Finally, pixels are aggregated to form blobs and categorized into player or no player (noise),

according to size and density restrictions. The centre of mass of the blob is considered the player’s

position that is afterwards transformed into court coordinates using the cameras’ homographies.
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The usage of simple, robust and parallelizable methodologies is intentional, so that, making

use of parallel technologies (multi-threading, Open Multi-Processing (OPENMP) (Chapman et al.

(2007)), Graphics Processing Unit (GPU) (Luebke and Humphreys (2007)) and code optimiza-

tion), real time processing can be achieved.

4.2.1 Colour calibration

The colour calibration is performed under user supervision and is achieved using a region growing

method allied with a Fuzzy categorization methodology.

Let us define colour subspace Sc as the set of RGB colour triplets that are tagged as having

the colours of the vests of team c. The initial colour seeds C(xs,ys) for each colour subspace Sc

are set manually using the mouse to click on the objects that will be segmented. Afterwards, the

surrounded pixels’ colours C(xa,ya) are agglomerated around these seeds using colour distance

criteria. Colour expansion is performed on the HSL (Hue, Saturation and Luminance) colour

space in order to minimize the effects of shadows and light variations.

Regions growth is performed in all directions (using a 8 neighbour mask n8) in a recursive

way until reaching a pixel that, in terms of colour, is more than a global threshold (CT hresG) away

from the seed or more than a local threshold (CT hresL) away from its previous neighbour C(xp,yp),

according to the following definition (both thresholds are user definable):

Rule 0

C(xa,ya) ∈ Sc⇔∀(xa,ya) ∈

( n8(xp,yp) ∧ ∆(C(xa,ya),C(xp,yp))<CT hresL ∧ ∆(C(xa,ya),C(xs,ys))<CT hresG)

Where, C(x,y) is the HSL colour of pixel at location (x,y), n8(x,y) are the eight neighbours of

the pixel at location (x,y) and ∆(C1,C2) represents the colour distance on the HSL colour space

between colours C1 and C2.

During the colour expansion process, each colour value is attributed a given belonging degree

to the subspace being calibrated. This value is stored in a lookup table that contains, for each

colour triplet, the belonging degree to each subspace. Despite the expansion being performed on

the HSL colour space, the colour lookup table is built on the RGB (red, green, blue) colour space,

which is the format provided by the camera. Therefore, in execution time, labelling is performed

via this lookup table, which allows fastening the process.

The Fuzzy belonging degree (µ) of the colour C of a pixel P of coordinates (xp,yp) to a

given colour subspace Sc is µSc(C(xp,yp)) and can assume four levels, according to Table 4.1. By

default, and before the calibration takes place, all the colours are categorized with no belonging

degree to every subspace.

In order to determine the belonging degree of the colour triplet to the respective subspace, the

following rules (Rules 1, 2 and 3) are sequentially applied during the colour calibration region

growing process. To make it easier to understand the categorization rules, each colour belonging

degree has a corresponding alias (BSc).
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Table 4.1: Mapping of BSc to Fuzzy belonging µ .

Colour BSc µSc

Not the colour C0 0
Resembles the colour CL 0.5
Is the colour CF 1
Is a seed colour CS 1

Rule 1

BSc(C(xa,ya)) =CS⇐C(xa,ya) ∈ (Sc∧D((xa,ya),(xs,ys))< DLow∧∆((xa,ya),(xs,ys))<CST hres)

If the pixel was assigned to the subspace, is physically quite close to the initial seed pixel

(D((xa,ya),(xs,ys)) < DLow) and the colour distance to the initial seed pixel is less than a small

threshold (CST hres), then it is also assumed to be a seed pixel with a full belonging degree.

Rule 2

BSc(C(xa,ya)) =CF ⇐C(xa,ya) ∈ (Sc∧∆(C(xa,ya),C(xs,ys))<CMT hres)

If the colour distance to the initial seed pixel is less than a medium threshold (CMT hres) for the

growing process, then the pixel is categorized with a full belonging degree but without being a

seed.

Rule 3

Otherwise, and in case the pixel obeys to the region growing conditions (Rule 0), it is catego-

rized with a low belonging degree (CL).

By the end of the calibration process, the colour space is subdivided into subspaces, which

are not necessary disjoint since the same colour can belong to different subspaces, with different

belonging degrees. The motivation for allowing non-disjoint subspaces is that teams frequently

share colours, for example uniforms with white stripes are common and, thus, the exact same well

known colour belongs to the two opposing teams.

As will be seen later, the belonging degrees assigned to each colour triplet, will allow breaking

ties but also to generate dynamic subspaces that can adapt, either grow or shrink, during the game.

Subspaces do not have, nor ever create, any predefined specific shape as they are created from user

selected seeds on the image and based on the frames characteristics.

4.2.2 Background Subtraction

Since the background is more or less static, due to the semi-controlled environment of an indoor

game, the subtraction is performed using an empty image of the viewed scene recorded prior to
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each competition and only the threshold used to distinguish between foreground and background

pixels is allowed to vary. This threshold is specific for each pixel.

Background subtraction is performed on the RGB colour space, because tests showed that, for

some pixels, a small difference between the RGB colour components of the background and the

processed images corresponded to a large difference on the Hue component (HSL colour space).

In fact, non-linear colour spaces suffer from the non-removable singularity problem as stated by

Cheng et al. (2001).

Also, in order to make the processing time shorter, the subtraction is executed locally and not

to the entire image. In other words, only predefined regions, which are defined by the Kalman

Filter predictive stage, suffer this process (Section 4.3).

The threshold applied to each pixel is only updated if the pixel is classified as background,

otherwise its value remains unchanged. The update obeys to Equation 4.1 and the value is never

allowed to go below 4% or above 23.5% of the entire colour range (0-255) for each colour com-

ponent (these values were obtained experimentally by trial and error).

σ
c
t+1(x,y) =


α|Ic

t (x,y)−Bc(x,y)|+(1−α) σ c
t (x,y) , if It(x,y) ∈ B(x,y)

σ c
t (x,y) ,otherwise

(4.1)

Where σ is the threshold of the pixel at position (x,y), time t+1 and colour component c,

Ic
t is the colour intensity of the pixel at position (x,y), time t and colour component c, Bc is the

background colour intensity of the pixel at position (x,y) and colour component c, and α is a

learning constant, that for our specific case was set to 0.02.

Pixels whose colour difference from the background image is less than the respective threshold

are labelled as background and the threshold updated, the other pixels are labelled as foreground.

4.2.3 Team identification

After the foreground pixels are identified, their colour is compared against the colour lookup

table that resulted from the calibration process (Section 4.2.1) and then classified into one of the

subspaces.

Since the same colour can belong to different subspaces (due to a shared colour among teams)

it may occur that a pixel is classified into more than one subspace. To obtain a crisp value of

the team the pixel belongs to (Sc), the Fuzzy inference model uses not only the belonging degree

itself (µ), but also information about adjacent pixels that have already been classified, or more

precisely the proportion of pixels belonging to each subspace ( nA
nB

) according to the inference

associative matrix defined on Table 4.2 (δ is a small constant defined by the user). This table

illustrates the process when the colour is shared among two colour subspaces, however it can be

easily transposed for a three case problem by including the remaining team(s) on the denominator:
nA

nB+nC
> 1+δ → SA.
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Table 4.2: Fuzzy inference associative matrix.

Sc(x,y) = µSB

0 0.5 1

µSA

0 φ SB SB

0.5 SA


nA
nB

> 1+δ → SA
nA
nB

< 1+δ → SB

else→ φ

{ nA
nB
� 1→ SA

else→ SB

1 SA

{ nB
nA
� 1→ SB

else→ SA


nA
nB

> 1+δ → SA
nA
nB

< 1+δ → SB

else→ φ

Using this Fuzzy inference model it is possible that, although the belonging degree of a pixel

to a subspace based on the colour calibration information is higher than the belonging degree to

the other subspace, it may be the winner due to the neighbourhood characteristics.

Additionally, if the winning subspace has a full belong to that colour triplet and corresponds

to a seed colour (CS), then a region growing process is triggered, and the colour lookup table that

contains the information concerning the colour subspaces is updated. This auto expansion is more

restrictive than the one performed during the manual initialization and is triggered at time intervals

(texp), that can be defined by the user.

In order for this update to add not only colour triplets to the subspaces but also to remove

them, each colour triplet has associated a persistence (pSc(R,G,B)) to that subspace. Colours with

lower belonging degrees have lower persistence and colours with higher belonging degrees have

higher persistence. The initial persistence given to the colour is proportional to the time between

auto expansions, according to Equation 4.2.


pSc(R,G,B) =CLow× texp ,if BSc(R,G,B) =CL

pSc(R,G,B) =CMed× texp ,if BSc(R,G,B) =CF

pSc(R,G,B) =CHigh× texp ,if BSc(R,G,B) =CS

(4.2)

The persistence is maximum, with the values defined in Equation 4.2, when the colour is added

to the subspace and decreases whenever it is not detected in a frame. When the persistence value

reaches zero, the colour triplet is removed from the subspace.

With the introduction of this dynamical behaviour (the update of the look up table), it is pos-

sible to have mutable colour subspaces that adapt to light changes, either occurring at different

regions of the same frame or between frames.

At the same time the foreground pixels are classified, they are also aggregated horizontally to

form Run Length Encoding (RLE) structures characterized by the y, xmin and xmax positions of the

RLE. An outline of the algorithm to generate these RLE structures is presented on Algorithm 1.

Where the endSeg function is described by Algorithm 2. This last algorithm demonstrates how

the end of the RLE structure is obtained. During this process a filtering is performed and adjacent
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Algorithm 1 f indRLEs
/* Searches the input ROI and returns the existing RLEs */
for y ∈ ROI do

for x ∈ ROI do
curSubspaceN← getCrispSubspace(C(x,y))
if OK(curSubspaceN) then

T mpRLE← endSeg(curSubspaceN,ROI,x,y)
if OK(T mpRLE) then

RLEs.add(T mpRLE)
end if

end if
end for

end for

RLE structures are merged together. The conditions that dictate this merging are related with the

distance between two structures and if they belong to the same colour subspace.

Algorithm 2 endSeg(curSubspaceN,ROI,xInit,y)
/* Identifies the characteristics (xmin,xmax) of the RLE*/
x← xInit
for x ∈ ROI do

while getCrispSubspace(C(x,y)) = curSubspaceN do
x← x+1

end while
xEnd← x
while getSubspace(C(x,y)) 6= curSubsp do

x← x+1
end while
if length(xEnd− x)> interRLEMinDist then

break
end if

end for
if length(T mpRLE)> minRLESize then return T mpRLE
elsereturn −1
end if

Finally, the RLEs are merged vertically to form blobs. Again, if the distance between two of

these lines is small, and they belong to the same colour subspace, they are considered as being part

of the same blob and are connected together.

The blobs resulting from this pixel aggregation are further refined, according to size and colour

density constraints. Therefore, blobs that are too small or too large or blobs that have low colour

density are discarded as being players. The colour density is measured as the percentage of pixels

inside the rectangular bounding box of the blob that belong to the subspace divided by the total

number of pixels. The remaining blobs are considered players that belong to a given subspace

(team) (Sc) and have an (x,y) position on image and world coordinates.

The position on image coordinates is calculated as the blob’s centre of mass, according to

Equation 4.3. This is a weighted centre of mass calculation because it uses the belonging degrees
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defined on Table 4.1. This way, pixels that are seeds or fully belong to the subspace (CS or CF )

have a higher contribution to the final result.

(xcm,ycm) =

(
∑x ∑y µSc(C(x,y))x

∑x ∑y µSc(C(x,y))
,
∑x ∑y µSc(C(x,y))y

∑x ∑y µSc(C(x,y))

)
(4.3)

Where c is the team the blob belongs to, C(x,y) is the colour of pixel at location (x,y) and µSc

is the Fuzzy belonging degree assigned during the colour calibration phase.

The world coordinates are obtained by first removing the barrel effect produced by the lens

(only radial effect was considered, since the tangential component was found to be insignificant)

using Equation 4.4. The unknowns in this equation system (k1 , k2 , k3 , xc and yc) are determined

using the information extracted from the field lines.xu = xd +(xd− xc)(k1r2 + k2r4 + k3r6)

yu = yd +(yd− yc)(k1r2 + k2r4 + k3r6)
(4.4)

Where: r2= (xd−xc)
2+(yd−yc)

2, (xu,yu) are the undistorted coordinates, (xd ,yd) are the dis-

torted coordinates, (xc,yc) are the coordinates of the centre of distortion of the lens and k1,k2 and k3

are the radial coefficients for barrel distortion.

Figure 4.5 illustrates the images before and after removing the barrel effect for a two camera’s

system.

Once the barrel effect is removed from the images, it is possible to apply the pinhole camera

model in order to obtain the world coordinates. This model uses intrinsic parameters (K) and

extrinsic parameters (R and T) to map image coordinates (X) into world coordinates (x), according

to Equation 4.5, a process known as homography.

x = K[R|T ]X ⇔ x = HwX (4.5)

The H matrix is defined according to Equation 4.6.

Hw =

 f 0 cx

0 f cy

0 0 1


RT11 RT12 RT13 RT14

RT21 RT22 RT23 RT24

RT31 RT32 RT33 RT34

 (4.6)

Where RT11 = cosφ cosα , RT21 = cosφ sinα , RT31 =−sinφ , RT12 = sinω sinφ cosα−cosω sinα ,

RT22 = sinω sinφ sinα+cosω cosα , RT32 = sinω cosφ , RT13 = cosω sinφ cosα+sinω sinω sinα ,

RT23 = cosω sinφ sinα − sinω cosα , RT33 = cosω cosφ , RT14 = Tx, RT24 = Ty, RT34 = Tz, f is the

focal length, cx and cy are the coordinates of the optical centre, φ , ω and α are the rotations around

the x, y and x axis, respective and finally Tx, Ty, Tz are the translations on x, y and z directions.

The distortion and homography matrices coefficients are determined using the handball field

lines. In order to perform this calculation, the user is requested to select points on the field lines

and provide the corresponding real world coordinates.
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(a) (b)

(c) (d)

Figure 4.5: (a) and (b) left image before and after removing the barrel effect distortion. (c) and (d)
right image before and after removing the barrel effect.

Since we are only interested in the players centre of mass position, only these coordinates are

converted and not the entire field. Additionally, these coordinates are projected at an average’s

player height, which allows a more correct measure of the players’ positions and enables better

information fusion between cameras, which will be crucial for the tracking methodology when a

player passes from one camera to the other.

4.3 Player Tracking

Player tracking is based on a vector of Kalman Filters (Kalman (1960); Welch and Bishop (2002)),

one per player, with state xk (Equation 4.7), measure zk (Equation 4.8) and input uk (Equation 4.9)

at instant time k.

xk = [ x y ]T (4.7)

zk = [ x y ]T (4.8)

uk = [ vx vy ]
T (4.9)

Where x and y are the player’s centre of mass position in real world coordinates, vx and vy are

the player’s velocity in real world coordinates.
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The player’s movement is modelled according to the following linear stochastic difference

equations (Equations 4.10 and 4.11).

xk = Axk−1 +Buk +wk−1 (4.10)

zk = Hxk + vk (4.11)

Where A represents the state model matrix, B the control input model and H is the observation

model matrix. These matrices correspond to an identity matrix of size 2×2. The random variables

wk and vk represent the process and measurement noise.

The input to the system (uk) is determined based on the players’ subsequent positions accord-

ing to Equation 4.12.

uk(x,y) =
(

xk− xk−1

∆t
,
yk− yk−1

∆t

)
(4.12)

The usage of real world coordinates allows a transparent tracking between the several video

streams. Moreover, in the overlapped regions, two measures can be extracted from both images.

The Kalman Filter deals with these two measures in a straightforward way because they are in real

world coordinates.

