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Abstract

This dissertation develops and analyzes several techniques for improving channel esti-

mation and tracking performance in distributed multi-input multi-output (D-MIMO) wire-

less communication systems. D-MIMO communication systems have been studied for the

last decade and are known to offer the benefits of antenna arrays, e.g., improved range and

data rates, to systems of single-antenna devices. D-MIMO communication systems are

considered a promising technology for future wireless standards including advanced cel-

lular communication systems. This dissertation considers problems related to channel

estimation and tracking in D-MIMO communication systems and is focused on three re-

lated topics: (i) characterizing oscillator stability for nodes in D-MIMO systems, (ii) the

development of an optimal unified tracking framework and a performance comparison

to previously considered sub-optimal tracking approaches, and (iii) incorporating inde-

pendent kinematics into dynamic channel models and using accelerometers to improve

channel tracking performance.

A key challenge of D-MIMO systems is estimating and tracking the time-varying

channels present between each pair of nodes in the system. Even if the propagation

channel between a pair of nodes is time-invariant, the independent local oscillators in

each node cause the carrier phases and frequencies and the effective channels between

the nodes to have random time-varying phase offsets. The first part of this dissertation

considers the problem of characterizing the stability parameters of the oscillators used

as references for the transmitted waveforms. Having good estimates of these parameters

is critical to facilitate optimal tracking of the phase and frequency offsets. We develop

a new method for estimating these oscillator stability parameters based on Allan devia-

tion measurements and compare this method to several previously developed parameter



estimation techniques based on innovation covariance whitening. The Allan deviation

method is validated with both simulations and experimental data from low-precision and

high-precision oscillators.

The second part of this dissertation considers a D-MIMO scenario with Nt transmit-

ters and Nr receivers. While there are Nt × Nr node-to-node pairwise channels in such

a system, there are only Nt + Nr independent oscillators. We develop a new unified

tracking model where one Kalman filter jointly tracks all of the pairwise channels and

compare the performance of unified tracking to previously developed suboptimal local

tracking approaches where the channels are not jointly tracked. Numerical results show

that unified tracking tends to provide similar beamforming performance to local tracking

but can provide significantly better nullforming performance in some scenarios.

The third part of this dissertation considers a scenario where the transmit nodes in a D-

MIMO system have independent kinematics. In general, this makes the channel tracking

problem more difficult since the independent kinematics make the D-MIMO channels less

predictable. We develop dynamics models which incorporate the effects of acceleration

on oscillator frequency and displacement on propagation time. The tracking performance

of a system with conventional feedback is compared to a system with conventional feed-

back and local accelerometer measurements. Numerical results show that the tracking

performance is significantly improved with local accelerometer measurements.
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Chapter 1

Introduction

This chapter describes the basic setting in distributed MIMO communication systems and

provides motivation for the research questions considered in this dissertation.

1.1 Motivation

The last two decades have witnessed a fundamental shift in wireless communication sys-

tems away from single-antenna transceivers and toward Multi-Input Multi-Output (MIMO)

communication. A MIMO system uses multiple transmit and receive antennas to exploit

channel diversity and allow for multiple transmissions at the same time and on the same

radio channel. The problem of multiple input multiple output systems has been studied in

great detail [1–4]. MIMO techniques have resulted in several important breakthroughs for

wireless devices including increased range, increased spectral efficiency, reduced interfer-

ence, and improved security [1, 5–9]. The theory and practice of MIMO communication

has matured to the point where MIMO is now in several recent WiFi and cellular standards

including 802.11n, 802.11ac, long-term evolution (LTE), WiMAX, and International Mo-

bile Telecommunications (IMT)-Advanced. In addition, massive MIMO systems have
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been proposed in which a very large number of transmit antennas is used to focus energy

into a very small area [10]. The applicability of MIMO techniques is often limited, how-

ever, by physical and economic constraints. For example, the form factor of hand-held

devices typically limits the number of antennas to only one or two. Consequently, the sig-

nificant advantages of MIMO communication are simply not available to antenna- and/or

cost-constrained devices.

