143,996 research outputs found

    On Fusion Algebras and Modular Matrices

    Full text link
    We consider the fusion algebras arising in e.g. Wess-Zumino-Witten conformal field theories, affine Kac-Moody algebras at positive integer level, and quantum groups at roots of unity. Using properties of the modular matrix SS, we find small sets of primary fields (equivalently, sets of highest weights) which can be identified with the variables of a polynomial realization of the ArA_r fusion algebra at level kk. We prove that for many choices of rank rr and level kk, the number of these variables is the minimum possible, and we conjecture that it is in fact minimal for most rr and kk. We also find new, systematic sources of zeros in the modular matrix SS. In addition, we obtain a formula relating the entries of SS at fixed points, to entries of SS at smaller ranks and levels. Finally, we identify the number fields generated over the rationals by the entries of SS, and by the fusion (Verlinde) eigenvalues.Comment: 28 pages, plain Te

    Signal-Level Information Fusion for Less Constrained Iris Recognition using Sparse-Error Low Rank Matrix Factorization

    Get PDF
    Iris recognition systems working in less constrained environments with the subject at-a-distance and on-the-move suffer from the noise and degradations in the iris captures. These noise and degradations significantly deteriorate iris recognition performance. In this paper, we propose a novel signal-level information fusion method to mitigate the influence of noise and degradations for less constrained iris recognition systems. The proposed method is based on low rank approximation (LRA). Given multiple noisy captures of the same eye, we assume that: 1) the potential noiseless images lie in a low rank subspace and 2) the noise is spatially sparse. Based on these assumptions, we seek an LRA of noisy captures to separate the noiseless images and noise for information fusion. Specifically, we propose a sparse-error low rank matrix factorization model to perform LRA, decomposing the noisy captures into a low rank component and a sparse error component. The low rank component estimates the potential noiseless images, while the error component models the noise. Then, the low rank and error components are utilized to perform signal-level fusion separately, producing two individually fused images. Finally, we combine the two fused images at the code level to produce one iris code as the final fusion result. Experiments on benchmark data sets demonstrate that the proposed signal-level fusion method is able to achieve a generally improved iris recognition performance in less constrained environment, in comparison with the existing iris recognition algorithms, especially for the iris captures with heavy noise and low quality

    Superconformal Coset Equivalence from Level-Rank Duality

    Get PDF
    We construct a one-to-one map between the primary fields of the N=2 superconformal Kazama-Suzuki models G(m,n,k) and G(k,n,m) based on complex Grassmannian cosets, using level-rank duality of Wess-Zumino-Witten models. We then show that conformal weights, superconformal U(1) charges, modular transformation matrices, and fusion rules are preserved under this map, providing strong evidence for the equivalence of these coset models.Comment: 25 pages, harvmac, no figures, added referenc

    Segmentation-level fusion for iris recognition

    Get PDF
    This paper investigates the potential of fusion at normalisation/segmentation level prior to feature extraction. While there are several biometric fusion methods at data/feature level, score level and rank/decision level combining raw biometric signals, scores, or ranks/decisions, this type of fusion is still in its infancy. However, the increasing demand to allow for more relaxed and less invasive recording conditions, especially for on-the-move iris recognition, suggests to further investigate fusion at this very low level. This paper focuses on the approach of multi-segmentation fusion for iris biometric systems investigating the benefit of combining the segmentation result of multiple normalisation algorithms, using four methods from two different public iris toolkits (USIT, OSIRIS) on the public CASIA and IITD iris datasets. Evaluations based on recognition accuracy and ground truth segmentation data indicate high sensitivity with regards to the type of errors made by segmentation algorithms

    Detection-by-Localization: Maintenance-Free Change Object Detector

    Full text link
    Recent researches demonstrate that self-localization performance is a very useful measure of likelihood-of-change (LoC) for change detection. In this paper, this "detection-by-localization" scheme is studied in a novel generalized task of object-level change detection. In our framework, a given query image is segmented into object-level subimages (termed "scene parts"), which are then converted to subimage-level pixel-wise LoC maps via the detection-by-localization scheme. Our approach models a self-localization system as a ranking function, outputting a ranked list of reference images, without requiring relevance score. Thanks to this new setting, we can generalize our approach to a broad class of self-localization systems. Our ranking based self-localization model allows to fuse self-localization results from different modalities via an unsupervised rank fusion derived from a field of multi-modal information retrieval (MMR).Comment: 7 pages, 3 figures, Technical repor

    Robust multi-modal and multi-unit feature level fusion of face and iris biometrics

    Get PDF
    Multi-biometrics has recently emerged as a mean of more robust and effcient personal verification and identification. Exploiting information from multiple sources at various levels i.e., feature, score, rank or decision, the false acceptance and rejection rates can be considerably reduced. Among all, feature level fusion is relatively an understudied problem. This paper addresses the feature level fusion for multi-modal and multi-unit sources of information. For multi-modal fusion the face and iris biometric traits are considered, while the multi-unit fusion is applied to merge the data from the left and right iris images. The proposed approach computes the SIFT features from both biometric sources, either multi- modal or multi-unit. For each source, the extracted SIFT features are selected via spatial sampling. Then these selected features are finally concatenated together into a single feature super-vector using serial fusion. This concatenated feature vector is used to perform classification. Experimental results from face and iris standard biometric databases are presented. The reported results clearly show the performance improvements in classification obtained by applying feature level fusion for both multi-modal and multi-unit biometrics in comparison to uni-modal classification and score level fusion

    Learning to Rank Academic Experts in the DBLP Dataset

    Full text link
    Expert finding is an information retrieval task that is concerned with the search for the most knowledgeable people with respect to a specific topic, and the search is based on documents that describe people's activities. The task involves taking a user query as input and returning a list of people who are sorted by their level of expertise with respect to the user query. Despite recent interest in the area, the current state-of-the-art techniques lack in principled approaches for optimally combining different sources of evidence. This article proposes two frameworks for combining multiple estimators of expertise. These estimators are derived from textual contents, from graph-structure of the citation patterns for the community of experts, and from profile information about the experts. More specifically, this article explores the use of supervised learning to rank methods, as well as rank aggregation approaches, for combing all of the estimators of expertise. Several supervised learning algorithms, which are representative of the pointwise, pairwise and listwise approaches, were tested, and various state-of-the-art data fusion techniques were also explored for the rank aggregation framework. Experiments that were performed on a dataset of academic publications from the Computer Science domain attest the adequacy of the proposed approaches.Comment: Expert Systems, 2013. arXiv admin note: text overlap with arXiv:1302.041
    • …
    corecore