Whenever the user indicates a player (with the mouse), a new Kalman Filter is added to the

vector with the player’s real world position and a default velocity of 0m/s. Afterwards, the players’

locations on the subsequent frames are predicted using Equation 4.10. The area around the pre-

dicted measure corresponds to a region of interest (ROI) that is searched, according to the process

explained on Section 4.2.3, to generate a measure (zk) to update the estimate.

By predicting the position of the players on the subsequent frames it is possible to reduce the

computational cost because only a few regions of the entire image are searched for players.

For the cases when the tracking is lost beyond a given configurable threshold (called Tracking

Prediction Window - TPW), the system prompts the user to locate the player in the field. If

subsequent tracking is successful, no further user actions are necessary and subsequent tracking is

linked to previous history as a normal result of the Kalman Filter.

4.4 High Level Game Analysis

Using the outcome of the player tracking step it is possible to extract simple metrics that charac-

terize the players’ effort and preferred areas on the field. Based on this information, it is possible

to combine knowledge and data to find patterns of higher levels of complexity.

Phase detection provides important information to evaluate how a team behaves, not only by

demonstrating which team performs more attacks but also to understand how an attack is effective

in terms of time.

The two following subsections describe the proposed methodologies used to detect the game

phase and to characterize the defensive system a team is adopting.
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4.4.1 Game Phase Analysis

The handball game is divided into four main phases: attack, defence, offensive-defensive transition

and defensive-offensive transition ((Fuertes, 2010)). The attack and defence phases are considered

positional game, while the offensive-defensive and defensive-offensive phases are considered tran-

sitional game and perform the connection between the two first phases.

In the attack phase the team which is in possession of the ball tries to create finalization situa-

tions that can lead to goal, while in the defence phase the defending team intends to take possession

of the ball and avoid the opposing team of progressing and scoring.

As highlighted on (Perše et al., 2009), each game phase is characterized by distinct velocities

and field positioning of the team’s centre of mass. Transitional phases are characterized by higher

speeds and few passes between players (Clanton and Dwight, 1997) and the game success can

greatly depend on how fast players can perform a counter attack (defensive-offensive transitional

phase) (Burger et al., 2013).

From a more systematic point of view on attack and defence situations, the team’s overall

velocity in the x direction, vx, is relatively small, because the high displacements occur in the y

direction, vy, since the attacking team tries to break the defensive "barrier" while the defending

team tries to keep it. Additionally, the teams are both concentrated near one of the goals.

On the other hand, during transitional phases the team’s x position, px, can be in any zone

between the two goals, but the team’s longitudinal velocity, vx, is characterized by a high module

and a specific direction depending if the transition is between the defence and attack or the other

way around.

Using the aforementioned premises a Fuzzy Logic (Zadeh, 1965) based classifier was devel-

oped in order to classify the game phase of an handball match. The choice for such a methodology

is intrinsically related with the straightforward relation that exists between how a sports profes-

sional perceives the game which can be mapped into fuzzy "IF-THEN" rules, the inherent uncer-

tainties which can be translated into the membership degrees and finally the easiness in changing

the knowledge database.

The system uses as inputs the team’s velocity on the x direction, vx, the team’s centre of mass

(position) on the x direction, px, and the result of the previous detected phase, prevphase. The

classifier output indicates the current instant game phase based on an if-then inference engine as

exemplified by Figure 4.6.

Using the previous phase as input into the classifier allows having an hysteresis and there-

fore the classifier output is more stable and more robust to temporary changes on the other two

parameters.

The team’s velocity and position on the x direction are determined based on the information

stored on the log files and obeys to Equations 4.13 and 4.14, respectively.
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Rule 
Set

Memberships for 
input parameters

Px
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Phase[t-1]

Fuzzification Defuzzification

Phase[t]

Figure 4.6: Fuzzy inference engine for game phase classification.

vx =
1
N ∑

N
n=1 vnx (4.13)

px =
1
N ∑

N
n=1 pnx (4.14)

,where N is the number of field players currently playing.

The linguistic variable team’s velocity (vx) can be classified into five linguistic terms named

HighNegVx, LowNegVx, StopVx, LowPosVx and HighPosVx, which are represented by the mem-

bership functions indicated in Figure 4.7.
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 HighNegVx  LowNegVx  HighPosVx LowPosVx StopVx

Figure 4.7: Membership functions for vx = { HighNegVx, LowNegVx, StopVx, LowPosVx, High-
PosVx }.

The linguistic terms HighNegVx and HighPosVx represent a large longitudinal displacement

in a relatively short period of time and therefore represent high velocities, on the other hand the

linguistic term StopVx corresponds to a very small velocity which means the team is stopped.

LowPosVx and HighPosVx represent small team velocities.
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The linguistic variable team’s x position (px) can be classified into four linguistic terms named

Close2OwnGoal, MiddleFieldNeg, MiddleFieldPos and Close2OppGoal, which are represented

by the membership functions indicated in Figure 4.8.

0 5 10 15 20 25 30 35 40

0

0.5

1

Close2OwnGoal MiddleFieldNeg Close2OppGoalMiddleFieldPos

Figure 4.8: Membership functions for px = { Close2OwnGoal, MiddleFieldNeg, MiddleFieldPos,
Close2OppGoal }.

As the names of the linguistic terms indicate and the previous image illustrates (Figure 4.8),

Close2OwnGoal and Close2OppGoal represent field areas near each team goal, while Middle-

FieldNeg and MiddleFieldPos represent areas near the middle field line.

The membership functions parameters for the two previous linguistic variables were deter-

mined using information obtained from an excerpt of a game that was previously tagged by a

sports expert.

Finally the linguistic variable corresponding to the previous phase (prevphase) can be classified

into four linguistic terms that correspond to the four game phases: Defence, DefOff, OffDef and

Attack, which are represented by the membership functions indicated in Figure 4.9.

0 2 4 6 8 10 12 14 16
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0.5

1

Defence DefOff OffDef Attack

Figure 4.9: Membership functions for prevphase = { Defence, DefOff, OffDef, Attack }.

The first step of the Fuzzy-Ruled based classifier consists in the fuzzification of each input.

Therefore, each crisp input (team’s position and velocity on the x direction and previous game

phase) is fuzzified in order to obtain its membership degree to each membership function.

Considering the team position px = 27.5m, velocity vx = −1.8m/s and that previously the

team was in Attack phase, the following membership belonging degrees are obtained (Table 4.3).
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Table 4.3: Belonging degrees to each membership term.

vx px phase
µvx=HighNegV x(−1.8) = 0.08 µpx=Close2OwnGoal(27.5) = 0.0 µphase=De f ence(Attack) = 0.0
µvx=LowNegV x(−1.8) = 0.32 µpx=MiddleFieldNeg(27.5) = 0.0 µphase=De f O f f (Attack) = 0.0
µvx=StopV x(−1.8) = 0.0 µpx=MiddleFieldPos(27.5) = 0.28 µphase=O f f De f (Attack) = 0.0
µvx=LowPosV x(−1.8) = 0.0 µpx=Close2OppGoal(27.5) = 0.17 µphase=Attack(Attack) = 1.0
µvx=HighPosV x(−1.8) = 0.0

The following image (Figure 4.10) illustrates how these values were obtained.
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Figure 4.10: Membership belonging degrees when: (a) vx = −1.8m/s (b) px = 7.8m and (c)
phase = Attack.

Afterwards, each input is combined according to the Fuzzy "IF-THEN" rules defined on Tables

4.4, 4.5, 4.6 and 4.7, which were obtained taking into account the sports expert knowledge. Due

to the large number of rules they were subdivided into groups so that they can be more easily read.
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Table 4.4 contains the rules that are applied when the previous phase is Defence. In this case,

the output of the rules can only be Defence or DefOff, since due to imposed physical restrictions a

team cannot pass from Defence to Attack without passing through DefOff phase. In case of a fast

counter-attack then the time spent by the team on the DefOff phase will be very small.

Table 4.4: Game phase Fuzzy inference rule matrix when the Previous Phase is Defence.

Rule PrevPhase TeamPosX TeamVelX Phase

1.1

Defence

Close2OwnGoal
HighNegVx OR LowNegVx OR
StopVx OR LowPosVx

Defence

1.2 HighPosVx DefOff

1.3
MiddleFieldNeg

HighNegVx OR LowNegVx OR
StopVx OR LowPosVx

Defence

1.4 HighPosVx DefOff

1.5
MiddleFieldPos

HighNegVx OR LowNegVx OR
StopVx

Defence

1.6 LowPosVx OR HighPosVx DefOff

Similarly, when at the previous time instant the team is attacking (Attack phase), depending

on the values of the team’s velocity and position on the longitudinal direction of the field only two

phases are allowed, either Attack or OffDef. The rules in this case are summarized on Table 4.5.

Table 4.5: Game phase Fuzzy inference rule matrix when the Previous Phase was Attack.

Rule PrevPhase TeamPosX TeamVelX Phase

1.7

Attack

Close2OppGoal
HighNegVx OffDef

1.8 LowNegVx OR StopVx OR Low-
PosVx OR HighPosVx

Attack

1.9
MiddleFieldPos

HighNegVx OR LowNegVx OR
StopVx

OffDef

1.10 LowPosVx OR HighPosVx Attack

1.11
MiddleFieldNeg

HighNegVx OffDef

1.12 LowNegVx OR StopVx OR Low-
PosVx

Attack

1.13 HighPosVx DefOff

When the team is currently in a transitional phase then the number of rules increases because

on these situations the team’s next phase can be any of the other three.

Following the same line of thought, the game can only evolve to a phase that is adjacent to it,

physically speaking. Therefore if the previous phase is OffDef it is not allowed for the game to

pass immediately to Attack, first it must pass through a DefOff phase, even if only for a small time

period and afterwards it can naturally evolve to the Attack phase. For the DefOff case the same

stands, so the team must first switch to the OffDef phase and only then to the Defence phase.
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The two following tables, Tables 4.6 and 4.7, show the "IF-THEN" rules when the previous

phase is DefOff or OffDef, respectively.

Table 4.6: Game phase Fuzzy inference rule matrix when the Previous Phase was DefOff.

Rule PrevPhase TeamPosX TeamVelX Phase

1.14

DefOff

Close2OwnGoal
HighNegVx OR LowNegVx OffDef

1.15 StopVx OR LowPosVx OR High-
PosVx

DefOff

1.16
MiddleFieldNeg

HighNegVx OffDef

1.17 LowNegVx OR StopVx OR Low-
PosVx OR HighPosVx

DefOff

1.18
MiddleFieldPos

HighNegVx OffDef

1.19 LowNegVx OR StopVx OR Low-
PosVx

Attack

1.20 HighPosVx DefOff

1.21
Close2OppGoal

HighNegVx OffDef

1.22 LowNegVx OR StopVx OR Low-
PosVx

Attack

1.23 HighPosVx DefOff

Table 4.7: Game phase Fuzzy inference rule matrix when the Previous Phase is OffDef.

Rule PrevPhase TeamPosX TeamVelX Phase

1.24

OffDef

Close2OwnGoal
HighNegVx OffDef

1.25 LowNegVx OR StopVx OR Low-
PosVx

Defence

1.26 HighPosVx DefOff

1.27
MiddleFieldNeg

HighNegVx OR LowNegVx OR
StopVx OR LowPosVx

OffDef

1.28 HighPosVx DefOff

1.29
MiddleFieldPos

HighNegVx OR LowNegVx OR
StopVx

OffDef

1.30 LowPosVx OR HighPosVx DefOff

1.31
Close2OppGoal

HighNegVx OR LowNegVx OffDef

1.32 StopVx OR LowPosVx OR High-
PosVx

DefOff

Once the inputs have been fuzzified and their membership degrees determined, each rule an-

tecedent is evaluated using the minimum for the AND operator and the maximum for the OR

operator. The result of the antecedent evaluation can then be applied to the consequent using a

clipping method.
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Finally the outcome of every rule is aggregated and the defuzzification is accomplished using

the mean of the maximum (MOM) value obtained in the consequent.

For the cases with only one maximum value then the output crisp value will be the centre of

the corresponding membership function: 2 for Defence, 6 for DefOff, 10 for OffDef and 14 for

Attack.

In case of more than one maximum, it is possible that the output of the classifier is not a valid

class (for example a value of 4). For those cases the current phase is considered to be the previous

one. The result of the classifier is still filtered using a median filter of size 9.

Phase categorization is only the first step on the game analysis process. Once the phases are

determined a wide range of more in depth analysis is opened which may include classification of

the defensive/offensive formations, event detection, team tactics, among others.

4.4.2 Defensive Systems Analysis

Defensive systems can be classified into three major groups: man-to-man, zone and combined

(Czerwinski and Taborsky, 2005).

On man-to-man defensive systems each defender is assigned to a specific opponent player, on

the other hand on zone defensive systems each player is responsible for guarding a given zone

from any attacker. Combined defensive systems include aspects of both man-to-man and zone

defensive systems, which means that one or more players perform man-to-man defence, usually

to guard either the pivot or the opponent’s team strongest player while the rest of the team plays

in zone defence and is responsible for defending a particular area.

The most popular zone defence systems are (Gomes, 2008): 6:0, 5:1, 1:5, 4:2, 3:3 and 3:2:1,

while on combined systems teams usually choose 5+1 or 4+2.

Figure 4.11 illustrates the characteristics of the most common zone defence systems.

As it is possible to verify, each system receives its name according to the disposition of the

players around their own goal area. So, for 6:0 systems all the 6 fielders form a line right after the

6 meters line, while for 4:2 systems, 4 fielders form a line right after the 6 meters line, while the

other 2 form a second line near the 9 meters line.

Taking into account the characteristic highlighted, a methodology for classifying the team’s

defensive system was developed. This methodology consists in determining which system best fits

the team’s current position on the field, therefore, for each defensive system the radius of every

defensive line is determined.

The lines’ radius for each system are determined by averaging the minimum distance of the

players to their own goal. Since the players disposition is not a perfect circle around the goal, but

rather two semi-circumferences and a straight line, this minimum distance is determined according

to the following equation (Equation 4.15):
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Figure 4.11: Most common defensive systems, from top right to bottom left 6:0, 5:1, 4:2, 3:3,
3:2:1 and 1:5.

pmindist =


√
(px− pGoalx)2 +(py−1.5)2 , if py > 1.5√
(px− pGoalx)2 +(py− (−1.5))2 , if py <−1.5

abs(px− pGoalx)

(4.15)

Where, px and py are the players’ coordinates on the field and pGoalx is the x coordinate of the

goal (-20m or +20m).

Therefore if the player vertical position py on the field is not within the goal limits (-1.5m and

1.5m) the distance is calculated to the nearest pole of the goal otherwise it is calculated as only the

horizontal distance as shown in Figure 4.12.
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Figure 4.12: Example of how the minimum distance between the goal and the players is deter-
mined.

For systems with only one defensive line (6:0) the radius of the line is determined by averaging

all the six fielders’ minimum distances to the goal. For systems with two or three defensive lines,

players are first ordered by their minimum distance to the goal, afterwards players farther away

from the goal are grouped into a same line, for example, in the 5:1 system this group will be

composed of a single player, while on 1:5 systems it will be composed of 5 players. Players close

to the goal will be grouped into the other line.

On three line systems (3:2:1) an intermediate line is also determined and so, the player farther

away from the goal forms the 1 line player, the 2 subsequent players form the 2 line player and the

remainder form the 3 line player.

Once the players are grouped into their respective lines, the several line radius are determined

by averaging the minimum distance of the players corresponding to each line.

To determine which system the team is currently adopting, the next step on the algorithm

consists in analysing the root mean square error between each system line and the corresponding

players’ positions according to Equation 4.16.

MSES =

√√√√ 1
N

Lmax

∑
l=1

N

∑
j=0, j∈l

(minDis j− radiusl)2 (4.16)

Where minDis j is the minimum distance of the player to the goal and radiusl is the radius of

the obtained defensive line.