While it is true that single-antenna devices are precluded from using MIMO commu-

nication techniques, it is also the case that these devices typically do not exist in isolation.

Rather, single-antenna devices are often members of a network with many other single-

antenna devices. If multiple devices in the network can coordinate their communication

and pool their antenna resources, they can form a virtual antenna array and emulate a

MIMO transceiver. This technique is called “distributed”-MIMO (D-MIMO) or virtual-

MIMO in the literature [11].

Figure 1.1: D-MIMO communication system: independent nodes can form beams.

One well-studied example of D-MIMO is distributed beamforming [12–30]. The
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goal in a distributed beamforming system is to control the phases and frequencies of the

carriers at each transmit node so that the pass-band signals combine constructively at an

intended receiver, as shown in Fig. 1.2. This results in the formation of a ”virtual” antenna

that steers a beam in the direction of the receiver. Such a system can have many uses. For

example, one can imagine combining multiple cellular base stations to increase the area of

coverage. Or reversely, a cluster of mobile phones could benefit from such a system if they

could combine their transmission to reach an out of range base-station. In wireless sensor

networks, where nodes have limited transmit energy, combining transmission could lower

the transmit power [31]. One could also imagine a jamming system in which a cluster of

nodes could flood an malicious receiver with energy to prevent it from receiving signals.

Figure 1.2: Beamforming example: Each transmitter’s carrier is aligned such that it com-
bines at the receiver.

Similarly, distributed nullforming systems use the degrees of freedom available from

many transmit antennas to combine destructively in order to protect a receiver from inter-

ference [32–34]. Fig. 1.3 shows an example system where four transmitters are aligning

their signals such that the receiver sees a very small signal. This can be useful in situations

3



where there are multiple receivers [35]. A distributed transmission cluster can cause un-

wanted interference from the sidelobes of a virtual beamformer array [36]. Thus, steering

nulls towards a set of ”protected” receivers could allow them to communicate with other

transmit clusters, as sketched in Fig. 1.4.

Figure 1.3: Nullforming example: The carriers are aligned such that they cancel out when
reaching the receiver.

An additional challenge of nullforming compared to beamforming is that the ampli-

tude of the signals transmitted needs to be scaled. While for beamforming the required

result is the sum of all the signals, irrespective of amplitude, for nullforming there needs

to be cancellation in both phase and amplitude [37].

Even in systems with time-invariant channels, the independent oscillators at each node

in the distributed transmission system cause the effective channels between each transmit-

ter and receiver to become time-varying [38] . This is due to the inherent instability of

the crystal oscillators used in almost all communication systems. In a point to point sin-

gle antenna communication system, such as a mobile phone connected to a cellular base

station, these time-varying channels do not pose a great problem. The frequency offset

can be estimated and compensated before demodulating the signal [39]. Similarly, in

4



Beam	
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Transmit 
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Figure 1.4: Nullforming use case: each of the two receivers only sees the beams from the
respective transmit cluster.

conventional MIMO systems, the antennas at the transmitter are all driven by a single

node with one oscillator. This makes it relatively straightforward to control the phases

of the pass-band signals from each antenna and to steer beams and nulls. In D-MIMO

systems, each antenna in the system is driven by an independent local oscillator. Even if

the signals combine as a beam or null at a particular time, the oscillators will drift apart

randomly over time and the beam or null will be lost. Moreover, if the nodes move, this

can cause a loss of coherence. So a key challenge of D-MIMO systems is that we must

be able to model and track independent oscillator dynamics and independent kinematics

in order to achieve synchronization. Additional synchronization methods based on tim-

ing analysis also exist [16, 40–46]. In order to motivate the experimental work in this

dissertation, in Appendix A we show the behavior of an ideal beamformer with two trans-

mitters and one receiver. It has been shown that tracking methods, e.g., Kalman filtering,

can be quite effective at estimating and predicting the time-varying phase and frequency

offsets in each independent transmit/receive oscillator pair and, consequently, in enabling

distributed beamforming with devices using low-cost oscillators [47, 48]. However, it

is well-known that the Kalman filter requires exact knowledge of the process and mea-

surement noise parameters [49, 50]. In the context of tracking carrier phase offsets, the

Kalman filter must have exact knowledge of the short-term and long-term stability pa-

5



rameters of the oscillators in the system as well as exact knowledge of the statistics of

the phase measurement error. In addition, the number of channels in a cluster with many

transmit and receive nodes grows quickly, and tracking each of the channels can pose

some challenges.

