2,243 research outputs found

    Continuity theorems for the M/M/1/nM/M/1/n queueing system

    Full text link
    In this paper continuity theorems are established for the number of losses during a busy period of the M/M/1/nM/M/1/n queue. We consider an M/GI/1/nM/GI/1/n queueing system where the service time probability distribution, slightly different in a certain sense from the exponential distribution, is approximated by that exponential distribution. Continuity theorems are obtained in the form of one or two-sided stochastic inequalities. The paper shows how the bounds of these inequalities are changed if further assumptions, associated with specific properties of the service time distribution (precisely described in the paper), are made. Specifically, some parametric families of service time distributions are discussed, and the paper establishes uniform estimates (given for all possible values of the parameter) and local estimates (where the parameter is fixed and takes only the given value). The analysis of the paper is based on the level crossing approach and some characterization properties of the exponential distribution.Comment: Final revision; will be published as i

    The effective bandwidth problem revisited

    Full text link
    The paper studies a single-server queueing system with autonomous service and \ell priority classes. Arrival and departure processes are governed by marked point processes. There are \ell buffers corresponding to priority classes, and upon arrival a unit of the kkth priority class occupies a place in the kkth buffer. Let N(k)N^{(k)}, k=1,2,...,k=1,2,...,\ell denote the quota for the total kkth buffer content. The values N(k)N^{(k)} are assumed to be large, and queueing systems both with finite and infinite buffers are studied. In the case of a system with finite buffers, the values N(k)N^{(k)} characterize buffer capacities. The paper discusses a circle of problems related to optimization of performance measures associated with overflowing the quota of buffer contents in particular buffers models. Our approach to this problem is new, and the presentation of our results is simple and clear for real applications.Comment: 29 pages, 11pt, Final version, that will be published as is in Stochastic Model

    Poisson-type deviation inequalities for curved continuous-time Markov chains

    Full text link
    In this paper, we present new Poisson-type deviation inequalities for continuous-time Markov chains whose Wasserstein curvature or Γ\Gamma-curvature is bounded below. Although these two curvatures are equivalent for Brownian motion on Riemannian manifolds, they are not comparable in discrete settings and yield different deviation bounds. In the case of birth--death processes, we provide some conditions on the transition rates of the associated generator for such curvatures to be bounded below and we extend the deviation inequalities established [An\'{e}, C. and Ledoux, M. On logarithmic Sobolev inequalities for continuous time random walks on graphs. Probab. Theory Related Fields 116 (2000) 573--602] for continuous-time random walks, seen as models in null curvature. Some applications of these tail estimates are given for Brownian-driven Ornstein--Uhlenbeck processes and M/M/1M/M/1 queues.Comment: Published at http://dx.doi.org/10.3150/07-BEJ6039 in the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Markov-modulated Brownian motion with two reflecting barriers

    Full text link
    We consider a Markov-modulated Brownian motion reflected to stay in a strip [0,B]. The stationary distribution of this process is known to have a simple form under some assumptions. We provide a short probabilistic argument leading to this result and explaining its simplicity. Moreover, this argument allows for generalizations including the distribution of the reflected process at an independent exponentially distributed epoch. Our second contribution concerns transient behavior of the reflected system. We identify the joint law of the processes t,X(t),J(t) at inverse local times.Comment: 13 pages, 1 figur

    Competing particle systems evolving by interacting L\'{e}vy processes

    Full text link
    We consider finite and infinite systems of particles on the real line and half-line evolving in continuous time. Hereby, the particles are driven by i.i.d. L\'{e}vy processes endowed with rank-dependent drift and diffusion coefficients. In the finite systems we show that the processes of gaps in the respective particle configurations possess unique invariant distributions and prove the convergence of the gap processes to the latter in the total variation distance, assuming a bound on the jumps of the L\'{e}vy processes. In the infinite case we show that the gap process of the particle system on the half-line is tight for appropriate initial conditions and same drift and diffusion coefficients for all particles. Applications of such processes include the modeling of capital distributions among the ranked participants in a financial market, the stability of certain stochastic queueing and storage networks and the study of the Sherrington--Kirkpatrick model of spin glasses.Comment: Published in at http://dx.doi.org/10.1214/10-AAP743 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Instability in Stochastic and Fluid Queueing Networks

    Full text link
    The fluid model has proven to be one of the most effective tools for the analysis of stochastic queueing networks, specifically for the analysis of stability. It is known that stability of a fluid model implies positive (Harris) recurrence (stability) of a corresponding stochastic queueing network, and weak stability implies rate stability of a corresponding stochastic network. These results have been established both for cases of specific scheduling policies and for the class of all work conserving policies. However, only partial converse results have been established and in certain cases converse statements do not hold. In this paper we close one of the existing gaps. For the case of networks with two stations we prove that if the fluid model is not weakly stable under the class of all work conserving policies, then a corresponding queueing network is not rate stable under the class of all work conserving policies. We establish the result by building a particular work conserving scheduling policy which makes the associated stochastic process transient. An important corollary of our result is that the condition ρ1\rho^*\leq 1, which was proven in \cite{daivan97} to be the exact condition for global weak stability of the fluid model, is also the exact global rate stability condition for an associated queueing network. Here ρ\rho^* is a certain computable parameter of the network involving virtual station and push start conditions.Comment: 30 pages, To appear in Annals of Applied Probabilit
    corecore