Finally, the systems are ordered by their root mean square error, and the one with the least mean

square error that assures a minimum distance of lines of at least 1.5m is the one that categorizes

the current distribution of the players on the defensive situation.

4.5 Game Model

Under the scope of this thesis, the game model is considered a mathematical representation of the

game that allows to characterize the interactions between the parties involved (players and ball)

throughout game evolution.

The complex characteristics of the handball game and the different levels of detail make Hi-

erarchical Coloured Petri Nets an appropriate modelling language. Moreover, the colour property
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of the net allows tokens to have properties such as player number plus team identification, which

reduces the number of nets that need to be implemented, and the hierarchical structure allows not

only to have nets with multiple layers of detail where a simplified net gives a broader view of the

system and the other subnets provide more detailed information but also to easily include/remove

extra detail to the net.

The proposed Hierarchical Coloured Petri Nets is composed of 3 layers with different levels

of abstraction according to Figure 4.13. The first layer, Game Mode, gives a generic overview of

the handball game; the second layer specifies the characteristics of the game when the ball is on

game, Game On, and when the game is stopped, Game Stop, either due to a foul or to the specific

rules of the game. The deepest layer is more concerned with the players’ state, and models the

interactions among players, as well as between them and the ball.

Figure 4.13: Model hierarchy overview.

The colour sets defined are illustrated on Table 4.8.

Table 4.8: Defined colour sets.

Colour Set Definition Description
colset GameTime = int; Colour set that represents the game time.

colset Transition = bool; Colour set that represents a variable used to en-
able/disable a transition.

colset Team = with Team | TOpp;
Colour set that indicates the team. It can as-
sume the values Team or TOpp.

colset Ball = bool; Colour set that represents the ball. It can as-
sume two values true or false.

colset PlayerID = int;
Colour set that represents the players’ IDs
(note: the ID will most likely not correspond
to the number on the player’s vest).

colset Player = product PlayerID * Team;
Compound colour set to represent a player.
This colour set is composed of a player num-
ber (ID) and a team.

colset PlayerBall = product Player * Ball
declare ms;

Compound colour set, composed of a player
and a ball.

colset TeamPlayers = product Player *
Player * Player * Player * Player * Player
* Player;

Compound colour set that represents the active
players of a team.

colset TeamBall = product Team * Ball *
TeamPlayers;

Compound colour set that represents a team
with their players and ball.
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The hierarchical model is achieved using substitution places (Huber et al. (1991)). Depending

on the detail level of each layer, the tokens involved are represented differently. Therefore, layers

at the second level include tokens of colour sets Team or TeamBall. Tokens on the third level,

besides the colour sets from the second level, can also be of colour sets Ball, Player or PlayerBall.
Figure 4.14 corresponds to the first layer of the hierarchical coloured Petri model. The handball

game starts with a Throw-Off, which leads to the subnet represented by the substitution transition

Game ON.

The game will remain on the Game On subnet (details are given on Section 4.5.1) as long as

the two teams are fighting over the ball. Whenever there is a foul, a goal, the ball goes outside the

game area, a time out is requested or the match reaches the break the state will change into the

Game Stop subnet represented by the Game Stop substitution transition (Section 4.5.2). As soon

as the corresponding throw is performed the ball is again being fought over and the game changes

into the Game On subnet.

When the game reaches the full time, which is monitored by variable dGameTime, the game

state moves into the End of Game state.

The inscriptions on the arcs indicate that every transition moves two teams from one place to

another. As described on Table 4.8, a TeamBall colour set is composed of a Team, which can

assume one of two values (Team or TOpp), that are stored on the dTeam and dTeam2 variables;

a Ball that can assume a true of false value depending if the respective team is in possession of

the ball or not and a set of TeamPlayers that is characterized by the product of seven Players, that

have a PlayerID and belong to a given Team.

7dTeamDtrueDdTeamPlayersFxx
7dTeam2DofalseDodTeamPlayers2F

7dTeamDtrueDdTeamPlayersFxx
7dTeam2DofalseDodTeamPlayers2F

7dTeamDtrueDdTeamPlayersFxx
7dTeam2DofalseDodTeamPlayers2F

7dTeamDtrueDdTeamPlayersFxx
7dTeam2DofalseDodTeamPlayers2F

7dTeamDtrueDdTeamPlayersFxx
7dTeam2DofalseDodTeamPlayers2F

7dTeamDtrueDdTeamPlayersFxx
7dTeam2DofalseDodTeamPlayers2F

7dTeamDtrueDdTeamPlayersFxx
7dTeam2DofalseDodTeamPlayers2F

7dTeamDtrueDdTeamPlayersFxx
7dTeam2DofalseDodTeamPlayers2F

7dTeamDtrueDdTeamPlayersFxx
7dTeam2DofalseDodTeamPlayers2F

7dTeamDtrueDdTeamPlayersFxx
7dTeam2DofalseDodTeamPlayers2F

7dTeamDtrueDdTeamPlayersFxx
7dTeam2DofalseDodTeamPlayers2F

7dTeamDtrueDdTeamPlayersFxx
7dTeam2DofalseDodTeamPlayers2F

2`dTeamBall

2`dTeamBall

GameoON

GameoON

[dGameTime=60]

GameoStop

GameoStop

GoalKeeper
oThrow

TeamBall

ThrowcOff

TeamBall

ThrowoIn

TeamBall

7moThrow

TeamBall

Free
Throw

TeamBall

EndoofoGame

TeamBall

ExitoDecision

TeamBall

GameoStop
GameoON

Figure 4.14: First layer of the game model.
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4.5.1 Game ON Subnet

As stated, the Game On subnet is active whenever the ball in being fought over by the teams.

This subnet models the behaviour of the global team, and so it provides information about the

team game phase, which is represented by two substitution transitions, Attack and Defence, and

two states, Off Def and Def Off, among other states and transitions as illustrated in Figure 4.15.

The transition between game phases is ruled not only by the team’s ball possession, but also

by the position of the players on the field.

Whenever the team is in possession of the ball and assumes an attack position near the oppo-

nent goal, it transits to the Attack game phase.

During the attack phase two major situations may occur: either the opponent team intercepts

the ball and therefore goes into a transitional phase (Off Def state) or an event may lead the game

to stop (Game Stop subnet) and the team may either remain in the Attack game phase or switch

into the Off Def phase. This decision is performed in the Game Stop subnet (Section 4.5.2), via

the output port Exit Decision.

In case the team passes into the Off Def state, it will remain on it until it reaches a defensive

position (Defence substitution transition), it intercepts the ball and passes immediately into the

Def Off state or, again, a Game Stop state is reached.

In the Defence phase, the only two possible states to move on are the Def Off or the Game
Stop state via the Exit Decision output port. The team will move into the Def Off state in case it

intercepts the ball or to the Exit Decision output port in case of a foul, the ball goes outside the

field’s limits, among other options that will be addressed on Section 4.5.1.1.

Once in the Def Off state, the team can transit into the Off Def state in case the other team

intercepts the ball or into an Attack position if it reaches the goal area. Like on the Off Def state

it can also move into the Exit Decision state.

Additionally, there are other states that correspond to entry points (input ports) to this subnet

from the Game Stop subnet, that are Prepare 7m Throw, Free Throw, Throw Off, Throw In
and GoalKeeper Throw. As already referred, the Exit Decision output port connects the Game
On subnet to the Game Stop subnet.

The two following sections provide more details about the Attack and Defence substitution

transitions.

4.5.1.1 Defence Subnet

As explained on Section 4.5, the third layer of the hierarchical model details the most important

interactions between players. At each time only one team can be in the Defence state, therefore all

tokens in this state must belong to the same team, which means that variable dTeam and variables

of colour set Player (dPlayer1..7) or colour set TeamPlayers (dTeamPlayers) can only assume the

colour Team or TOpp.

The Defence sub state describes the interactions when the players assume a defensive position

as can be seen in Figure 4.16. When a player is defending he/she can be in three different states:
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• Defend Zone – defending an area where there is no near opponent;

• Defend NeOpp Without Ball - defend the goal against an opponent that is near;

• Defend NeOpp With Ball - defending the goal and pass lines against an opponent that is in

possession of the ball.

The transitions between these states are dependent on the movements of the players from both

teams and the ball.

There are two input ports that allow reaching the Defence state, the Off Def, in case the

opponent team intercepts the ball or when there was a foul performed by this same team that leads

to the team losing the ball and the opponent team performing a Prepare 7m Throw.

Since there is more than one entry point an intermediate state needed to be created (Enter
Defensive), that is reached whenever the dDefence variable is true. This variable can in future

be automatically updated using the information obtained from the game phase detection method

(Section 4.4.1). Once the team reaches this state, all players are considered to be defending an

area and therefore, are all transferred into the Defend Zone state.

As soon as a player starts blocking the attack of an opponent without ball, which is detected

by variable dHasNeOpp getting the true value, the respective player (characterized by a team and

an ID) is moved to state Defend NeOpp Without Ball. In case the defender starts defending an

opponent that has the ball (pointed out by variable dNeOppWBall), then the movement will be into

the Defend NeOpp with Ball state.

In case the opponent that is being guarded is no longer in possession of the ball (variable

dNeLostBall changed to true), the player that is in the Defend NeOpp with Ball will change into

the Defend NeOpp Without Ball. Moreover, she/he can further move into the Defend Zone state

if she/he is no longer actively defending the goal against an opponent (variable dNotNeOpp).

During the course of a defensive state, any defender can intercept the ball (variable dInter-

ceptBall) and so all the defender players will move, temporarily into the Player Def Off state and

afterwards into the output port Def Off.
In case there is a goal by the opponent team (dGoal), a foul (dFoulDef or dFoulAtt), the

ball goes outside the playing area (dBallOut), a time out is requested by the opponent team

(dTeamTOut) or a break time is reached (dBreakTime) the game passes to the Player Exit De-
cision, which depending on the action that triggered the transition defines if the team moves into

the Exit Decision output port in possession of the ball or not. This state is the link to the Game
Stop subnet (Section 4.5.2).

4.5.1.2 Attack Subnet

The Attack sub state (Figure 4.17) can be entered via two input ports. The first one is after a

defensive offensive state (Def Off) that results in a ball progression such that the team reaches the

opponent’s goal which is detected by the dAttack variable. The other port results from the Prepare
7m Throw state.
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The proposed model includes the interactions with the ball which leads to players reaching

the Player With Ball state in case they own the ball or the Player No Ball state otherwise. Only

one player can be at any given time in the Player With Ball state, which is guaranteed by the

input arcs guards (1‘(dPlayer1,dBall) and 1‘(dPlayer2,true) ) and by the Ball Throwing and Ball
Throw states.

When the player with the ball launches it (which can either be as a trigger for a pass to a team

mate or for a throw to the opponent goal), the ball token goes into the Ball Throw state while the

player that performed the launch goes into the Player No Ball state.

While the ball is in the Ball Throw state three different events may occur that lead to a change

on the net state:

• a team mate successfully intercepts the ball and variable dPlayerCatch gets true. This trig-

gers a transition and the player who caught the ball along with the ball token moves into the

Player With Ball state;

• the ball is intercepted by an opponent player (variable dInterceptBall) and all the players

from the team pass from the Player No Ball state to the Off Def state. The ball exits the

Ball Pass state to the Def Off state as can be seen on the Defence subnet (Figure 4.16);

• the ball launch consisted in a throw that resulted on a goal (dGoal), a player from either

teams performed a foul (dFoulAtt or dFoulDef ), the attacking team required a time out

(dTeamTOut), the ball went outside the allowed playable area (dBallOut), or a break time

was reached (dBreakTime), which requires a decision about the next state. In this case the

team passes into the Exit Decision state that is dealt at the Game Stop subnet (please refer

to Section 4.5.2).

Finally, while the ball is being carried by a player other events may occur that also lead to

the Exit Decision state. These events include a foul (dFoulAtt or dFoulDef ), the team requested a

time out (dTeamTOut) or the time to a break was reached (dBreakTime).

4.5.2 Game Stop Subnet

The Game Stop subnet is more complex because, depending on the condition that lead the game

to the Exit Decision input port, several paths may be followed. Figure 4.18 illustrates the game

model for this situation.

The game always starts on the Break state and the dEndBreak variable switching to true signals

the consent to perform the Throw-Off that will lead the game to the Game On state.

When the game evolves again to the Game Stop substitution transition the following may

occur:
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• In case one of the teams scores a goal, indicated by the dGoal variable, both teams must

move into their own half of the court and so they pass to the Prepare for Throw Off state.

Once the teams are ready and the referee whistles the game passes to the Game On subnet

via the Throw-Off output port. As already seen on Section 4.5.1, the team with the ball

steps into the Def Off state, while the other team steps into the Off Def state.

• In case of a defensive foul, both teams will go into the Foul Def state so that a decision can

be made on whether it was a minor or a major foul. If a major foul was performed, then

variable d7MeterFoul is set to true and both teams must prepare themselves for a 7 meter

throw (Prepare 7m Throw state), otherwise they prepare for a free throw (Prepare Free
Throw state), where both teams keep their previous game phase (recall Figure 4.15) and

exit to the Game On subnet via the Free Throw output port.

Major fouls imply that the defensive team performs a foul that clearly destroys the chance

for the attacking team to score, the goalkeeper carries the ball back into the team’s own goal

area, a court player intentionally plays the ball back to goalkeeper that is still in the goal

area, or a defensive player enters the goal area to gain an advantage over an attacking player

in possession of the ball.

• Attacking fouls can also be evaluated based on whether the player committed the foul in-

side the opponent’s goal area or not. In case the foul is committed by the attacking player

entering the opponent’s team goal area, or touching the ball inside the opponent’s goal area

then variable dGoalAreaFoul is true and both teams must prepare for a goalkeeper throw

(Prepare GoalKeeper Throw).

The Goalkeeper Throw is taken by the goalkeeper from the goal area out over the goal area

line and is considered to be finished when the ball completely crosses the goal area line.

In case the foul does not justify a goalkeeper throw (variable dGoalAreaFoul is false), then

both teams prepare themselves for a free throw (Free Throw).

• If the ball goes outside the court, then variable dBallOut is true and the next state for both

teams is Ball Out. In case the ball exits the court through a lateral line then a throw is

awarded to the opponent team and both teams move into the Prepare for Throw In state.

A Throw In is also issued in case the ball crosses the team’s goal line but the last player to

touch it belongs to the defending team.

In case the ball crosses the goal line, after being touched by the defending goalkeeper or an

attacking player then a goalkeeper throw is awarded (Goalkeeper Throw state).

• If the game stops due to a time out request (dTeamTOut), then both teams take a pause of 1

minute (Team Time Out). During the team time out, players and team officials remain at

the level of their substitution areas. The game is resumed via a Free Throw from the place

where the ball was before the interruption.
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• The game can also stop if the break time is reached (dBreakTime=30). Teams will stay on

the Break Time state for 10 minutes and resume game via a Throw-Off.

4.6 Summary and Conclusions

This chapter described the proposed methodologies used to tackle the problem highlighted on the

Introduction (Chapter 1).

Player detection is based on an initial manual colour calibration that, during the processing

stage, is able to dynamically and automatically adapt to the light conditions that influence the

colour (different field zones, shadows, influence from outside conditions due to the presence of

windows, among others). The methodology adopted includes the identification of foreground pix-

els, using dynamic background subtraction, and the notion of team colour subspaces, using a Fuzzy

inspired dynamic model to detect players based on the colour properties of their uniforms. Due

to the Fuzzy colour classification, a given colour may be shared among teams. During this classi-

fication phase the colour models are constantly being updated in order to accommodate changes

resulting from different light conditions and shadows.

Once the players are detected, they are then followed using a vector of Kalman Filters, one

Kalman Filter per player. The player tracking is performed on real world coordinates which allows

the usage of measures from any image source since they are referred to the same coordinates

referential. Moreover, it allows each Kalman Filter to integrate more than one measure in case the

player is being detected in more than one image source (on overlapped regions).

