742 research outputs found

    Fundamental limits on phase and frequency tracking and estimation in drifting oscillators

    Full text link

    Chip-based Brillouin processing for carrier recovery in coherent optical communications

    Get PDF
    Modern fiber-optic coherent communications employ advanced spectrally-efficient modulation formats that require sophisticated narrow linewidth local oscillators (LOs) and complex digital signal processing (DSP). Here, we establish a novel approach to carrier recovery harnessing large-gain stimulated Brillouin scattering (SBS) on a photonic chip for up to 116.82 Gbit/sec self-coherent optical signals, eliminating the need for a separate LO. In contrast to SBS processing on-fiber, our solution provides phase and polarization stability while the narrow SBS linewidth allows for a record-breaking small guardband of ~265 MHz, resulting in higher spectral-efficiency than benchmark self-coherent schemes. This approach reveals comparable performance to state-of-the-art coherent optical receivers without requiring advanced DSP. Our demonstration develops a low-noise and frequency-preserving filter that synchronously regenerates a low-power narrowband optical tone that could relax the requirements on very-high-order modulation signaling and be useful in long-baseline interferometry for precision optical timing or reconstructing a reference tone for quantum-state measurements.Comment: Part of this work has been presented as a postdealine paper at CLEO Pacific-Rim'2017 and OSA Optic

    Improving Channel Estimation and Tracking Performance in Distributed MIMO Communication Systems

    Get PDF
    This dissertation develops and analyzes several techniques for improving channel estimation and tracking performance in distributed multi-input multi-output (D-MIMO) wireless communication systems. D-MIMO communication systems have been studied for the last decade and are known to offer the benefits of antenna arrays, e.g., improved range and data rates, to systems of single-antenna devices. D-MIMO communication systems are considered a promising technology for future wireless standards including advanced cellular communication systems. This dissertation considers problems related to channel estimation and tracking in D-MIMO communication systems and is focused on three related topics: (i) characterizing oscillator stability for nodes in D-MIMO systems, (ii) the development of an optimal unified tracking framework and a performance comparison to previously considered sub-optimal tracking approaches, and (iii) incorporating independent kinematics into dynamic channel models and using accelerometers to improve channel tracking performance. A key challenge of D-MIMO systems is estimating and tracking the time-varying channels present between each pair of nodes in the system. Even if the propagation channel between a pair of nodes is time-invariant, the independent local oscillators in each node cause the carrier phases and frequencies and the effective channels between the nodes to have random time-varying phase offsets. The first part of this dissertation considers the problem of characterizing the stability parameters of the oscillators used as references for the transmitted waveforms. Having good estimates of these parameters is critical to facilitate optimal tracking of the phase and frequency offsets. We develop a new method for estimating these oscillator stability parameters based on Allan deviation measurements and compare this method to several previously developed parameter estimation techniques based on innovation covariance whitening. The Allan deviation method is validated with both simulations and experimental data from low-precision and high-precision oscillators. The second part of this dissertation considers a D-MIMO scenario with NtN_t transmitters and NrN_r receivers. While there are NtimesNrN_t imes N_r node-to-node pairwise channels in such a system, there are only Nt+NrN_t + N_r independent oscillators. We develop a new unified tracking model where one Kalman filter jointly tracks all of the pairwise channels and compare the performance of unified tracking to previously developed suboptimal local tracking approaches where the channels are not jointly tracked. Numerical results show that unified tracking tends to provide similar beamforming performance to local tracking but can provide significantly better nullforming performance in some scenarios. The third part of this dissertation considers a scenario where the transmit nodes in a D-MIMO system have independent kinematics. In general, this makes the channel tracking problem more difficult since the independent kinematics make the D-MIMO channels less predictable. We develop dynamics models which incorporate the effects of acceleration on oscillator frequency and displacement on propagation time. The tracking performance of a system with conventional feedback is compared to a system with conventional feedback and local accelerometer measurements. Numerical results show that the tracking performance is significantly improved with local accelerometer measurements

    ESPRIT Based Robust Anti-Islanding Algorithm for Grid-Tied Inverter

    Get PDF
    Abstract—This paper presents an anti-islanding protection scheme for a grid tied inverter. In this scheme, the oscillation variation in frequency is estimated by Estimation of Signal Parameters via Rotational Invariant Technique (ESPRIT). The proposed system is implemented in MATLAB and real time in OPAL-RT. Series of simulation results demonstrate that nondetection zone of proposed algorithm is negligible, and the scheme is also free from nuisance tripping to other transient events

    Distributed transmit beamforming for UAV to base communications

    Full text link
    © 2013 IEEE. Distributed transmit beamforming (DTB) is very efficient for extending the communication distance between a swarm of UAVs and the base, particularly when considering the constraints in weight and battery life for payloads on UAVs. In this paper, we review major function modules and potential solutions in realizing DTB in UAV systems, such as timing and carrier synchronization, phase drift tracking and compensation, and beamforming vector generation and updating. We then focus on beamforming vector generation and updating, and introduce a concatenated training scheme, together with a recursive channel estimation and updating algorithm. We also propose three approaches for tracking the variation of channels and updating the vectors. The effectiveness of these approaches is validated by simulation results

