4 research outputs found

    Autoencoding the Retrieval Relevance of Medical Images

    Full text link
    Content-based image retrieval (CBIR) of medical images is a crucial task that can contribute to a more reliable diagnosis if applied to big data. Recent advances in feature extraction and classification have enormously improved CBIR results for digital images. However, considering the increasing accessibility of big data in medical imaging, we are still in need of reducing both memory requirements and computational expenses of image retrieval systems. This work proposes to exclude the features of image blocks that exhibit a low encoding error when learned by a n/p/nn/p/n autoencoder (p ⁣< ⁣np\!<\!n). We examine the histogram of autoendcoding errors of image blocks for each image class to facilitate the decision which image regions, or roughly what percentage of an image perhaps, shall be declared relevant for the retrieval task. This leads to reduction of feature dimensionality and speeds up the retrieval process. To validate the proposed scheme, we employ local binary patterns (LBP) and support vector machines (SVM) which are both well-established approaches in CBIR research community. As well, we use IRMA dataset with 14,410 x-ray images as test data. The results show that the dimensionality of annotated feature vectors can be reduced by up to 50% resulting in speedups greater than 27% at expense of less than 1% decrease in the accuracy of retrieval when validating the precision and recall of the top 20 hits.Comment: To appear in proceedings of The 5th International Conference on Image Processing Theory, Tools and Applications (IPTA'15), Nov 10-13, 2015, Orleans, Franc

    Bridging the semantic gap in content-based image retrieval.

    Get PDF
    To manage large image databases, Content-Based Image Retrieval (CBIR) emerged as a new research subject. CBIR involves the development of automated methods to use visual features in searching and retrieving. Unfortunately, the performance of most CBIR systems is inherently constrained by the low-level visual features because they cannot adequately express the user\u27s high-level concepts. This is known as the semantic gap problem. This dissertation introduces a new approach to CBIR that attempts to bridge the semantic gap. Our approach includes four components. The first one learns a multi-modal thesaurus that associates low-level visual profiles with high-level keywords. This is accomplished through image segmentation, feature extraction, and clustering of image regions. The second component uses the thesaurus to annotate images in an unsupervised way. This is accomplished through fuzzy membership functions to label new regions based on their proximity to the profiles in the thesaurus. The third component consists of an efficient and effective method for fusing the retrieval results from the multi-modal features. Our method is based on learning and adapting fuzzy membership functions to the distribution of the features\u27 distances and assigning a degree of worthiness to each feature. The fourth component provides the user with the option to perform hybrid querying and query expansion. This allows the enrichment of a visual query with textual data extracted from the automatically labeled images in the database. The four components are integrated into a complete CBIR system that can run in three different and complementary modes. The first mode allows the user to query using an example image. The second mode allows the user to specify positive and/or negative sample regions that should or should not be included in the retrieved images. The third mode uses a Graphical Text Interface to allow the user to browse the database interactively using a combination of low-level features and high-level concepts. The proposed system and ail of its components and modes are implemented and validated using a large data collection for accuracy, performance, and improvement over traditional CBIR techniques

    Image Area Reduction for Efficient Medical Image Retrieval

    Get PDF
    Content-based image retrieval (CBIR) has been one of the most active areas in medical image analysis in the last two decades because of the steadily increase in the number of digital images used. Efficient diagnosis and treatment planning can be supported by developing retrieval systems to provide high-quality healthcare. Extensive research has attempted to improve the image retrieval efficiency. The critical factors when searching in large databases are time and storage requirements. In general, although many methods have been suggested to increase accuracy, fast retrieval has been rather sporadically investigated. In this thesis, two different approaches are proposed to reduce both time and space requirements for medical image retrieval. The IRMA data set is used to validate the proposed methods. Both methods utilized Local Binary Pattern (LBP) histogram features which are extracted from 14,410 X-ray images of IRMA dataset. The first method is image folding that operates based on salient regions in an image. Saliency is determined by a context-aware saliency algorithm which includes folding the image. After the folding process, the reduced image area is used to extract multi-block and multi-scale LBP features and to classify these features by multi-class Support vector machine (SVM). The other method consists of classification and distance-based feature similarity. Images are firstly classified into general classes by utilizing LBP features. Subsequently, the retrieval is performed within the class to locate the most similar images. Between the retrieval and classification processes, LBP features are eliminated by employing the error histogram of a shallow (n/p/n) autoencoder to quantify the retrieval relevance of image blocks. If the region is relevant, the autoencoder gives large error for its decoding. Hence, via examining the autoencoder error of image blocks, irrelevant regions can be detected and eliminated. In order to calculate similarity within general classes, the distance between the LBP features of relevant regions is calculated. The results show that the retrieval time can be reduced, and the storage requirements can be lowered without significant decrease in accuracy