From the two previous phases, detection and tracking, it is possible to extract very useful

information about the game, namely the players’ individual and team’s performance in terms of

travelled distance, average speed, preferred field areas, among others.

Moreover, the visualisation tool allows for a better understanding of the teams’ behaviour

by providing a global, undistorted view of the field, as well as schematic views concerning the

players’ movements and teams’ interactions.

These initial metrics correspond to low level information, which are then fed into more com-

plex data analysis methodologies to extract the game phase and the defensive tactics.

The game phase is obtained with the aid of a Fuzzy classifier that uses the teams’ longitudinal

velocity and position along with the previous phase as inputs. These inputs are fuzzified and

passed through a series of "IF-THEN" rules, which are aggregated and defuzzified using the mean

of maximum method.

Whenever one of the teams is defending, the tactics is automatically determined and classified

into a one line, two lines or three lines defensive system by an error minimization based classifier.

Finally, and in order to formalize the handball game, a model based on a Hierarchical Coloured

Petri Net was proposed. The usage of such a Hierarchical Petri Net allowed dividing the game into

three abstraction layers which highly contributes to better understanding the model.

Additionally, the usage of the colour property of such a model is quite suitable to differentiate

both teams as well as to differentiate players inside the same team.
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Chapter 5

Experimental Validation

This chapter presents the experimental validation of the proposed architecture as well as of the

developed and proposed methodologies.

In order to accomplish this validation, the system was placed at a public sports hall to capture

the official games of the Handball Portuguese SuperCup, year 2011. Additionally, extra tests

were performed in a local sport’s club (Académico Futebol Clube) which allowed to validate the

flexibility of it, by providing footages with different camera configurations (1, 2 and 3 cameras’

systems), and at the same time guarantee that the entire field is covered with good resolution and

large overlapped areas as shown in Figures 4.3 and 5.1.

Figure 5.1: Images from a 3 cameras’ system.

5.1 Player Detection and Tracking

The presented results relate to: system’s accuracy; player detection and tracking rates. Also, an

in-depth sensitivity analysis was performed in order to evaluate the robustness of the approach.

101
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5.1.1 Processing Time

The system takes, on average, about 160ms to process each frame using an Intel Core i7-2630QM@

(2.00-2.90) GHz computer operating on Windows7 and can go up to 1s during an auto-expansion

process. In order to obtain real time processing (a frame should be able to be processed in less

than 33ms - cameras operate at 30fps) a speed up of around 5 times would be required. This result

can be achieved using techniques such as Graphics Processing Unit (GPU), parallel processing or

smart cameras which enable speeding-up the processing time.

5.1.2 Measurement Accuracy

Tests conducted on the measurement accuracy show that the error is less than 35cm for a 2 cam-

era’s system. This error is comparable with other works devoted to handball Barros et al. (2011)

(7-28cm) and Kristan et al. (2009) (30-50cm). The following image (Figure 5.2) illustrates the

errors at known points of the field. The green dots indicate the real positions, while the bars

represent the distances to the measures obtained with the calculated homographies.

Figure 5.2: Measurement error. Dots represent real coordinates and bars represent the measure
obtained using the estimated homography.

The error obtained is satisfactory given the characteristics of the implemented system: high

area to be covered, the distortion induced by the wide angle lenses, and the system’s inherent

resolution (3.6cm, 3.7cm). Additionally, the maximum errors are achieved in the field periphery

and not in critical areas for the game, such as the goal area.

5.1.3 Detection

In order to validate the Fuzzy methodology, two distinct teams that we named green and red teams

(examples of both teams can be found in Figure 5.3(b)) were calibrated as explained on section
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4.2.1. The original seeds were selected by clicking on the players of both teams, which resulted

on the initial colour subspaces illustrated in Figure 5.3(a).

(a) (b)

Figure 5.3: (a) Initial colour subspaces for green and red teams. Lighter dots are seed colours (CS),
intermediate are team colour (CF ) and the darkest resemble the team colour (CL). (b) Examples of
players from red (up) and green teams (down).

After 1020 frames and a time between expansions of 30 frames (texp = 30, which corresponds

to 34 expansions), it is possible to confirm that the teams’ colour subspaces have updated and

dynamically changed from the original colour subspaces (Figure 5.3(a)) into the new colour sub-

spaces of Figure 5.4. It is convenient to disable the auto-expansion process when the colour

subspaces become stable and the detection rates acceptable because the overhead time induced by

the auto-expansion process is high and can increase the processing time.

Figure 5.4: Final colour subspaces after 34 auto-expansions.

Figure 5.5 provides an overview of the colour subspaces evolution during the auto calibration

process. It is possible to verify that, from the initial colour subspaces (Figure 5.3(a)) to the final

ones (Figure 5.4), the colour triplets that belong to each class are adapting.

On the red team, the initial colour subspace defined by the user consisted in colour triplets that

in fact do not belong to it. By making use of the persistence property of the colour triplets, the

auto-expansion process adaptively "pruned" them which resulted on a slight more condensed and

stable form.

On the other hand, the initial green team calibration did not reflect well the characteristics of

the team’s uniform. Therefore, it is possible to verify that the colour seed triplets (CS) increase
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greatly during the auto-expansion, the CF colours triplets increase less due to their smaller persis-

tence and colour triplets that resemble the colour, CL, stay quite stable at low values.
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Figure 5.5: Evolution of the colour triplets that belong to each colour subspace and the respective
belonging degree. The expansion is performed at every 30 frames (texp = 30).

From what has been said, it is important to highlight that the initial seed choice (a well-known

problem of region growing methods) as well as the specific characteristics of the team’s uniform

will influence on how well the colour subspace adapts to the environment conditions. In fact, the

initial seeds for the red team resulted in a faster adaptation: the colour subspace adaptation is

very quick at the initial process on pruning colour triplets (CF ) that were miss categorized by the

user. On the other hand, for the green team the stabilization seems to occur more at the end of the

process.

Comparing the number of not detected players in each frame with and without the Fuzzy model

of colour expansion, it is possible to verify that the overall player detection achieves better results

with the mutable colour subspaces, as depicted in Figure 5.6 (each handball team is composed of

6 field players).
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The usage of the auto-expansion methodology greatly improves the detection rate for the green

team, in fact the number of miss detected players per frame, after frame 100, sporadically gets

higher than 1 but never higher than 2, and most of the time is 0, while with the initial colour

subspace continuously oscillates between 4 and 6 miss detections.
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Figure 5.6: Number of miss detected field players in each frame with and without colour auto-
expansion: (a) red and (b) green team. Each point was obtained by passing an averaging filter of
size 9 to the original points.

For the red team the behaviour is somewhat different, and the number of miss detections is

similar for both cases because the initial colour subspace already reflected well the team’s char-

acteristics. An important aspect to highlight is that, despite some pruning, the auto-expansion

process was able to maintain the colour triplets that really belong to the team.

The results for the two teams indicate that the auto-expansion is extremely important and

can greatly improve the results when the initial colour subspace does not reflect well the team



106 Experimental Validation

characteristics. Furthermore, during the game if the light conditions change, the colour subspace

will also adapt in order to accommodate the new colour triplets and remove the ones that no longer

belong to the team.

Figure 5.7 shows a zoom around the 6 meters’ line of the players’ detection at frame 671,

where the green/red light pixels correspond to pixels that were labelled as belonging to green/red

team, the green/red crosses correspond to players detected from green/red team, while the blue

crosses indicate that the player’s position was predicted by the Kalman filter and, therefore, it

was not detected. Analysing the two images, it is possible to verify that, using the Fuzzy auto-

expansion model, all players from both teams were detected (Figure 5.7(b)), while using the initial

colour subspaces (Figure 5.3(a)) only one player from the green team was detected (Figure 5.7(a)).

Additionally, the detected area of the players is higher with the Fuzzy model (visible on player 9)

which allows having a better measure of the player’s centre of mass.

(a) (b)

Figure 5.7: Results of the player detection at frame 671: (a) without auto-expansion and (b) with
auto-expansion. Green and red crosses indicate correct detection while blue crosses indicate the
position was predicted by the Kalman filter.

5.1.4 Sensitivity Analysis

In order to better assess the proposed global methodology, systematic tests were carried out by

varying configuration parameters and operation conditions. A sensitivity analysis of the following

parameters was performed: time between auto-expansions (texp), background learning constant

(α), tracking prediction window (TPW) and initial seeds choice. Additionally, robustness tests to

changes in brightness and image resolution were performed.



5.1 Player Detection and Tracking 107

5.1.4.1 Expansion Time

As explained on Sections 4.2.1 and 4.2.3 the evolution of the colour subspaces is governed by the

texp constant. This dependency is two-fold, first because the auto-expansion process is triggered

at intervals of texp and secondly the triplets’ persistence is also dependent on the texp according to

Equation 4.2.

The choice of the texp plays an important role in the overall detection, because a too low value

although providing a fast response, will also increase the processing time since auto-expansions

occur more often. On the other hand, higher time between expansions will make the system

adaptation slower and a good calibration cannot be achieved so fast. Figure 5.8 shows the miss

detection rates using different texp values. It is possible to verify that for lower values (15 and 30)

the system quickly adapts, while for texp = 60 it takes around 400 frames to achieve similar rates.

The overall values indicate that, for this specific case, the best performance is achieved with

texp = 30 which has 6.95% global average of miss detections. Other similar value is 7.72% for

texp = 15.

5.1.4.2 Illumination

The illumination’s impact on the system’s performance was tested by artificially changing the

brightness of the video, similarly to what is expected to happen in a sudden illumination change.

Figure 5.9 shows the miss detection rates for the original behaviour ("Original" series) compared

with the ones obtained when the videos’ brightness is changed by:

• applying a step of brightness of -20 at frame 600 and changing it to a step of +20 (above

baseline) at frame 1200 ("Step" series)

• applying a ramp of brightness from frame 500 until frame 700 of -20 and a ramp from frame

1100 to 1400 of +40 ("Ramp" series)

• applying Gaussian noise at every video frame ("Gauss" series)

The visual difference between the brightness of the several test limits (-20, +20) and the orig-

inal image can be seen in Figure 5.10.
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Figure 5.10: Example of images obtained by applying a brightness step of -20 (top), 0 (middle)
and +20 (bottom) to the original videos.

Analysing Figure 5.9 it is possible to verify that the system behaves well when Gaussian

noise is applied. Although the miss detection rate is slightly higher than in the original case, the

overall performance is very similar. For the Step and Ramp tests, the miss detection rate increases

specially when applying the -20 brightness delta at frame 600.

5.1.4.3 Background Learning Constant

Concerning the background learning constant, the choice of its value must take into account that

high values tend to induce fast absorption of foreground features into background that cause miss

detections, while low values make the background detection slower and therefore more pixels are

considered foreground.

Table 5.1 illustrates how the background detection behaves using four different learning con-

stant values (0.02, 0.08, 0.16 and 0.20), when two players stay still for a long period of time.

High learning constants (0.16 and 0.20) rapidly absorb foreground features and the two static

players are miss detected from frame 82 onwards. A smaller constant (0.08) has a better behaviour,

however on frame 82 only one of the players is detected, the other was included on the background.

The smallest tested constant (0.02) proved to have better results, since it is able to completely

absorb the players shadows in a relatively short period of time (51 frames) while keeping the

detection rates high.

5.1.4.4 Seed Pixels Choice

Another important aspect to take into consideration is the initial colour seeds choice that, as pre-

viously mentioned, impacts heavily on detection rates. Figure 5.11 illustrates how the detection

rate may be influenced depending on the initial colour calibration. Therefore experiment B, due

to a poorer choice of the initial seeds presents higher miss detection rates particularly at the initial

phase, only getting similar values after frame 600.
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Table 5.1: Foreground detection using different learning constants (α = 0.02, α = 0.08, α = 0.16
and α = 0.20) at frames 31, 82 and 120. The pixels classified as background were darkened.

Frame Number

31 82 120
B
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0.02

0.08

0.16

0.20

It is also possible to verify that the dynamics of the colour subspaces behaves differently as

illustrated on Table 5.2. This difference is more noticed for the red team, which for Experiment B

results in a more condensed colour subspace compared with the one from Experiment A on frame

1600. For the green team, despite the differences on the initial subspaces the final ones are very

similar. Nevertheless it is possible to verify that both colour subspaces show a tendency towards a

similar shape.

5.1.4.5 Video Resolution

A final sensitivity test on the detection methodology consisted in evaluating how the camera reso-

lution would influence the miss detection rate. The videos were down sampled by a factor of two

and the resulting miss detection rates can be seen in Figure 5.12. For the down sampled video,

the parameters concerning the minimum area allowed for a blob to be considered a player, were

adjusted accordingly. Down sampling the video proved to induce a higher miss detection rate,
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Table 5.2: Colour subspaces evolution depending on the initial colour seeds. Lighter dots are seed
colours (CS), intermediate are team colour (CF ) and the darkest resemble the team colour (CL).

Frame Number
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which is justified by the smaller number of pixels that compose each player as can be seen in

Figure 5.12(a).

5.1.4.6 Tracking Prediction Window (TPW)

Normal Kalman filtering transforms the sequence of detections into tracking. In case of miss de-

tections, the system is able to make a limited prediction in time in order to avoid user intervention.

However, if a given player is not detected beyond a given configurable threshold called TPW, the

user is prompted to locate the player or indicate a special game circumstance.

The TPW plays an important role in the tracking rate, therefore this experiment evaluated how

the tracking rate is affected using TPWs of 1, 5, 10 and 20 frames. The results are shown in Figure

5.13.

As can be seen, with the smallest TPW, which corresponds to 1, the tracker behaves like a pure

filtered tracker where the results are based solely on the detection and therefore the tracking rate

is lower (around 99.44%). Increasing the TPW allows for higher tracking rates (around 99.70%

for TPW=20 frames), because the user is prompted to correct the tracker less often. However,

the operator must pay more attention to the entire process, otherwise the tracker may be lost and

continue to rely on a miss leading prediction.

5.1.5 Detection with Shared Colours

The proposed Fuzzy methodology enables having the aforementioned auto-expansion process, but

also the possibility of having shared colours among both teams. To test it, a game where two teams

(team A and team B) have the colour white on their uniforms was recorded and processed. The

colour subspaces are shown in Figure 5.14(a) and the resulting process in Figure 5.14(b).
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(a) (b)

Figure 5.14: (a) Colour subspaces for two teams with a common colour (white) and (b) an example
of a processed image.

Despite the fact that the colour white is common to both uniforms (shown by the yellow triplets

on the colour subspaces of Figure 5.14(a)), the processing is able to identify the neighbouring

pixels and correctly label the pixel under analysis. So for player 7 from team A, the white pixels

are labelled as belonging to team A, because they are near red pixels that only belong to the team

A, while for players 2 and 3 most of the white pixels are labelled as belonging to team B, due to

their neighbourhood to blue pixels that only belong to team’s B colour subspace.

5.1.6 Player Tracking

The miss detections achieved with the auto-expansion process are not consistent and persistent on

time, so they are compensated by the predictive stage of the Kalman filter (Equation 2.7), and the

benefits of the method are evident on the results obtained for the green team.

Taking into account the results of section 5.1.4.6, tests were performed with a TPW=5 frames,

which allows having a good tracking rate as well as an accurate measure, because in case the

tracker is lost this fact will be highlighted to the operator sooner.

Figure 5.15 compares the miss detection rates with and without the auto-expansion as well

as with and without the Kalman filter. As expected, the worst case is when no Kalman filter

or auto-expansion is performed. The usage of the auto-expansion method greatly improves the

overall detection rates, which are further enhanced with the aid of the Kalman filter. Results for

the non auto-expansion case are only plotted until frame 1000, because the human operator effort

of correcting the tracking is very high, and more data does not provide extra information for what

we are demonstrating.