1.2 Problem Statement

In this dissertation our aim is to answer the following problems:

• How can we estimate oscillator stability parameters to ensure optimal tracking per-

formance? Can we develop methods that accurately characterize the low-precision

oscillators in commodity radios and high-precision oscillators used in recent D-

MIMO field tests [51]?

• Since the number of pairwise channels typically exceeds the number of independent

oscillators in D-MIMO systems, is there an optimal unified tracking framework for

exploiting common information to achieve optimal tracking performance? How

much better does unified tracking perform with respect to previously studied indi-

vidual tracking?

• Can we incorporate kinematic effects into D-MIMO channel models? How does

independent kinematics effect our ability to track and predict D-MIMO channels?

Can local accelerometer measurements improve tracking performance?

These questions have lead to the results shown in this dissertation. The following

chapters will answer these questions in the hope that it will prove useful to future re-

searchers.
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1.3 Dissertation Organization

The dissertation is organized as follows. After the introduction, we present a background

for this work and show the parameter estimation problem in Chapter 2. We introduce the

Allan variance measure, describe the experimental testbed for the results and compare the

performance with covariance matrix estimation methods.

In Chapter 3 we present an analysis of different tracking methods for beamforming

and nullforming. We compare the performance of using either a single large Kalman filter

and multiple smaller ones to predict the channels. The results show a trade-off between

performance and complexity in the implementation.

In Chapter 4 we introduce acceleration terms in the picture. We start with a one di-

mensional motion model and show that acceleration measurements, that could easily be

obtained with an accelerometer can be integrated in the tracking problem and reduce the

tracking errors. In addition, accelerometer bias is introduced and a system model that ac-

counts for it is developed. A three-dimensional extension is then considered. Simulation

results show how the motion of nodes could be mitigated.

Chapter 5 concludes the dissertation and identifies directions for future research in

this field.
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Chapter 2

Kalman Filter Parameter Estimation

This chapter presents a general method for computing oscillator process and measure-

ment noise parameters from an Allan variance characterization of the carrier phase offset

measurements. We propose a general experimental framework for performing stability

analysis in addition to theoretical background describe the method for parameter esti-

mation. We provide specific results for oscillators used in the N210 Universal Software

Radio Peripheral (USRP) manufactured by Ettus research, as these devices are often used

in experimental studies of D-MIMO systems [52]. We also provide numerical results

showing precise tracking of clock phase and frequency offsets between two USRP de-

vices with a Kalman filter. In a system with periodic channel phase measurements, our

results with a 15 MHz carrier frequency show that the RMS phase prediction error is less

than 25 degrees at a observation period of 2 seconds. At a 900 MHz carrier frequency, the

RMS phase prediction error is less than 25 degrees at a observation period of 50 ms. In

both cases, the actual tracking performance is close to the performance predicted by the

Kalman filter error covariance matrices. In addition, we provide beamforming and null-

forming performance results using the empirical phase prediction error statistics from the

measured data using the method described in [43]. We demonstrate a scenario with beam-
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forming power towards an intended receiver within 1 dB of ideal while nulls of -5 dB to

-30 dB are also steered towards protected receivers.

2.1 Background

2.1.1 Two-state Oscillator Model

The transmit and receive nodes in the system are assumed to have independent local oscil-

lators. These local oscillators have inherent frequency offsets and behave stochastically,

causing phase offset variations in the effective channel from the transmit node to the re-

ceive node even when the propagation channels are otherwise time invariant. This section

describes a discrete-time dynamic model to characterize the dynamics of the carrier phase

and frequency variations between a transmitter and receiver in the D-MIMO system.