    A generic framework for context-dependent fusion with application to landmine detection.

    Get PDF
    For complex detection and classification problems, involving data with large intra-class variations and noisy inputs, no single source of information can provide a satisfactory solution. As a result, combination of multiple classifiers is playing an increasing role in solving these complex pattern recognition problems, and has proven to be a viable alternative to using a single classifier. Over the past few years, a variety of schemes have been proposed for combining multiple classifiers. Most of these were global as they assign a degree of worthiness to each classifier, that is averaged over the entire training data. This may not be the optimal way to combine the different experts since the behavior of each one may not be uniform over the different regions of the feature space. To overcome this issue, few local methods have been proposed in the last few years. Local fusion methods aim to adapt the classifiers\u27 worthiness to different regions of the feature space. First, they partition the input samples. Then, they identify the best classifier for each partition and designate it as the expert for that partition. Unfortunately, current local methods are either computationally expensive and/or perform these two tasks independently of each other. However, feature space partition and algorithm selection are not independent and their optimization should be simultaneous. In this dissertation, we introduce a new local fusion approach, called Context Extraction for Local Fusion (CELF). CELF was designed to adapt the fusion to different regions of the feature space. It takes advantage of the strength of the different experts and overcome their limitations. First, we describe the baseline CELF algorithm. We formulate a novel objective function that combines context identification and multi-algorithm fusion criteria into a joint objective function. The context identification component thrives to partition the input feature space into different clusters (called contexts), while the fusion component thrives to learn the optimal fusion parameters within each cluster. Second, we propose several variations of CELF to deal with different applications scenario. In particular, we propose an extension that includes a feature discrimination component (CELF-FD). This version is advantageous when dealing with high dimensional feature spaces and/or when the number of features extracted by the individual algorithms varies significantly. CELF-CA is another extension of CELF that adds a regularization term to the objective function to introduce competition among the clusters and to find the optimal number of clusters in an unsupervised way. CELF-CA starts by partitioning the data into a large number of small clusters. As the algorithm progresses, adjacent clusters compete for data points, and clusters that lose the competition gradually become depleted and vanish. Third, we propose CELF-M that generalizes CELF to support multiple classes data sets. The baseline CELF and its extensions were formulated to use linear aggregation to combine the output of the different algorithms within each context. For some applications, this can be too restrictive and non-linear fusion may be needed. To address this potential drawback, we propose two other variations of CELF that use non-linear aggregation. The first one is based on Neural Networks (CELF-NN) and the second one is based on Fuzzy Integrals (CELF-FI). The latter one has the desirable property of assigning weights to subsets of classifiers to take into account the interaction between them. To test a new signature using CELF (or its variants), each algorithm would extract its set of features and assigns a confidence value. Then, the features are used to identify the best context, and the fusion parameters of this context are used to fuse the individual confidence values. For each variation of CELF, we formulate an objective function, derive the necessary conditions to optimize it, and construct an iterative algorithm. Then we use examples to illustrate the behavior of the algorithm, compare it to global fusion, and highlight its advantages. We apply our proposed fusion methods to the problem of landmine detection. We use data collected using Ground Penetration Radar (GPR) and Wideband Electro -Magnetic Induction (WEMI) sensors. We show that CELF (and its variants) can identify meaningful and coherent contexts (e.g. mines of same type, mines buried at the same site, etc.) and that different expert algorithms can be identified for the different contexts. In addition to the land mine detection application, we apply our approaches to semantic video indexing, image database categorization, and phoneme recognition. In all applications, we compare the performance of CELF with standard fusion methods, and show that our approach outperforms all these methods
    corecore