Numerical results for each player on the tracking rate during the auto-expansion process can

be seen on Table 5.3 (this data was obtained by manual validation performed by an expert during

the tracking process, and combines miss detections resultant from the TPW parameter, as well as

corrections made by the operator in case the prediction was wrong). As expected, despite some

miss detections, the tracking achieved very good rates, having a success that ranges from 95.4%

to 99.9% (and a corresponding average of 98.8%).
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Table 5.3: Tracking rates of all the players (6 field players per team) during 11000 frames analysed
(≈370s).

Player
ID Rate(%)

Player
ID Rate(%)

P0 99.44 P6 99.78

P1 99.61 P7 99.62

P2 97.87 P8 98.83

P3 96.95 P9 99.90

P4 99.32 P10 99.67

P5 99.04 P11 95.44

Compared with other approaches these results prove to be similar to the ones obtained with the

fast Rao-Blackwellized Resampling particle filter proposed by Beetz et al. (2007) (> 90%), the

Condensation particle filter proposed by Kristan et al. (2009) (ranging from 99.12% to 99.57%) or

the directed weighted graphs of Pallavi et al. (2008a) (around 93.26%).

5.2 Ball Detection and Tracking

In order to evaluate the performance of the proposed methodology applied to the ball tracking case,

a short sequence was processed using the same Fuzzy based methodology and a single Kalman

Filter. Figure 5.16 shows the final video processed when tracking only the ball.

Figure 5.16: Processed video showing the tracking of the ball.

To have a better overview of how the ball behaves while it is being passed, hold by players or

dribbled, Figures 5.17 and 5.18 show sub images of the entire field for each of these cases.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 5.17: Images provided by the visualizing application when tracking the ball during a pass
between two players.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.18: Images provided by the visualizing application when tracking the ball during a drib-
ble.

From the tests, it is possible to verify that the methodology is not robust enough and the ball

is lost quite often. The main reasons for this are:

• the high velocity at which the ball can travel is too high for the frame rate used on the

cameras, in order to obtain better results it would be important to increase the cameras

frame rate;
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• on handball, players can grab the ball and carry it with them, which can occlude the ball

under the players’ torso, additionally the ball trajectory can be changed either by the player

or when it is being dribbled. Long occlusions and unpredictable trajectory changes make

the used Kalman Filter unsuitable.

In order to overcome these two issues the algorithm should be improved to take into account

that a ball can be part of the player, and after being caught by the player can be thrown in any

direction.

5.3 Game Analysis

In order to analyse the game itself, higher level analysis must be performed as already explained

on section 4.4.

The two following subsection validate the methodology employed to detect the phase of the

game as well as to determine the type of defence being used by the defending team.

5.3.1 Game Phase Detection

The game phase detection validation was performed by cross checking the results obtained from

the proposed methodology with the labelling performed by a sport’s expert.

As already referred, the proposed automatic methodology is based on a Fuzzy classifier that

has as inputs the team x position, px, velocity in the x direction, vx, and the information from the

previous phase, Phase[t−1].

Figure 5.19 illustrates the evolution of the belonging degrees for each input parameter to each

membership function as well as the evolution of the Fuzzy classifier output during the following

sequence of phases of Game 1: Attack (from frame 1435 to frame 14956)), Offensive Defensive

(from 1495 to frame 1750) and Defence (from frame 1750 to frame 1785).

The classification performed by the sport’s expert was done with the aid of the Visualizer tool,

therefore an expert was asked to visualize 10 minutes of one game and annotate the current game

phase for each team.

Table 5.4 compares the results obtained by the automatic labelling and the manual labelling

performed by the sport’s expert.

Table 5.4: Comparison of phase detection between a sport’s expert categorization and the devel-
oped automatic methodology for a 10 minute’s period of Game 1.

Team A Team B

Game Phase Auto Expert 5 f rame Game Phase Auto Expert 5 f rame

Def 575 575 0 Def Off 637 × ×
Def Off 1566 1550 16 Attack 752 585 167

Attack 1759 1850 -91 Off Def 1496 1550 -54

Continued on Next Page. . .
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Table 5.4: Comparison of phase detection between a sport’s expert categorization and the devel-
oped automatic methodology for a 10 minute’s period of Game 1.

Team A Team B

Game Phase Auto Expert 5 f rame Game Phase Auto Expert 5 f rame

Off Def 3643 3643 0 Def 1722 1850 -128

Def Off 3923 3880 43 Def Off 3656 3643 13

Attack 4084 4140 -56 Off Def 3907 3880 27

Off Def 4938 4890 48 Def 4083 4140 -57

Def 5123 5300 -177 Def Off 4973 4890 83

Def Off 5845 × × Attack 5193 5300 -107

Attack 6077 5775 302 Off Def 5800 × ×
Off Def 6863 6850 13 Def 5989 5775 214

Def Off 7012 6949 63 Def Off 6873 6850 23

Off Def 7213 7227 -14 Off Def × 6949 ×
Def Off 7523 7500 23 Def 7078 × ×
Attack 7719 7737 -18 Def Off 7251 7227 24

Off Def 8615 8613 2 Off Def 7506 7500 6

Attack 9100 8760 340 Def 7715 7737 -22

Off Def 9595 9570 25 Def Off 8619 8613 6

Def 9798 9870 -72 Attack × 8760 ×
Def Off 11794 11770 24 Def 8892 × ×
Attack 11999 × × Def Off 9592 9570 22

Off Def 12135 12117 18 Attack 9820 9870 -50

Attack 12570 12260 310 Off Def 11783 11770 13

Off Def 14147 14130 17 Def 11974 × ×
Def Off 14365 14350 15 Def Off 12158 12117 41

Off Def 14549 14490 59 Def 12387 12260 127

Def Off 14696 14679 17 Def Off 14147 14130 17

Off Def 14878 14840 38 Off Def 14379 14350 29

Def 15034 15070 -36 Def Off 14544 14490 54

Def Off 16373 16359 14 Off Def 14692 14679 13

Off Def 16561 16520 41 Def Off 14904 14840 64

Def 16729 16743 -14 Attack 15042 15070 -28

Off Def 16369 16359 10

Attack 16786 16743 43

It can be seen that most of the phases are correctly detected by the proposed methodology,

however and in order to evaluate the proposed methodology, three different metrics were chosen.
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Figure 5.19: Evolution of the belonging degrees and output of the Fuzzy classifier from frame
1435 to frame 1786.

Each of the proposed metrics evaluates different parameters such as the phase detection, the phase

consistency with manual labelling and the phase start alignment.

The first metric, F-measure (Santiago et al. (2012b)) is determined using Equation 5.1, and

allows evaluating how well the game phases are detected. This measure compares the number of

correct events c (i.e., phases that were also categorized by the sport’s expert) with the number of

false positives, f+ (i.e., phases that were categorized by the application but were not categorized

by the sport’s expert) and false negatives, f− (i.e., phases that were categorized by the sports

expert but were not categorized by the application):

F =
c

c+ f++ f−
(5.1)

Applying this measure to the results of Table 5.4 we obtained 86.76% of game phases correctly

detected for approximately 17000 frames analysed.

The second metric, Ptime, measures the percentage of time during which both the automatic

as well as the expert categorization match. Equation 5.2 demonstrates how this measure is deter-

mined.

Ptime =
∑

t=ttotal
t=0,phauto=phexp

1

ttotal
(5.2)
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This measure was applied independently to each team and the results ranged from 84.8% for

team A to 82.6% for team B (during the 17000 frame period).

Finally, the third metric, Talign, allows evaluating how miss aligned are the different phases de-

termined by the application when compared with the phase start determined by the sport’s expert.

Equation 5.3 illustrates how this measure is obtained.

Talign =
∑

ph=phtotal
ph=0 | tphauto− tphexp |

phtotal
(5.3)

The analysed time period has a phase time misalignment of 1.89s, when compared with the

expert’s opinion.

5.3.2 Team Formation Detection

The validation of the defensive team formation labelling was performed through comparing the

results obtained automatically with the ones labelled by a sports’ expert.

While the expert was categorizing the game phase he was also requested to indicate which

defensive system the teams were using and label it into one defensive line, two defensive lines or

three defensive lines. The same game period was analysed with the developed methodology and

the results comparison is shown in Figures 5.20 and 5.21.

Figure 5.20: Results comparison between expert and automatic defensive team formation labelling
for team A.

Figure 5.21: Results comparison between expert and automatic defensive team formation labelling
for team B.
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The automatic method achieved 89.92% for team A and 85.97% for team B of accuracy, when

compared with the expert’s data.

5.4 Results Visualization and Annotation

The log file generated during the game processing contains the players’ positions and velocities

and, as explained in chapter 4.1.3, can be used by the Visualizer not only to see the two images

fused into a single image with the tracked players highlighted, but also to extract statistics of the

players’ behaviour.

The results analysis was performed for two games, Game 1 and Game 2. Game 1 was played

between Team A and Team B, while Game 2 was played between Team C and Team A. For both

games, a period of approximately 10 minutes was taken into consideration.

Figure 5.22 illustrates how the Visualizer shows the field and the players highlighted to the

end user.

(a)

(b)

Figure 5.22: Images provided by the visualizing application: (a) image of Game 1, (b) image of
Game 2.
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This global image is obtained by first converting each pixel coordinate into real world coordi-

nates and then converting them back to a common coordinate system (in this case the right image

coordinate system).

The global view also shows the players’ centre of mass (crosses above the players), their IDs

and the teams’ centre of mass (the two concentric circles with Tx).

Additionally, the application provides statistics for each player, positional and speed maps per

player and the team’s tactical map. These two topics are deeper explored on the two following

sections (Sections 5.4.1 and 5.4.2).

5.4.1 Metrics

The defined metrics are more player centred, and therefore include players’ maximum and average

speeds, as well as the distance covered during the analysed period.

Table 5.5 shows the statistics for the players on Game1, while Table 5.6 shows the statistics

for Game 2, during the two periods under analysis. It is important to mention that handball is a

game that allows unlimited substitutions and, therefore, players are constantly being replaced, and

so the table also includes the time period at which each player started (Ti(s)) and stopped playing

(Te(s)).

Table 5.5: Player statistics of Game 1 during approximately 10 minutes of game.

T P D(m) Ti(s) Te(s) Avg speed(m/s) Max speed(m/s)

A

P0 1001.57 0 603 1.65 9.22

P1 862.28 0 603 1.43 8.93

P2 1001.85 0 603 1.64 10.32

P3

82.05 0 53 1.55 7.2
35.89 125 134 3.95 8.98
63.13 168 196 2.18 8.89
61.59 244 262 3.62 6.99
106.91 323 395 1.47 7.75
256.38 477 703 2.03 7.71

P4

74.15 0 54 1.39 8.40
36.51 182 196 2.49 6.30
77.14 334 396 1.24 8.33
153.69 509 603 1.63 9.35

P5 858.55 0 603 1.42 7.76

P12

82.29 53 125 1.15 6.07
51.93 134 168 1.55 5.03
64.53 196 245 1.38 5.46
70.75 262 323 1.16 6.46
97.02 395 477 1.16 5.86

Continued on Next Page. . .
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T P D(m) Ti(s) Te(s) Avg vel(m/s) Max vel(m/s)

P13

202.76 54 181 1.59 7.03

210.57 197 334 1.53 7.59
184.48 396 510 1.62 6.90

B

P6 1017.63 0 603 1.68 9.50

P7 867.93 0 603 1.44 8.37

P8 961.01 0 603 1.58 9.40

P9
376.67 0 245 1.54 6.78
99.54 263 324 1.61 5.12
81.28 435 476 1.98 5.29

P10

108.40 0 66 1.65 5.10
43.35 126 140 3.09 7.69
39.22 169 198 1.37 4.06
47.88 244 262 2.66 7.14
168.97 324 435 1.50 7.11
233.57 476 603 1.85 9.37

P11 930.06 0 603 1.54 8.38

P14

90.95 66 126 1.52 6.73
58.73 140 169 2.03 6.72
528.41 198 603 1.30 8.30

Analysing Table 5.5 it is possible to verify that:

• players P0, P1, P2 and P5 from team A, and players P6, P7, P8 and P11 from team B played dur-

ing the entire analysed period, while the other players were constantly replaced, depending

if the team was attacking or defending,

• for the same amount of time, players P0, P2 and P6 had covered more distance (above 1000m)

than players P1, P5, P7, P8 or P11 (all these players had been on the field for the same amount

of time (603s)),

• the average speeds of the players ranged from 1.15 m/s (player P12) to 3.95 m/s (player

P3). For players that played during the entire analysed time period the values ranged from

1.42m/s (player P1) to 1.68m/s (player P6),

• the maximum instantaneous speed ranged from 4.06 m/s (player P10) to 10.32 m/s (player

P2),

• players that were replaced, played on average 32% of the time, while the average maximum

speed was 7.4m/s and the global average speed of the game was 1.77m/s.
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Table 5.6: Player statistics of Game 2 during approximately 11 minutes of game.

T P D(m) Ti(s) Te(s) Avg speed(m/s) Max speed(m/s)

C

P0 545.93 0 389 1.39 7.59

P1 996.16 0 669 1.48 8.77

P2

54.85 0 42 1.27 5.35

53.72 72 107 1.50 4.79
75.50 119 182 1.20 4.20

62.18 208 243 1.75 5.06
98.00 315 412 1.03 7.17

40.81 442 468 1.56 7.44
78.89 499 571 1.11 5.32

52.58 629 669 1.30 6.03

P3

80.68 0 57 1.41 10.25

164.16 73 186 1.45 7.69
70.36 210 250 1.73 7.08

90.45 317 421 0.87 5.02
170.82 444 590 1.34 6.36

47.90 635 669 1.38 6.09

P4 977.40 0 669 1.45 9.52

P5 941.70 0 669 1.40 9.71

P12

61.49 42 72 2.07 5.81

32.00 107 119 2.74 5.88
54.29 182 207 2.12 5.38

145.17 243 315 2.02 8.37
37.41 571 635 2.01 4.68

P14

46.77 57 73 2.89 7.32

54.72 186 210 2.28 7.15
127.40 250 317 1.92 8.80

19.44 421 426 2.92 4.92
112.53 590 629 2.80 8.01

P16
64.98 412 444 2.01 7.26

70.59 468 499 2.03 6.64

P17
214.94 426 442 2.52 9.87

247.76 516 669 1.58 8.72

A

P6

740.22 0 467 1.58 8.31

131.21 522 584 2.11 9.04

122.50 609 669 1.99 6.49

Continued on Next Page. . .
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T P D(m) Ti(s) Te(s) Avg vel(m/s) Max vel(m/s)

P7

120.26 0 79 1.50 6.44

34.24 108 122 2.55 5.88
53.07 178 210 1.70 5.95

116.37 241 289 2.37 8.92
311.47 466 669 1.51 10.14

P8

99.94 0 51 1.94 7.10

189.07 74 178 1.80 9.25
59.27 210 240 1.97 5.46

315.90 321 522 1.54 7.07
59.29 584 609 2.45 8.15

P9 960.21 0 669 1.43 7.98

P10 921.77 0 669 1.38 12.14

P11

129.41 0 50 2.13 13.12

61.09 79 108 2.04 7.41
105.10 125 178 1.95 6.48

66.67 212 241 2.27 7.77
45.08 446 466 2.28 8.20

176.70 522 669 1.97 8.02

P13
108.11 52 108 1.95 6.32

787.57 122 669 1.42 7.42

P15

43.48 51 74 1.98 7.92

35.32 108 125 2.18 5.07
51.29 178 212 1.52 5.47

89.13 240 320 1.10 10.62
54.60 467 522 0.96 7.49

136.44 582 642 2.33 8.80

For Game 2 the data in Table 5.6 indicates that:

• players P1, P4 and P5 from team C, and players P9 and P10 from team A played during

the entire analysed time period, while the other players were constantly being replaced,

depending if the team was attacking or defending,

• the distance travelled by the players that stayed on the game during the analysed time period

(669s) ranged from 921.77m for player P10 until 996.16m for player P1,

• the average speeds of the players during this game ranged from 0.87 m/s (player P3) to 2.92

m/s (player P14). For the players that were playing during the analysed time period the

values ranged from 1.38m/s (player P10) to 1.48m/s (player P1),
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• the maximum instantaneous speed ranged from 4.20 m/s (player P2) to 11.54 m/s (player

P11),

• players that have been replaced play on average 12% of the time, while the average maxi-

mum speed was 7.4m/s and the global average speed of the game was 1.81m/s.