Based on the two-state models in [53, 54], we define the discrete-time state of the

transmit node’s carrier as xt[k] = [φt[k], ωt[k]]> where φt[k] and ωt[k] correspond to the

carrier phase and frequency offsets in radians and radians per second, respectively, at the

transmit node with respect to an ideal carrier phase reference. The state update of the

transmit node’s carrier is then

xt[k + 1] = F (T )xt[k] + ut[k] (2.1)

with

F (T ) =

1 T

0 1

 (2.2)

where T is an arbitrary sampling period selected to be small enough to avoid phase alias-

ing at the largest expected frequency offsets.

The process noise vector ut[k]
i.i.d.∼ N (0,Q(T )) causes the carrier derived from the lo-
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cal oscillator at the transmit node to deviate from an ideal linear phase trajectory. The

covariance of the discrete-time process noise is derived from a continuous-time model

in [53]:

Q(T ) = ω2
cT

q1 + q2
T 2

3
q2

T
2

q2
T
2

q2

 (2.3)

where ωc is the nominal common carrier frequency in radians per second and q1 (units of

seconds) and q2 (units of Hertz) are the process noise parameters corresponding to white

frequency noise and random walk frequency noise, respectively.

The receive node in the system also has an independent local oscillator used to gener-

ate the carrier for down-mixing and is governed by the same dynamics as (3.2) with state

xr[k], process noise ur[k]
i.i.d.∼ N (0,Q(T )), and process noise parameters q1 and q2 as in

(3.3).

Since the receive node can only measure the relative phase and frequency of the trans-

mit node after propagation, we define the pairwise offset after propagation as

δ[k] =

φ[k]

ω[k]

 = xt[k] +

ψ
0

− xr[k].

Note that δ[k] is governed by the state update

δ[k + 1] = f(T )δ[k] + ut[k]− ur[k]. (2.4)

where f(T ) is given in (2.2).

We assume observations are received with an observation period T0 = MT where

M is a positive integer. We further assume that the observations are so short as to only
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provide useful phase estimates. The observations can be expressed as

y[k] = H [k]δ[k] + v[k] (2.5)

where

H [k] =


[1, 0] k = 0,M, 2M, . . .

[0, 0] otherwise
(2.6)

and v[k]
i.i.d.∼ N (0, r) is the measurement noise which is assumed to be independent of

the process noise. The problem then is to accurately estimate the parameters {q1, q2, r}

to facilitate tracking of the pairwise phase and frequency offsets in each channel. The

following section introduces the concept of Allan variance, a method for characterizing

oscillator stability that can be used to estimate the relevant parameters.

2.1.2 Allan Variance and Relation to the Two-state Model

The Allan variance, represented by σ2
y , is an analysis tool used to evaluate clock stability,

as well as the types of noise present in the clock [55, 56]. It is calculated using time

averaging; the average of the mean squared error of the average frequencies from time τ

to time t + τ is performed for all samples of the frequency signal.

The Allan variance is defined using the expectation formula:

σ2
y(τ) =

1

2
< (ωavg(t+ τ)− ωavg(t))2 > (2.7)

where

ωavg =
1

τ

∫ t

t−τ
ω(t′) dt′ =

1

τ
[φ(t)− φ(t− τ)] (2.8)

with ω(t) as the instantaneous frequency offset and φ(t) as the phase offset. This repre-

11



sents a measure of the frequency stability of an oscillator over a given averaging interval

τ . In [57], it is shown that the Allan variance as a function of the averaging time τ follows

σ2
y(τ) = q1

τ
+ q2τ

3
, where q1 and q2 are the respective short term and long term frequency

stability parameters used in (3.3).
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Figure 2.1: The effect of white phase noise on Allan variance.