    Testing quantum mechanics: a statistical approach

    Full text link
    As experiments continue to push the quantum-classical boundary using increasingly complex dynamical systems, the interpretation of experimental data becomes more and more challenging: when the observations are noisy, indirect, and limited, how can we be sure that we are observing quantum behavior? This tutorial highlights some of the difficulties in such experimental tests of quantum mechanics, using optomechanics as the central example, and discusses how the issues can be resolved using techniques from statistics and insights from quantum information theory.Comment: v1: 2 pages; v2: invited tutorial for Quantum Measurements and Quantum Metrology, substantial expansion of v1, 19 pages; v3: accepted; v4: corrected some errors, publishe

    Ultra-High Frequency Nanoelectromechanical Systems with Low-Noise Technologies for Single-Molecule Mass Sensing

    Get PDF
    Advancing today's very rudimentary nanodevices toward functional nanosystems with considerable complexity and advanced performance imposes enormous challenges. This thesis presents the research on ultra-high frequency (UHF) nanoelectromechanical systems (NEMS) in combination with low-noise technologies that enable single-molecule mass sensing and offer promises for NEMS-based mass spectrometry (MS) with single-Dalton sensitivity. The generic protocol for NEMS resonant mass sensing is based on real-time locking and tracking of the resonance frequency as it is shifted by the mass-loading effect. This has been implemented in two modes: (i) creating an active self-sustaining oscillator based on the NEMS resonator, and (ii) a higher-precision external oscillator phase-locking to and tracking the NEMS resonance. The first UHF low-noise self-sustaining NEMS oscillator has been demonstrated by using a 428MHz vibrating NEMS resonator as the frequency reference. This stable UHF NEMS oscillator exhibits ~0.3ppm frequency stability and ~50zg (1zg = 10-21 g) mass resolution with its excellent wideband-operation (~0.2MHz) capability. Given its promising phase noise performance, the active NEMS oscillator technology also offers important potentials for realizing NEMS-based radio-frequency (RF) local oscillators, voltage-controlled oscillators (VCOs), and synchronized oscillators and arrays that could lead to nanomechanical signal processing and communication. The demonstrated NEMS oscillator operates at much higher frequency than conventional crystal oscillators and their overtones do, which opens new possibilities for the ultimate miniaturization of advanced crystal oscillators. Low-noise phase-locked loop (PLL) techniques have been developed and engineered to integrate with the resonance detection circuitry for the passive UHF NEMS resonators. Implementations of the NEMS-PLL mode with generations of low-loss UHF NEMS resonators demonstrate improving performance, namely, reduced noise and enhanced dynamic range. Very compelling frequency stability of ~0.02ppm and unprecedented mass sensitivity approaching 1zg has been achieved with a typical 500MHz device in the narrow-band NEMS-PLL operation. Retaining high quality factors (Q's) while scaling up frequency has become crucial for UHF NEMS resonators. Extensive measurements, together with theoretical modeling, have been performed to investigate various energy loss mechanisms and their effects on UHF devices. This leads to important insights and guidelines for device Q-engineering. The first VHF/UHF silicon nanowire (NW) resonators have been demonstrated based on single-crystal Si NWs made by bottom-up chemical synthesis nanofabrication. Pristine Si NWs have well-faceted surfaces and exhibit high Q's (Q ≈ 13100 at 80MHz and Q ≈ 5750 at 215MHz). Given their ultra-small active mass and very high mass responsivity, these Si NWs also offer excellent mass sensitivity in the ~10?50zg range. These UHF NEMS and electronic control technologies have demonstrated promising mass sensitivity for kilo-Dalton-range single-biomolecule mass sensing. The achieved performance roadmap, and that extended by next generations of devices, clearly indicates realistic and viable paths toward the single-Dalton mass sensitivity. With further elaborate engineering, prototype NEMS-MS is optimistically within reach.</p

    Space-based Aperture Array For Ultra-Long Wavelength Radio Astronomy

    Full text link
    The past decade has seen the rise of various radio astronomy arrays, particularly for low-frequency observations below 100MHz. These developments have been primarily driven by interesting and fundamental scientific questions, such as studying the dark ages and epoch of re-ionization, by detecting the highly red-shifted 21cm line emission. However, Earth-based radio astronomy below frequencies of 30MHz is severely restricted due to man-made interference, ionospheric distortion and almost complete non-transparency of the ionosphere below 10MHz. Therefore, this narrow spectral band remains possibly the last unexplored frequency range in radio astronomy. A straightforward solution to study the universe at these frequencies is to deploy a space-based antenna array far away from Earths' ionosphere. Various studies in the past were principally limited by technology and computing resources, however current processing and communication trends indicate otherwise. We briefly present the achievable science cases, and discuss the system design for selected scenarios, such as extra-galactic surveys. An extensive discussion is presented on various sub-systems of the potential satellite array, such as radio astronomical antenna design, the on-board signal processing, communication architectures and joint space-time estimation of the satellite network. In light of a scalable array and to avert single point of failure, we propose both centralized and distributed solutions for the ULW space-based array. We highlight the benefits of various deployment locations and summarize the technological challenges for future space-based radio arrays.Comment: Submitte

    RAPID CLOCK RECOVERY ALGORITHMS FOR DIGITAL MAGNETIC RECORDING AND DATA COMMUNICATIONS

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN024293 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    • …
    corecore