Comparing the information from both games, it is possible to verify that the second game was

more dynamic, not only by the amount of players’ substitutions, but also by the slightly higher

average speed (1.81m/s versus 1.74m/s)

This statistical information can be very useful for sports experts since it allows them to have

perception of the preferred field areas of each player as well as the effort spent during the game

(distance travelled, average speed and peaks of speed). Moreover, tactical maps allow inferring

methodologies and strategies followed by the teams as demonstrated on the following subsection

(5.4.2).

5.4.2 Maps

The positional and speed maps constitute a useful source of information, not only by the content

itself, but because they provide the information on a visual manner which is easier to analyse.

Figure 5.23 shows the positional maps of some of the players of team A during Game 1, while

Figure 5.24 shows the same maps for players of team B (only the players who played during the

entire game were chosen, because they give a better overview of the areas where the players tend

to be more often).

(a) (b)

(c) (d)

Figure 5.23: Positional maps of the 10 minutes for team A players during Game 1:(a) player P0,
(b) player P1, (c) player P2, (d) player P5 .
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(a) (b)

(c) (d)

Figure 5.24: Positional maps of the 10 minutes for team B players during Game 1:(a) player P6,
(b) player P7, (c) player P8, (d) player P11 .

Another information provided by these positional maps is how often a player is in each part of

the field, which is indicated by the colour. The measure chosen to determine this frequency obeys

to the Equation 5.4.

f req(x,y) =
time(x,y)
timemax

×100 (5.4)

Where time(x,y) is the time the player spent on position (x,y) and timemax is the time spent on

the position where the player stood longer.

Using Equation 5.4, the following colours where defined to pass this information: yellow

means f req(x,y) < 40%; red means 40%≤ f req(x,y) < 80%; green means 80%≤ f req(x,y) < 90%

and blue means f req(x,y) ≥ 90%.

The positional maps show the field areas covered by each player and allow inferring which

areas are preferred and even determine the position the player occupies within the team (lateral

versus central player, attacker versus defender).

Players P0 and P2 of team A play more (either defending or attacking) on the lateral side of the

field (Figures 5.23(a) and 5.23(c)), while players P1 and P5 (Figures 5.23(b) and 5.23(d)) defend

more near the centre and use more space to attack.

Concerning team B, players P6 and P8 play more on the laterals, player P7 is clearly a player

that defends and attacks on the middle and player P11 has a behaviour that is characteristic of a

pivot.

Also, and as part of the game itself, players spend less time on the middle of the field (yellow

colour) and are most of the time either defending near the 6 meter line or attacking between the 6

meter and 9 meter lines (blue colour).

For Game 2 the information regarding the players’ positional maps can be seen in Figures 5.25

and 5.26.
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(a) (b)

(c) (d)

Figure 5.25: Positional maps for the 11 minutes of players from team A during Game 2:(a) player
P0, (b) player P1, (c) player P4, (d) player P5 .

(a) (b)

Figure 5.26: Positional maps for the 11 minutes of players from team B during Game 1:(a) player
P9, (b) player P10.

Like in the previous game, on this game there are players that play more on the lateral side of

the field: players P0 and P5 of team C and player P9 of team B, while the others occupy a slightly

more central position.

Another type of map that can be useful is the speed map. This type of map allows visualizing

the areas of the field where the players have a speed between two user defined speed intervals.

The following figures, Figures 5.27 and 5.28, exemplify the speed of one player for each game for

three different speed intervals: below 2m/s, between 2m/s and 4m/s and above 4m/s.
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(a) (b) (c)

Figure 5.27: Velocity maps for P1 (team A) during Game 1 (10 minutes of game):(a) speed below
2m/s, (b) speed between 2m/s and 4m/s and (c) speed above 4m/s.

(a) (b) (c)

Figure 5.28: Speed maps for P4 (team A) during Game 2 (11 minutes of game):(a) speed below
2m/s, (b) speed between 2m/s and 4m/s and (c) speed above 4m/s.

The speed maps show that players tend to have higher speeds during transitional phases (when

players change from an attacking position into a defending one or vice versa), while the lowest

speeds are when they are defending or attacking.

Finally, another source of information are the teams’ tactical maps, which demonstrate the

teams’ positions on the field during specific time periods. The Visualizer allows the user to interact

and choose specific time frames to be displayed.

Figures 5.29 and 5.30 show these maps for two attack situations of each game.

(a) (b)

Figure 5.29: Positional maps for two game situations of Game 1: (a) team A (in red) attacking and
team B (in green) defending (from frame to 620 to frame 1478), (b) team A defending and team B
attacking (from frame 1712 to frame 2589).

The two previous images indicate that the first attack performed by team A was very fast and

players tend to stay on the central area of the field (Figure 5.29(a)), while the second attack took

longer and players were more spread around the 6 meter line (Figure 5.29(b)).
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(a) (b)

Figure 5.30: Positional maps for two game situations of Game 2: (a) team A attacking and team C
defending (from frame to 600 to frame 1160), (b) team C defending and team A attacking (from
frame 1650 to frame 2120).

The two attacks of the second game seem more similar, nevertheless team A seems to be able

to perform the attack nearer to the 6 meter line which also makes the defence to be more aggressive

(Figure 5.30(b)) to better cover the 6 meter line. The attack from team C is performed in a more

open way (Figure 5.30(a)) and therefore the defence is not so "glued" to the 6 meter line.

5.5 Software Interface

As described on section 4.1, the proposed architecture is composed of three main modules: the

Acquisition System, the Processing System and finally by the Visualizer.

The following subsections provide an overview of these three modules.

5.5.1 Acquisition Module

The first module, the Acquisition System, uses the software provided by the manufacturer "IC

Capture" (Figure 5.31) which allows configuring several parameters of the camera, such as the

frame rate, exposure time, contrast, brightness and saturation, among others.

Figure 5.31: Acquisition System software print screen.
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Additionally, this software provides the possibility of either using codecs to compress the video

information or several uncompressed data (’Y800’, ’RGB24’, ’RGB32’ and ’UYVY’, ’BY8’) to

store the video.

An handball game lasts 60 minutes (two halves of 30 minutes), which at a frame rate of 30

fps and two cameras implies 216000 frames per game. In order to preserve the original image

information and minimize the disk space used, the uncompressed BY8 format was chosen to store

the videos.

5.5.2 Processing Module

The Processing Module is responsible for analysing the video sequences, identifying and tracking

the players and generating a report with their positions along the time.

The application is composed of three different tabs: Play Video, Advanced and Debug, which

will be described in the next sections.

5.5.2.1 Play Video Tab

To use this module it is necessary to select the videos that contain the games as well as to provide

an empty image of the field as illustrated in Figure 5.32.

The application is prepared to analyse up to three video camera systems. In order to define the

number of cameras that compose the system, the user must check the checkboxes on the right side

of the respective video filename textbox.

Video Files

Empty Field Videos

Figure 5.32: Processing Software Module main window with the videos browse menu highlighted.

Once the "Play" button is pressed, the video streams appear in different windows, along with

a zoom window as can be seen in Figure 5.33. This figure illustrates a two cameras’ system.
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Figure 5.33: Processing Software Module showing the videos of a two cameras’ system.

The zoom window magnifies the area surrounding the mouse, therefore if a more detailed

information is required of a given area of the field, the user must position the mouse on that area

and see the result on this window.

On this tab the user can also perform the video synchronization either by freezing a given

video stream while it is being played using the check boxes before the "F", or using the ’+’ and ’-’

buttons when the sync checkbox is pressed as illustrated in Figure 5.34.

Advanced 
Configurations

Videos Synchronization

Figure 5.34: Processing Software Module main window with the synchronization and advance
configuration menus highlighted.
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Figure 5.34 also highlights advanced configurations that the user may adjust. The CT hresG

and CT hresL parameters of the colour calibration process (Rule 0, subsection 4.2.1) can be tuned

on the Global Thres and the Local Thres sliders, respectively, while the interRLEMinDist and

minRLESize parameters of the blobs definition algorithm (Algorithm 2) can be adjusted by the

Blobdist and BlobArea sliders, respectively.

Additionally, the advanced configuration region allows the user to select analysing the data in

HSL format instead of RGB, to perform background subtraction or not, to process or not the video

frame and to show it processed or not (Figure 5.35).

(a) (b)

Figure 5.35: Example of how the videos are shown when the user: (a) checks the show proc
checkbox and (b) when it does not.

Finally, this tab allows the user to perform the initial seeds configuration, select each player

to be tracked, upload previous defined configurations (which contain the cameras’ homographies

and previous obtained colour subspaces of the teams) and define an output log file as highlighted

in Figure 5.36.

Colour
Configuration

Player
Identification

Config Input and Output Log

Figure 5.36: Processing Software Module main window with the colour configuration, player
identification, input and output configuration files.
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The Player Identification area allows the user to select a player number under the Player spin

box or the ball in the Ball checkbox, and then click on a player/ball on the image. This process

allows tagging a player which is then automatically tracked by the tracking algorithm.

The Inactive checkbox is used when a player is replaced by another and stays on the bench.

Once the player is again on the field, the user must select again the player’s number and click on

the image to initiate the tracker.

The Step Forward checkbox allows the user to control the video streams using the ’+’ key,

therefore the video streams will only move forward to the next frames in case the user presses

this key. The Auto-Expansion checkbox allows enabling/disabling the auto-expansion process as

defined on Sections 5.1.3 and 4.2.3.

On the GameMode area the user can select if the game is either in the Game Stop or Game On

states (Section 4.5), by selecting the Pause or Play radio buttons, respectively.

On the Colour Configuration area, the user can select to collect or not more colours triplets by

checking/unchecking the collect checkbox. In case the user checks it and clicks on any pixel of the

video frames, the colour triplet will be added into the selected team colour subspace. The colour

subspace can be chosen using the radio buttons with the Team A, Team B and Team C indications.

The user can also reset either one of the teams colour subspace using the clr single button and

the teams radio buttons or all the colour subspaces using the clr all button. The text box at the

bottom of the highlighted zone allows defining how many frames are skipped from being shown

(the higher this value the fastest the application will be).

Finally, this tab provides the user the possibility to load an already defined configuration file

with the colour calibration subspaces and the homography configuration. Figure 5.37 illustrates

the content of one of these files for a three cameras’ system.

<Left>
2.03729e-006
-8.22579e-013
3.06468e-017
549.421
342.632
-10.5
1.42848
-16.5005
1.29639e-007
-3.14159
-0.0206287
515
0
0
0
0

<Middle>
1.00005e-007
3.60876e-012
5.80454e-018
512
384
8.50338
0.871128
-16.5008
6.23242e-007
3.14159
-0.0135703
494
0
0
0
0

<Right>
3.43123e-006
-1.13957e-011
5.96283e-017
531.192
391.036
8.50338
0.871128
-16.5008
6.23242e-007
3.14159
-0.0135703
494
0
0
0
0

Camera Calibration
<Colours>
...
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 48 48 32 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 48 48 48 48 48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 32 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
...
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 192 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 192 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 192 0 0
...

Colours Calibration

Figure 5.37: Example of a configuration file used on the Processing Module.

The configuration file contains first the information concerning the cameras’ homographies

which is used by Equations 4.4 and 4.6 and then the colour subspaces information. In order

to reduce this file size, the colour information is stored in 2 bits which allows the 4 belonging

degrees as defined on Table 4.1.
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<Game> Game 1 </Game>
<A--
<Frame> camM global_tStamp specific_tStampT-->
<Frame> 0 1 2
<A-- <Player> ID Px Py Vx Vy T Team Active
</Player>T -->

<Player> 0 -11.2127  0.912046  1.39295 -0.525019 3  1
</Player>
<Player> 1 -2.88691  4.12677 -3.26187 -0.26696 3  1
</Player>
<Player> 2 -4.42996  1.85421 -2.31672  0.212003 3  1
</Player>
<Player> 3 -3.20239  2.27114  0.348744  0.0232526 3  1
</Player>
<Player> 4 -0.291359  0.609242  0.002909 -0.0116144 3  1
</Player>
<Player> 5 -2.9505 -0.439706 -3.03646 0.47782 3  1
</Player>

<A-- <PlayMode> STOP|ONT </PlayMode>T -->
<PlayMode> 1 </PlayMode>

</Frame>
<Frame> 1 1 72

<Player> 6 5.33601  6.53989 -0.142 -0.525437 2 1 </Player>
<Player> 7 8.81735  4.69969 -0.00759417 -0.718002 2 1 </Player>
<Player> 8 14.3989  4.0443 -0.372518  0.21348 2 1 </Player>
<Player> 9 13.0291 -0.47483 -3.957 -0.732669 2 1 </Player>
<Player> 10 11.1782  0.072656  0.987784 -0.943403 2 1 </Player>
<Player> 11 11.232 -0.361878  0 0 2 1 </Player>
<PlayMode> 1 </PlayMode>

</Frame>
...
<Frame> 0 18686 18687

<Player> 2 -2.16027  4.4989 -4.52146 -1.45046 3 1 </Player>
<Player> 39 -6.08549 -1.866 -3.68739 -0.235844 3 1 </Player>
<Player> 6 -6.34658 -6.70417 -6.63165 -1.64484 2 1 </Player>
<PlayMode> 1 </PlayMode>

</Frame>
<Frame> 1 18686 18758

<Player> 1  7.93262  3.73783 -4.63842  0.905377 3 1 </Player>
<Player> 5  8.8442  6.7194 -3.85849 -1.02883 3 1 </Player>
<Player> 0 -1.49455 -4.478 -6.41218 -0.0894739 3 1 </Player>
<Player> 7 11.8513  1.75785 -2.40042 -0.565399 2 1 </Player>
<Player> 11  6.43811 -6.13074 -4.23924 -1.31699 2 1 </Player>
<Player> 27  5.06404 -3.40299 -4.00836 -1.63895 2 1 </Player>
<Player> 8 11.7073  8.26436  0.0775286 -0.171691 2 1 </Player>
<Player> 38  3.2829  7.29432 -2.9559  0.977861 2 1 </Player>
<Player> 42  1.82865  3.98962 -3.08908  3.66488 3 1 </Player>
<PlayMode> 1 </PlayMode>

</Frame>

Figure 5.38: Example of an output log file.

Finally, the user can define either an existing log file to append information by pressing on

the Browse button or create a new log file by pressing the New button. The log file will store

information concerning the players’ position (Px and Py), velocity (Vx and Vy), as well as the player

ID, team (T) and if his/her state on the field is active (1) or inactive (0). Additionally, this file

stores information to be used for cameras’ synchronization (cam], global and specific) and if the

game is in Play Mode (1) or Pause (0). Figure 5.38 shows an example of an output log file.

5.5.2.2 Advanced Tab

On the Advanced Tab it is possible to perform the camera calibration, which includes determining

the parameters for the camera homography (Equation 4.6) and barrel distortion (Equation 4.4).

The following image (Figure 5.39) shows a print screen of this tab.
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Camera
Configurations

Camera
Selection

Configuration
Selection

Figure 5.39: Advanced tab of the Processing Software Module.

On the Camera Selection zone the user can select which camera will be configured. Once the

camera is chosen, the user can, afterwards, select between three types of operations as highlighted

on the Configuration Selection area.

If the user selects the option Barrel Distortion the application will consider the points selected

by the user for the calculation of the barrel distortion coefficients (k1, k2, k3, xc, yc). When selecting

the points the user must be careful in choosing straight lines and providing three points for each

line (two at the edges and one at the centre), as illustrated in Figure 5.40.

