5,726 research outputs found

    Belief Consensus Algorithms for Fast Distributed Target Tracking in Wireless Sensor Networks

    Full text link
    In distributed target tracking for wireless sensor networks, agreement on the target state can be achieved by the construction and maintenance of a communication path, in order to exchange information regarding local likelihood functions. Such an approach lacks robustness to failures and is not easily applicable to ad-hoc networks. To address this, several methods have been proposed that allow agreement on the global likelihood through fully distributed belief consensus (BC) algorithms, operating on local likelihoods in distributed particle filtering (DPF). However, a unified comparison of the convergence speed and communication cost has not been performed. In this paper, we provide such a comparison and propose a novel BC algorithm based on belief propagation (BP). According to our study, DPF based on metropolis belief consensus (MBC) is the fastest in loopy graphs, while DPF based on BP consensus is the fastest in tree graphs. Moreover, we found that BC-based DPF methods have lower communication overhead than data flooding when the network is sufficiently sparse

    Nonlinear state space smoothing using the conditional particle filter

    Full text link
    To estimate the smoothing distribution in a nonlinear state space model, we apply the conditional particle filter with ancestor sampling. This gives an iterative algorithm in a Markov chain Monte Carlo fashion, with asymptotic convergence results. The computational complexity is analyzed, and our proposed algorithm is successfully applied to the challenging problem of sensor fusion between ultra-wideband and accelerometer/gyroscope measurements for indoor positioning. It appears to be a competitive alternative to existing nonlinear smoothing algorithms, in particular the forward filtering-backward simulation smoother.Comment: Accepted for the 17th IFAC Symposium on System Identification (SYSID), Beijing, China, October 201

    Minimum information loss fusion in distributed sensor networks

    Get PDF
    A key assumption of distributed data fusion is that individual nodes have no knowledge of the global network topology and use only information which is available locally. This paper considers the weighted exponential product (WEP) rule as a methodology for conservatively fusing estimates with an unknown degree of correlation between them. We provide a preliminary investigation into how the methodology for selecting the mixing parameter can be used to minimize the information loss in the fused covariance as opposed to reducing the Shannon entropy, and hence maximize the information of the fused covariance. Our results suggest that selecting a mixing parameter which minimizes the information loss ensures that information which is exclusive to the estimates from one source is not lost during the fusion process. These results indicate that minimizing the information loss provides a robust technique for selecting the mixing parameter in WEP fusion

    Extended Object Tracking: Introduction, Overview and Applications

    Full text link
    This article provides an elaborate overview of current research in extended object tracking. We provide a clear definition of the extended object tracking problem and discuss its delimitation to other types of object tracking. Next, different aspects of extended object modelling are extensively discussed. Subsequently, we give a tutorial introduction to two basic and well used extended object tracking approaches - the random matrix approach and the Kalman filter-based approach for star-convex shapes. The next part treats the tracking of multiple extended objects and elaborates how the large number of feasible association hypotheses can be tackled using both Random Finite Set (RFS) and Non-RFS multi-object trackers. The article concludes with a summary of current applications, where four example applications involving camera, X-band radar, light detection and ranging (lidar), red-green-blue-depth (RGB-D) sensors are highlighted.Comment: 30 pages, 19 figure
    • …
    corecore