5 research outputs found

    Short-Term Forecasting of Passenger Demand under On-Demand Ride Services: A Spatio-Temporal Deep Learning Approach

    Full text link
    Short-term passenger demand forecasting is of great importance to the on-demand ride service platform, which can incentivize vacant cars moving from over-supply regions to over-demand regions. The spatial dependences, temporal dependences, and exogenous dependences need to be considered simultaneously, however, which makes short-term passenger demand forecasting challenging. We propose a novel deep learning (DL) approach, named the fusion convolutional long short-term memory network (FCL-Net), to address these three dependences within one end-to-end learning architecture. The model is stacked and fused by multiple convolutional long short-term memory (LSTM) layers, standard LSTM layers, and convolutional layers. The fusion of convolutional techniques and the LSTM network enables the proposed DL approach to better capture the spatio-temporal characteristics and correlations of explanatory variables. A tailored spatially aggregated random forest is employed to rank the importance of the explanatory variables. The ranking is then used for feature selection. The proposed DL approach is applied to the short-term forecasting of passenger demand under an on-demand ride service platform in Hangzhou, China. Experimental results, validated on real-world data provided by DiDi Chuxing, show that the FCL-Net achieves better predictive performance than traditional approaches including both classical time-series prediction models and neural network based algorithms (e.g., artificial neural network and LSTM). This paper is one of the first DL studies to forecast the short-term passenger demand of an on-demand ride service platform by examining the spatio-temporal correlations.Comment: 39 pages, 10 figure

    Traffic Time Headway Prediction and Analysis: A Deep Learning Approach

    Get PDF
    In the modern world of Intelligent Transportation System (ITS), time headway is a key traffic flow parameter affecting ITS operations and planning. Defined as “the time difference between any two successive vehicles when they cross a given point”, time headway is used in various traffic and transportation engineering research domains, such as capacity analysis, safety studies, car-following, and lane-changing behavior modeling, and level of service evaluation describing stochastic features of traffic flow. Advanced travel and headway information can also help road users avoid traffic congestion through dynamic route planning, for instance. Hence, it is crucial to accurately model headway distribution patterns for the purpose of analyzing traffic operations and making subsequent infrastructure-related decisions. Previous studies have applied a variety of probabilistic models, machine learning algorithms (for example, support vector machine, relevance vector machine, etc.), and neural networks for short-term headway prediction. Recently, deep learning has become increasingly popular following a surge of traffic big data with high resolution, thriving algorithms, and evolved computational capacity. However, only a few studies have exploited this emerging technology for headway prediction applications. This is largely due to the difficulty in capturing the random, seasonal, nonlinear, and spatiotemporal correlated nature of traffic data and asymmetric human driving behavior which has a significant impact on headway. This study employs a novel architecture of deep neural networks, Long Short-Term Neural Network (LSTM NN), to capture nonlinear traffic dynamics effectively to predict vehicle headway. LSTM NN can overcome the issue of back-propagated error decay (that is, vanishing gradient problem) existing in regular Recurrent Neural Network (RNN) through memory blocks which is its special feature, and thus exhibits superior capability for time series prediction with long temporal dependency. There is no existing appropriate model for long term prediction of traffic headway, as existing models lack using big dataset and solving the vanishing gradient problem because of not having a memory block. To overcome these critics and fill the gaps in previous works, multiple LSTM layers are stacked to incorporate temporal information. For model training and validation, this study used the USDOT’s Next Generation Simulation (NGSIM) dataset, which contains historical data of some important features to describe the headway distribution such as lane numbers, microscopic traffic flow parameters, vehicle and road shape, vehicle type, and velocity. LSTM NN can capture the historical relationships between these variables and save them using its unique memory block. At the headway prediction stage, the related spatiotemporal features from the dataset (HighwayI-80) were fed into a fully connected layer and again tested with testing data for validation (both highway I-80 & US 101). The predicted accuracy outperforms previous time headway predictions
    corecore