Line 1 Line 2

Figure 5.40: Example of points selection of two lines used to determine the barrel distortion
coefficients (k1, k2, k3, xc, yc).
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Figure 5.41: Windows provided by the application for the user to introduce the real world coordi-
nates when performing the Homography calibration.

Once the user finishes defining all the lines it is possible to determine the barrel distortion

coefficients by pressing on the calc button next to the Barrel Distortion radio button. The result of

the calculated coefficients can be seen by pressing on the Undistort button, which will provide the

images displayed in Figures 4.5(b) and 4.5(d). The barrel distortion coefficients are determined

using the Levenberg-Marquardt (Marquardt (1963)) optimization algorithm.

In case the user intends to determine the Homography coefficients ( f , (cx, cy), φ , ω , α , (Tx,

Ty, Tz) the Homography radio button must be selected.

The procedure to determine the coefficients is similar to the one used to determine the barrel

distortion coefficients, so the user must select a point on the field and the application prompts two

subsequent windows where the real world coordinates must be introduced (Figure 5.41). The third

coordinate missing, the height of the camera, is introduced on the Height textbox.

Like before, the user can start the process of determining the coefficients by pressing on the

calc button next to the Homography radio button.

The Homography coefficients are also determined via the Levenberg-Marquardt optimization

algorithm.

The final radio button, Get World Coord, allows the user to obtain, for a given pixel on the

image, the real world coordinates. In case the user selects this option and picks a pixel on any

of the video streams, the lower text boxes will be filled in with the image coordinates, the world

coordinates on the ground level and the real player coordinates at 1.2m from the ground.

The Load Settings and Save Settings buttons allow the user to reload the parameters that were

stored on the configuration file, or update the new values into the configuration file.

Finally, the Camera Configuration shaded area shows the calculated coefficients for each cam-

era.

5.5.2.3 Debug Tab

The Debug tab allows the user to visualize each team colour subspaces through a 3D RGB cube

(Figure 5.42). This RGB cube was implemented using OpenGL (Group (2015)).
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Figure 5.42: Debug tab of the Processing Software Module.

The sliders on the left side allow rotating the cube in the x, y and z directions.

5.5.3 Visualizer Module

The Visualizer Module allows the user to see the final video, with the two video streams aggregated

to form a single image as the one shown in Figure 5.22. This application also allows the user to

create a log file with certain game events that can be chosen by the user, enable the automatic

detection of the game phase and defence formation.

Despite the previous modules allowing configurations up to 3 cameras, this module, at the

moment, is only able to upload information from a system composed of two cameras. Never-

theless, and given the files configuration and the fact that the players’ positions are in real world

coordinates, this add-on is quite straightforward.

This module is composed of two windows plus the complete undistorted image as shown in

Figure 5.43.
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Figure 5.43: Visualizer Software Module showing the undistorted final image with the players
highlighted, along with the Visualizer and Analyser windows.

5.5.3.1 Visualizer Window

On the Visualizer Window the user is able to select the two video streams to be shown by choosing

the Left and Right buttons on the User Files Input area as highlighted on the following image

(Figure 5.44).

Events Signalling
and Detection

Navigation Pane

User Files Input

Figure 5.44: Visualizer Software Window with the different areas highlighted.

The Log button allows selecting the log file generated by the Processing Module (Section

5.5.2). In case the user does not require a log and just wants to see the two video streams merged

it is possible by checking the No Logs checkbox.

Although it is possible not to use a Log file it is advisable, since the application uses the camera

information to perform the video synchronization. Additionally, with the log file it is possible to

see the players highlighted on the field as well as the teams’ centre of mass.
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On the Events and New buttons, the user is able to store the players’ positional information in

an *.xls format along with the events. An example of a file is shown in Figure 5.45

The Events button allows to load an existing file to append more information, while the New

button allows to generate a new log file.

Figure 5.45: Example of the log file generated by the Visualizer Module.

The generated file contains the name of the person who made the categorization, the global

frame number, the reference goal, since the players’ coordinates are given in polar coordinates (it

was a request from the sport’s experts), each player number, team and positions on the field, along

with an extra column that in the future will store events performed by the players that have been

automatically detected.

The final columns contain information about the ball (player that is holding it and in that case

also its position on the field) and the team formation in case it is either in attack or defence. For

this specific log, this information is supplied by the user so that it can be afterwards compared

with the one obtained automatically as defined on Section 4.4.

The user can navigate through the video using the Stop, Start and Pause buttons on the Navi-

gation Pane highlighted in Figure 5.44.

The “«”and “»”buttons allow moving backwards/forwards while the video is paused, never-

theless the user can also go directly to a specific frame by editing the text box between these two

buttons. The Vel slider controls the speed at which the video is shown.

In this area the user can also introduce an identifier on the Expert Name text box, which will

be stored on the first column of the log file (Figure 5.45). The Player text box indicates the player

number and team of the player selected by the user ( the user can select a player by clicking on

it on the global video). Finally the Tactical Map checkbox allows commuting between the real

image and a tactical map with the players’ positions as displayed in Figure 5.46.

On the bottom area (Events Signalling and Detection) the user is able to define some events

related with the ball and the team formation.
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(a)

(b)

Figure 5.46: Global video window showing: (a) original image, (b) positional map with players
highlighted.

On the Ball group the user can signal that a player is holding the ball (Ball Player), the ball

went out of the field (Ball Out) or that there was a successful or unsuccessful goal trial (Goal or

No Goal). These events will be stored into the ball columns of the output log file.

On the Update Database group the user may choose to whether overwrite or not values that

were already stored on the log file using the radio buttons.

The Tactics group is composed of two lists, one for each team, where the user is able to define

not only the game phase for each team, but also the tactic that is being used.

The last element, the Game Phase checkbox allows enabling the automatic game phase and

defence team formation categorization according to the methodology defined on Section 4.4.

This application is still on a development phase and therefore needs some improvements,

namely the possibility to visualize up to three video streams so that it can be compatible with

the Processing module and also the possibility to include the camera calibration via a file instead

of being hard coded.

5.5.3.2 Analyser Window

The second window of the Visualizer Module, allows the user to verify the players’ statistics and

obtain the maps illustrated on Section 5.4. Figure 5.47 shows the information displayed on this

window.
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Figure 5.47: Analyser Software Window.

On the Player area the user can have access to the statistics of the player that was selected,

while on the radio buttons the user has the possibility to change the type of information that is

shown on the map.

The possible maps include the positions along the time ( Positions radio button), the accumu-

lated positions (PosAcc radio button) which indicate in which area of the field the players stayed

longer or the speed ( Velocity radio button) of a player during the game. The sliders next to the

VelMax and VelMin tags allow choosing between which values the speeds are shown on the map.

Finally, the bottom slider, text box and Team can be used to draw the positional maps of both

teams. To enable this option the user must check the Team checkbox and define the starting time

on the slider and the desired period duration on the text box.

5.6 Game Model Validation

This section presents the validation of the proposed game model using the information from one

of the already analysed games. This validation consisted in visualizing the video footage with the

Visualizer module (Section 5.5.3) during 3600 frames of Game 1 (which corresponds to around 2

minutes of game) and reflecting the game state on the several layers of the Hierarchical Coloured

Petri Net developed on the CPN Tools software.

The next subsections illustrate these results following the model’s hierarchy. Whenever perti-

nent the results also illustrate the players’ positions using video frames.

5.6.1 First Hierarchical Level

As already explained, from a higher perspective, the handball game is defined by two substitution

transitions: Game ON and Game Stop and several states that form the bridge between these two

transitions.

For the analysed time period the Game Mode subnet assumes the states defined in Figure

5.48. This chart only presents the active states and transitions during this time period, because

otherwise it would become too confusing and would not add extra information.
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Figure 5.48: Temporal chart of the Game Mode Petri Net states and transitions during the analysed
game period.

Analysing the chart it is possible to verify that the game started at frame 620 (20.6s), after a

Throw-Off. This way, at frame 619 the Petri Net state is the one defined in Figure 5.49(a), while

the players’ positions on the field are shown in Figure 5.49(b).

(a)

(b)

Figure 5.49: (a) Petri Net state for the Game Mode level (the green highlight around the Game
Stop substitution transition indicates the Petri Net state) and (b) players’ distribution on the field
at frame 619 (20.6s).
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Once the player holding the ball throws it to a team mate, the game evolves to the substitution

transition Game ON (Figure 5.50).

Figure 5.50: Petri Net state for Game Mode when the game starts at frame 620.

The Petri Net state remains on the substitution transition Game ON until frame 2620 (87.3s).

At this moment the defending team throws the ball out by the final line causing the game to go into

the Game Stop substitution transition through the Exit Decision state. The game image when the

ball is thrown by the final line is shown in Figure 5.51, while the Petri Net state is shown in Figure

5.52.

Figure 5.51: Players’ distribution on the field at frame 2620 (87.3s).
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(a)

(b)

Figure 5.52: Petri Net state for Game Mode when the game stops at frame 2620 (87.3s): (a) while
the net is still evaluating the cause of the exit, (b) while the game is already stopped.

The game is again resumed at frame 3001 (100s) with the attacking team performing a Free-
Throw (Figure 5.53) which then leads the game back into the Game On substitution transition.

The teams’ positions on the field at this frame can be seen in Figure 5.54. Both teams remain in

the Free-Throw from frame 2844 until frame 3001.
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Figure 5.53: Petri Net state for Game Mode while the team is preparing for the Free Throw when
the game resumes back to the Game On substitution transition at frame 3001 (100s).

Figure 5.54: Players’ distribution on the field at frame 3001 (100s).

On frame 3136 (104.5s) the defending team makes a foul and the Petri Net state changes back

to the Game Stop substitution transition after passing by the Exit Decision state. The game is

restarted again at frame 3437 after passing by the Free Throw state.

Finally the attacking team is able to score a goal which also leads to the Game Stop substitu-

tion transition at frame 3640 (121.3s).

5.6.2 Second Hierarchical Level

The second hierarchical level of the proposed Petri Net details the two substitution transitions of

the first level: Game On and Game Stop transitions.
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As already seen on the previous subsection, 5.6.1, for the analysed time period there are four

phases of Game Stop substitution transition and three phases of Game ON substitution transi-

tion. The two following images (Figures 5.55 and 5.56) detail the several states by which each

substitution transition evolves during this time period.

Figure 5.55: Temporal chart of the Game ON Petri Net states and transitions during the analysed
game time period.

Figure 5.56: Temporal chart of the Game Stop Petri Net states and transitions during the analysed
game time period.

Before the game starts at frame 620 (20.6s), the Game Stop Petri net has both teams, Team

and TOpp, on state Break and only one transition can be fired, which happens when variable

dEndBreak gets the truth value. This transition leads both teams to state Throw-Off, as illustrated

in Figures 5.57 and 5.58.
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(a)

(b)

Figure 5.57: Game Stop Petri net at: (a) frame 618 (20.6s) and (b) frame 619 (20.6s) (partial view
of the nets).

Figure 5.58: Game ON Petri net at frame 619 (20.6s).
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Once the referee gives the signal to start the game, variable dThrowOff is set to true and the

Team token goes into the Def Off state, while the TOpp token goes into the Off Def state (Figure

5.59).

Figure 5.59: Game ON Petri net at frame 620 (20.6s).

Since the opponent team is already in a defensive position it moves immediately to the Defence
substitution transition (Figure 5.60).

Figure 5.60: Game ON Petri net at frame 620 (20.6s) after team reaching the Defence state.

Approximately 5 seconds after the game started the team that holds the ball reaches an attack-

ing position and moves into the substitution transition Attack (Figure 5.61)
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Figure 5.61: Game ON Petri net at frame 752 (25s), when Team is attacking and TOpp is defend-
ing.

At frame 1496, the defending team is able to intercept the ball and players from both teams

automatically start moving towards their new positions assuming the Def Off and Def Off states,

as denoted in Figure 5.62.

Figure 5.62: Game ON Petri net at frame 1496 (49.8s) after the defending team intercepting the
ball.

This transitional phase lasts until frame 1759, at which, both teams assume their attacking and

defending positions.
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At frame 2620 (87.3s) a defensive player performs a foul, which leads the Game ON subnet

into the Exit Decision state (Figure 5.63).

Figure 5.63: Game ON Petri net at frame 2620 (87.3s), after a defensive foul.

On the Game Stop subnet the teams’ states evolve from the Exit Decision state to the Foul
Def state, since variable dFoulDef is true. These states are shown in Figure 5.64.

(a)

(b)

Figure 5.64: Petri Net state for (Game Stop) when the defending team performs a foul (partial
views of the net).
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On frame 2844, both teams start preparing for the throw and since it was the defending team

who committed the foul a Free Throw is awarded as indicated by Figures 5.65 and 5.66.

Figure 5.65: Game ON Petri net at frame 2844 (94.8s), when teams are preparing to perform a
Free Throw.

Figure 5.66: Game Stop Petri net at frame 2844 (94.8s), when teams are preparing to perform a
Free Throw.

The game stays stopped until frame 3001 (100s), when the attacking team performs the Free

Throw (variable dFreeThrow=true) and the game restarts again.

At time 104.5s (frame 3135) the defending team commits again a defending foul by entering

on its own area to gain advantage over the attacking team (Figure 5.67), which causes the game to

stop again.
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Figure 5.67: Players’ distribution on the field at frame 3135 (104.5s), when the defending team
commits a foul.

The Free Throw is executed at time 114.5s making the game go into the Game On state. A

few seconds later (121.3s) it stops again with the attacking team scoring a goal, which leads to a

Throw-Off.

5.6.3 Third Hierarchical Level

The third hierarchical level of the game model includes the most detailed information, namely the

interactions between the players as well as between the players and the ball.

Figure 5.68 illustrates the first attack, where the Team attacks the TOpp team, while Figure

5.69 illustrates the defending team behaviour.

As can be seen, once the players reach the attacking position, three transitions are fired and

the players pass by the Enter Attack and Players Waiting Throw states, before occupying one

of the two possible attacking states: Player with Ball or Player No Ball. On the other hand, the

ball passes by the Enter Attack and Ball Throwing states, until reaching the Player with Ball
state.

In this case, it is player number 5 who gets the ball. The following sequence of images (Figure

5.70) shows the several states and transitions that lead to the two main attack states after the team

reaches the attack.
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(a)

(b)

(c)

(d)

Figure 5.70: Attack subnet sequence of transitions when the game starts at frame 620 (20.6s)
(partial views of the net): (a) before reaching the Attack state, (b) and (c) when reaching an
attacking position, (d) decision on whose player has the ball.

On this attack it is also possible to verify that there are several ball passes, 19 in total. Fig-

ure 5.71 illustrates the pass that occurs from frame 779 (25.5s), when player 5 passes the ball

(dBallThrow=true) to frame 789 (26.3s) when player 0 catches it (dPlayerCatch=true). During a

pass all players are on the Player No Ball state, while the ball stays in the Ball Throw state until

being caught by another player.
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(a)

(b)

Figure 5.71: Petri Net sequence of a ball pass between players 5 and 0 during frames 779 and 789
(partial views of the net). (a) ball pass start (b) ball pass end.

The global images of the players’ positions during this pass can be seen in Figure 5.72.

(a) (b)

Figure 5.72: Global view of the field during a ball pass. (a) Player 5 passes the ball at frame 779
(b) and player 0 receives the ball at frame 789.

Analysing the players’ ball possession it is also possible to verify that the team moves the ball

throughout the entire attack zone, since most players, with the exception of player 4, had the ball.

Additionally, looking at the time each player had the ball, it is possible to infer which players

dribbled the ball. So, for instance player 1 held the ball for around 2 seconds on two different

occasions, from frame 1100 to 1152 (1.73 seconds) and from frame 1251 to 1312 (2.03 seconds),

which is out of the average of the ball possession for this attack, around 0.8 seconds.

