2,821 research outputs found

    On the stability of impulsive functional differential equations with infinite delays

    Get PDF
    In this paper, the stability problem of impulsive functional differential equations with infinite delays is considered. By using Lyapunov functions and the Razumikhin technique, some new theorems on the uniform stability and uniform asymptotic stability are obtained. The obtained results are milder and more general than several recent works. Two examples are given to demonstrate the advantages of the results

    Stability of interconnected impulsive systems with and without time-delays using Lyapunov methods

    Full text link
    In this paper we consider input-to-state stability (ISS) of impulsive control systems with and without time-delays. We prove that if the time-delay system possesses an exponential Lyapunov-Razumikhin function or an exponential Lyapunov-Krasovskii functional, then the system is uniformly ISS provided that the average dwell-time condition is satisfied. Then, we consider large-scale networks of impulsive systems with and without time-delays and we prove that the whole network is uniformly ISS under a small-gain and a dwell-time condition. Moreover, these theorems provide us with tools to construct a Lyapunov function (for time-delay systems - a Lyapunov-Krasovskii functional or a Lyapunov-Razumikhin function) and the corresponding gains of the whole system, using the Lyapunov functions of the subsystems and the internal gains, which are linear and satisfy the small-gain condition. We illustrate the application of the main results on examples

    New Results on Impulsive Functional Differential Equations with Infinite Delays

    Get PDF
    We investigate the stability for a class of impulsive functional differential equations with infinite delays by using Lyapunov functions and Razumikhin-technique. Some new Razumikhin-type theorems on stability are obtained, which shows that impulses do contribute to the system’s stability behavior. An example is also given to illustrate the importance of our results

    Asymptotic properties of stochastic population dynamics

    Get PDF
    In this paper we stochastically perturb the classical Lotka{Volterra model x_ (t) = diag(x1(t); ; xn(t))[b + Ax(t)] into the stochastic dierential equation dx(t) = diag(x1(t); ; xn(t))[(b + Ax(t))dt + dw(t)]: The main aim is to study the asymptotic properties of the solution. It is known (see e.g. [3, 20]) if the noise is too large then the population may become extinct with probability one. Our main aim here is to nd out what happens if the noise is relatively small. In this paper we will establish some new asymptotic properties for the moments as well as for the sample paths of the solution. In particular, we will discuss the limit of the average in time of the sample paths

    Practical Stability of Impulsive Discrete Systems with Time Delays

    Get PDF
    The purpose of this paper is to investigate the practical stability problem for impulsive discrete systems with time delays. By using Lyapunov functions and the Razumikhin-type technique, some criteria which guarantee the practical stability and uniformly asymptotically practical stability of the addressed systems are provided. Finally, two examples are presented to illustrate the criteria
    corecore