1,538 research outputs found

    Quantitative validation of PEDFLOW for description of unidirectional pedestrian dynamics

    Get PDF
    The results of a systematic quantitative validation of PEDFLOW based on the experimental data from FZJ are presented. Unidirectional flow experiments, totaling 28 different combinations with varying entry, corridor and exit widths, were considered. The condition imposed on PEDFLOW was that all the cases should be run with the same input parameters. The exit times and fundamental diagrams for the measuring region were evaluated and compared. This validation process led to modifications and enhancements of the model underlying PEDFLOW. The preliminary conclusions indicate that the results agree well for densities smaller than 3 m-2 and a good agreement is observed even at high densities for the corridors with bcor = 2.4 m, and bcor = 3.0 m. For densities between 1 and 2 m-2 the specific flow and velocities are underpredicted by PEDFLOW.Comment: 6 pages, 3 figures, 1 Table, conference PED201

    Computation Speed of the F.A.S.T. Model

    Full text link
    The F.A.S.T. model for microscopic simulation of pedestrians was formulated with the idea of parallelizability and small computation times in general in mind, but so far it was never demonstrated, if it can in fact be implemented efficiently for execution on a multi-core or multi-CPU system. In this contribution results are given on computation times for the F.A.S.T. model on an eight-core PC.Comment: Accepted as contribution to "Traffic and Granular Flow 2009" proceedings. This is a slightly extended versio

    The Effect of Integrating Travel Time

    Full text link
    This contribution demonstrates the potential gain for the quality of results in a simulation of pedestrians when estimated remaining travel time is considered as a determining factor for the movement of simulated pedestrians. This is done twice: once for a force-based model and once for a cellular automata-based model. The results show that for the (degree of realism of) simulation results it is more relevant if estimated remaining travel time is considered or not than which modeling technique is chosen -- here force-based vs. cellular automata -- which normally is considered to be the most basic choice of modeling approach.Comment: preprint of Pedestrian and Evacuation 2012 conference (PED2012) contributio

    Generalized Centrifugal Force Model for Pedestrian Dynamics

    Get PDF
    A spatially continuous force-based model for simulating pedestrian dynamics is introduced which includes an elliptical volume exclusion of pedestrians. We discuss the phenomena of oscillations and overlapping which occur for certain choices of the forces. The main intention of this work is the quantitative description of pedestrian movement in several geometries. Measurements of the fundamental diagram in narrow and wide corridors are performed. The results of the proposed model show good agreement with empirical data obtained in controlled experiments.Comment: 10 pages, 14 figures, accepted for publication as a Regular Article in Physical Review E. This version contains minor change

    Experimental study of pedestrian flow through a T-junction

    Full text link
    In this study, series of experiments under laboratory conditions were carried out to investigate pedestrian flow through a T-junction, i.e., two branches merging into the main stream. The whole duration of the experiments was recorded by video cameras and the trajectories of each pedestrian were extracted using the software Petrack from these videos. The Voronoi method is used to resolve the fine structure of the fundamental diagram and spatial dependence of the measured quantities from trajectories. In our study, only the data in the stationary state are used by analyzing the time series of density and velocity. The density, velocity and specific flow profiles are obtained by refining the size of the measurement area (here 10 cm \times 10 cm are adopted). With such a high resolution, the spatial distribution of density, velocity and specific flow can be obtained separately and the regions with higher value can be observed intuitively. Finally, the fundamental diagrams of T-junction flow is compared in three different locations. It is shown that the fundamental diagrams of the two branches match well. However, the velocities in front of the merging are significantly lower than that in the main stream at the same densities. After the merging, the specific flow increases with the density \rho till 2.5 m-2. While in the branches, the specific flow is almost independent of the density between \rho = 1.5 m-2 and 3.5 m-2Comment: 9 pages, 4 figures, 2 tables, TGF'1
    corecore