A closer look at these two time periods shows that in fact player 1 dribbled the ball, as shown

in Figure 5.73.
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(a) (b) (c) (d)

Figure 5.73: Partial view of the field when player 1 is dribbling the ball during frames 1251 to
1312(a) at frame 1262, (b) at frame 1267, (c) at frame 1271 and (d) at frame 1275.

Analysing the defence phase during the same time period it is possible to verify that players

7, 8, 9 and 10 are more actively defending since they are usually defending an opponent, while

players 6 and 11 are usually defending a zone of the defence area.

(a) (b)

(c)

Figure 5.74: (Defence) subnet sequence of states and transitions when the game starts at frame
620 (20.6s): (a) before game starts, (b) when team is entering the Defensive state and (c) when all
players start zone defending.
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The sequence of images of Figure 5.74 shows the transitions fired at the beginning of the game

when the team was positioning itself to defend.

Whenever a defender starts actively defending an opponent, variable dHasNeOpp gets true

and the transition is fired leading the player into the Defend NeOpp without ball as illustrated in

Figure 5.75 at frame 754 (25.11s). Figure 5.76 shows the players’ disposition on the field and how

players 8 and 10 actively guard the opponent players (2 and 4, respectively).

Figure 5.75: Defence Petri net at frame 754 (25.11s) (partial view of the net).

Figure 5.76: Global view of the field at frame 754 (25.11s), when players 8 and 10 are performing
a man-to-man defence.

In case the opponent player receives the ball, which happened on frame 932 (30s), the player

that is performing a man-to-man defence, changes to state Defend NeOpp with Ball, since vari-

able dNeOppGetBall gets true. The following figure (Figure 5.77) illustrates both the Petri Nets

as well as the players’ disposition on the field.



162 Experimental Validation

(a)

(b)

Figure 5.77: (a) Defence Petri net at frame 932 (partial view of the net) and (b) the partial view of
the field.

This first attack ends with a player from the attacking team performing a throw that is inter-

cepted by the defending team goalkeeper.

This sequence of events is described in the two following images. Figure 5.78 illustrates how

the defence evolves, while Figure 5.79 describes the attack.

5.7 Specific Case Studies

The developed methodologies and algorithms were applied to different study cases as demon-

strated in the following sections.

5.7.1 Evaluate players’ effort during official competition

The primary goal of this thesis was to perform game analysis, and therefore it was possible to

evaluate the players’ physical effort, obtain the information regarding their movements on the field

and perform high level game analysis which included determining the game phase and classifying

the adopted defensive system.

This analysis was performed on professional games that took place during the Portuguese

SuperCup handball competition in 2011.
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(a)

(b)

(c)

Figure 5.78: Defence Petri Net sequence of transitions at the end of the first attack (partial views of
the net): (a) the attacking player performs the ball throw, (b) the defending goalkeeper intercepts
the ball (dInterceptBall = true), (c) players start moving towards the opponent goal (Def Off state).

5.7.2 Assessing referees physical effort

The developed platform was also used to perform a more broad study of the physical effort referees

spend during official games (Estriga et al. (2013)).

The vision system was based on three cameras placed on the ceiling of the Académico’s Sports

Hall (Figure 5.1) during a male second division official game.
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(a)

(b)

(c)

Figure 5.79: Attack Petri Net sequence of transitions at the end of the first attack (partial views
of the net): (a) before the throw to the goal, (b) while the ball is being thrown, (c) when the ball is
intercepted by the defending team goalkeeper.

Besides the vision system, the overall study included an oximeter to evaluate the oxygen con-

sumption of one of the referees during the match, a tri-axial accelerometer and an ECG (electro-

cardiogram) device.
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The vision system was able to supply cinematic information, namely the positional maps of

the referees during the game (Figure 5.80) as well as the global distance travelled by the referees

(4.2km ± 1 %).

Figure 5.80: Positional map of each referee during one half of the game (in Estriga et al. (2013)).

5.7.3 Assessing Physical Activity Intensity

Another study, (Silva et al. (2015)), used the developed application to evaluate the physical activity

intensity during a young players’ basketball practice. This study included a comparison between

different tracking techniques.

The vision tracking system was compared with a direct observation method (SOPLAY) and

with accelerometry data (Actigraph GT3X+) during a 20 minute basketball session.

SOPLAY (McKenzie (2002)) is a system developed by Mckenzie for observing play and

leisure activity. The method is based on samplings that are performed at periodic times, where

separate scans are made for males and females. At each scan the type of activity and intensity

(Sedentary, Walking and Very Active) is recorded. This specific study was performed by two

observers.

Actigraph (ActiGraph (2015)) is an accelerometer’s based system, where acceleration can be

measured and recorded on the x-y-z axes. The data is then processed using a proprietary software

(Actilife) that allows using different data analysis methodologies.

This study revealed that the vision based system is more correlated with the Actigraph GT3X+

system than the traditional direct observation performed by two independent persons as demon-

strated by the Chi-Square tests in Table 5.7.

From this study it was possible to validate that a video tracking system has the potential to

provide reasonable estimates of physical activity intensities without being intrusive to the players.
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Table 5.7: Results of the Yates Chi-square between methodologies (in Silva et al. (2015)).

Yates Chi-Square Expected
GT3X+ SOPLAY2 SOPLAY1

Observed

CAM 24.18 158.22 110.90
SOPLAY1 119.55 27.0
SOPLAY2 144.44

5.8 Summary and Conclusions

In this chapter we described the methods and study cases used to validate all the steps of the

proposed methodologies. This validation included tests on samples obtained during professional

handball games that took place during the Portuguese SuperCup handball competition in 2011.

As it was possible to verify the complete system architecture was fully validated using different

acquisition systems that ranged from 1 camera to 3 camera systems placed in two different sports

halls.

Results obtained for the player detection and tracking case validated the proposed system and

indicate that it is possible to obtain high tracking rates (above 95%) using simple clues, such as

colour and physical constraints aided by a robust tracking method (Kalman Filter). The usage of

adaptive colour subspaces generated by the Fuzzy inspired methodology allowed to better define

the teams’ colour properties during the game and increased the overall detection rates, minimizing

the user intervention.

The adaptiveness of the proposed player detection methodology also proved effective when

subject to a sensitivity analysis by varying the expansion time, illumination conditions, colour

learning rate, initial seeds choice and video resolution.

Concerning the usage of the same methodology to track the ball, preliminary tests indicate that

the detection and tracking rates are too low due to the high velocity the ball can achieve, and the

fact it can be carried through the field by the players.

The information provided by the detection and tracking phases was then used as inputs to al-

gorithms able to determine the game phase and the defensive strategy adopted by the teams. The

integration of these measures into the algorithms to extract high level information is straightfor-

ward since the tracking is performed in real world coordinates.

Tests on the phase detection proved that the presented Fuzzy Logic classifier is able to correctly

identify the phase change events with a percentage of 86.76% and a time misalignment of 1.9s.

On the other hand, the defensive strategy is classified with an accuracy above 85%.

Once all the raw data has been processed (by raw data we mean video streams), the final

outcome includes not only the aforementioned high level analysis, but also low level information

pertaining the players playing time, occupied areas on the field (with an error less than 35cm) and

velocity during the game.

Concerning the game itself, we believe the proposed game model is able to address most of the

game situations as was proved by the analysis of 3600 frames. Moreover the hierarchical nature of
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it, allows having different details of the game which is adequate for different audiences. Another

positive aspect of this model choice, is related with the visual nature of a Petri Net that allows an

immediate perception of what can be the game next states and provides a user friendly interface

for the end user.

Although most of the states are already addressed by the model, we are aware it lacks on

providing a way to address substitutions and fouls.

Finally, it is possible to verify how the importance of studying and proposing solutions as

was done in this thesis is crucial and necessary to perform other related studies, being either the

assessment of the physical effort of referees or the physical activity during practices.
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Chapter 6

Conclusions

This chapter summarizes the main conclusions and achievements of this thesis (apart from what

was already mentioned on section 1.3) and provides some guidelines for future work based on

the current limitations. The implementation of these guidelines will, for sure, enrich the work

developed so far.

6.1 Research Findings

The major findings of this thesis are focused on two main areas:

Player detection and tracking Player detection and tracking is achieved using a Fuzzy

inspired model of the team’s colours. This model divides the colour space into subspaces,

one per team, by attributing to each colour a Fuzzy belonging degree. The Fuzziness of the

colour subspaces allow colours to belong to more than one team and adapt (change shape)

during the game to different lighting conditions.

Game modelling and metrics extraction The hierarchical nature of the proposed handball

game model (Hierarchical Coloured Petri Net), allows it to be modular, to easily add new

game concepts or even adapt it to other indoor sports.

The players’ coordinates on the real world (resulting from the player detection and tracking

phase) constitute the basis for extracting more complex game metrics such as the game phase

or the defensive team formation. The methodologies used are based on Fuzzy classifiers,

for the game phase, and on an error minimization algorithm, for the team formation.

With the proposed methodologies it was possible to answer the questions raised at section

1.2 and validate the initial hypothesis. Moreover, the complete solution was tested in real game

situations with results that satisfied the sport’s experts.

Q1 : What architecture should be used to achieve this goal?

Due to the vast area to be covered and the need to minimize occlusion issues a multi-camera

system was proposed. Videos from each camera are recorded and, afterwards, each video is
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analysed offline in order to detect the players. Once the players are detected, their centre of

mass is converted into real world coordinates using the cameras’ homographies and barrel

distortion parameters.

The usage of real world coordinates makes the cameras information aggregation straightfor-

ward by means of a vector of Kalman filters.

Additionally, the information obtained from the players can be visualized using a visualizing

module that provides a global and undistorted view of the field with the players highlighted

and schematic views with speed and positional information.

Q2 : What information should be extracted from the vision system?

The information necessary to be extracted from the vision system are the players’ positions

in real world coordinates as well as their velocities.

Q3 : How to extract that information?

This information is extracted using robust detection methodologies that are able to adapt to

changing light conditions. Players are detected using a Fuzzy inspired model of the players’

vests colours, that dynamically and automatically adapts to the light conditions that affect

the colour properties.

At the first stage, foreground pixels are detected using background subtraction, afterwards

the obtained pixels are categorized with a specific belonging degree into one of the teams by

comparing their colour with the ones defined on the colour model. Finally adjacent pixels

are grouped into blobs that are further refined using area and pixels density constraints.

The detection is enhanced using a tracking algorithm based on a vector of Kalman Filters.

Q4 : How to model game concepts?

A game model was then built on top of the detection and tracking module. This model

combines a Hierarchical Coloured Petri Net to define the game main states, with specific

models that are able to classify the game phase (defensive, attack and transitional) and the

defensive tactic system.

Q5 : How to extract metrics from the models?

The output of the tracking module can then be used to extract metrics that range from simple

statistics such as speed or travelled distance to more complex information, which is obtained

by feeding the players’ information into the defined models to obtain the required metrics.

Two complex game models were defined, the first one represents the game phase using a

Fuzzy classifier with the teams’ longitudinal velocity and position as inputs and the current

game phase as output. The second model categorizes the defensive team system through an

error minimization based classifier.
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6.2 Implementation Results

The proposed methodology was validated with real game situations during the Handball Por-

tuguese SuperCup, year 2011. Tests on these footages proved the concept for the acquisition

system and validated the proposed methodology. The results showed an accuracy for player track-

ing above 95%, obtained by the combination of a detection method, a Fuzzy inspired methodology,

and a set of Kalman filters for tracking.

The usage of the Fuzzy Logic classifier for phase detection proved effective with an accuracy

above 86% and a time miss alignment of 1.9s. On the other hand, using a minimization algorithm

that models the defensive strategy as semi-circles around the goal it was able to correctly classify

the defensive system with an accuracy above 85%.

6.3 Publications

The work developed during this thesis has led to several publications in conferences, as well as in

journals and book chapters.

Santiago et al. (2010a) provides an initial research on the state of art concerning the detection

and tracking techniques applied to the sports domain, while Santiago et al. (2011b) describes the

first sketch of the proposed methodology for player detection using region based and clustering

methods.

Still on an early phase, some studies were performed for the detection and tracking of a ball

using colour features under a controlled and laboratorial environment Santiago et al. (2010b).

The initial proposed player detection methods were empowered with the Fuzzy methodology

and presented on Santiago et al. (2012c).

Meanwhile, an exploratory work was developed to adapt the official RoboCup Simulation

League Simulator (Chen et al. (2002)) to the specific case of handball, Santiago et al. (2011a).

Although not referred, this platform could be of great use if a simulator was to be integrated into

the proposed final solution.

Finally, the proposed solution was fully described on Santiago et al. (2012a) chapter, and a

detailed sensitivity analysis as well as a more in depth testing was presented on Santiago et al.

(2013).

Additionally, the developed work served as basis to assess referees effort during official com-

petitions Estriga et al. (2013) and assessing physical activity intensity when compared with obser-

vational and GPS based methods Silva et al. (2013) and Silva et al. (2015).

6.4 Guidelines for Future Work

Although the obtained results validated the proposed methodology and answered the initial ques-

tions and hypothesis, there are still some open points that are worth investigating:
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Player Detection and Tracking As was already highlighted, the proposed methodology

has not proven to be effective on tracking the ball, therefore the overall solution would

benefit if other methodologies for tracking the ball were explored. Given the ball movement

characteristics, we believe an Extended Kalman filter would produce better results, which

could be complemented with specific heuristics to include the fact that the ball can be carried

and, consequently, severely occluded by a player.

Another interesting path could be to use information from the teams’ disposition and move-

ments on the field and combine them with data mining techniques in order to evaluate and

predict the ball position.

High Level Game Analysis The proposed algorithms for performing high level game analy-

sis were narrowed to detecting the game phase and classifying the defensive tactic, however,

to fully benefit of the proposed game model, one major opportunity of improvement would

be to study and develop algorithms that could identify each transition and state so that the

game analysis could be fully automated and directly linked to the proposed Hierarchical

Coloured Petri Net model.

Game Model Concerning the game model we believe it could be valuable to include other

features of the handball game, such as the players’ substitutions and the attribution of yellow

and red cards. Moreover, it would also be interesting to explore its modularity and adapt it

to other indoor sports, such as basketball and hockey.

Software Application Currently the three software modules are spread into three different

applications that communicate via specific video or text files, and so an integrated solution

would be easier to the end users. It would also be important to integrate the HCPN game

model into the final application, instead of using the CPN Tools software.

Include an online module, that could allow the user to add specific comments and notes

while the game is being recorded, would also be interesting.

6.5 Final Remarks

The proposed methodologies proved to be effective on answering the research questions raised

at the beginning of this thesis. Moreover, tests on real game situations during official games and

training sessions achieved tracking rates of 95% and phase change events detection above 86%.

The importance of this work is clear by the measure of satisfaction of the informal tests with

the sports experts that appraised the automatic annotation that in turn allowed for automatic high

level game analysis.
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Game Model - Appendix

The second attack and defence periods are described on the following figures (Figures A.1 and

A.2).
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(a)

Figure A.1: Temporal chart of the Attack Petri Net states and transitions during the second attack:
from frame 1759 (58.6s) to frame 2580 (86s).
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(a)

Figure A.2: Temporal chart of the Defence Petri Net states and transitions during the second
attack: from frame 1759 (58.6s) to frame 2580 (86s).

The third attack and defence are described on Figures A.3 and A.4.
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Figure A.3: Temporal chart of the Attack Petri Net states and transitions during the third attack:
from frame 3001 (100s) to frame 3136 (104.5s).

Figure A.4: Temporal chart of the Defence Petri Net states and transitions during the third attack:
from frame 3001 (100s) to frame 3136 (104.5s).

The final attack and defence sequences (the fourth) of the analysed time period are defined on

Figures A.5 and A.6.
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Figure A.5: Temporal chart of the Attack Petri Net states and transitions during the fourth attack:
from frame 3436 (114.5s) to frame 3639 (121.3s).

Figure A.6: Temporal chart of the Defence Petri Net states and transitions during the fourth attack:
from frame 3436 (114.5s) to frame 3639 (121.3s).
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