In addition to these two parameters, the measurement noise variance r is also required

for the two-state model. This can also be estimated from the Allan variance, as it has

an effect on the short term measurements. Fig. 2.1 shows an example of the impact of

measurement noise on the Allan deviation plot [58]. The measurement noise acts as white

phase noise rather than white frequency noise and its effect scales proportionally to τ−2

in the Allan variance measurement [59].

Hence, to jointly estimate the process and measurement noise parameters (q1, q2, r),
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we can perform a least-squares fit the empirically-estimated Allan variance to the equation

σ2
y(τ) =

3r

τ 2
+
q1
τ

+
q2τ

3
. (2.9)

As can be seen in Fig. 2.1, the measurement noise can have a significant impact on the

Allan variance measurements, to the point where the short term stability parameter q1 is

completely obscured by the measurement noise. Nevertheless, a least squares fit can still

provide an upper bound on the q1 parameter.

2.1.3 Kalman Filter Tracking

The Kalman filter is an algorithm that computes the minimum mean squared error (MMSE)

estimate of a set of states based on a given model and a set of observations [60–62]. Based

on the 2-state model described in Section 3.2.1, we can implement a Kalman filter to track

and predict the phase offset given periodic observations. Note that the Kalman filter spec-

ified below is updated at the sampling period T while observations are received with

period T0 = MT . The one-step state prediction δ̂[k + 1|k] is given as

δ̂[k + 1|k] = F (T )δ̂[k|k] (2.10)

with state estimate

δ̂[k|k] = δ̂[k|k − 1] +K[k](y[k]−H [k]δ̂[k|k −M ]). (2.11)

The Kalman gain is given as

K[k] = Σ[k|k − 1]H>[k](H [k]Σ[k|k − 1]H>[k] + r)−1.
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The quantity Σ[k|k − 1] denotes the one-step prediction error covariance matrix (ECM)

which is used in the computation of the estimation error covariance matrix as

Σ[k|k] = Σ[k|k − 1]−K[k]H [k]Σ[k|k − 1] (2.12)

with the Kalman filter recursion

Σ[k + 1|k] = F (T )Σ[k|k]F (T )> +Q(T ) (2.13)

Note that the process noise covariance Q(T ) accounts for the effect of the process noise

at both the transmitter and at the receiver. Given measurements at sample instants k =

0,M, 2M, . . . , we denote the Kalman filter’s MMSE phase prediction at sample instant

` > k as φ̂[` | k].

Finally, to evaluate the performance of our tracking mechanism, we compare the error

between the actual phase measurements y[`] and the predictions φ̂[` | k] with the ECM

result Σ[k+ `|k]. The squared phase measurement errors are averaged over multiple runs

of the Kalman filter to obtain an empirical estimate of the steady-state behavior.

2.1.4 Covariance Estimation Methods for Kalman Filtering

We have shown in section 3.2.1 that the behavior of the two-state model can be fully

characterized by the process noise covarianceQ(T ) and the measurement noise r. Hence,

a Kalman filter algorithm that has knowledge of these elements can successfully track the

states of the system, in our case the phase and frequency of an oscillator. However, in

practice it is difficult to have exact parameters for the process and measurement noise,

and a mismatch between the actual model and the Kalman filter parameters can lead to

sub-optimal performance [49]. Fig. 2.2 shows a simulation of two scenarios: a run where
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a Kalman filter is used to track a two-state model sequence with correct parameters and

with slightly off parameters. Although a difference of four orders of magnitude in the

parameters may seem very large, in reality even larger errors may appear.
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Figure 2.2: Kalam filter parameter mismatch problem: phase prediction standard devia-
tion.

In section 2.1.2 we have shown how the Allan variance can be used to extract these

parameters. In order to compare our method with other approaches, we have considered

approaches based on innovation whitening and adaptive Kalman filtering as proposed

in [63,64]. These methods offer a general approach to the estimation of the process noise

covariance matrix Q(T ) and measurement noise matrix R. Note that in the two-state

model the measurement noise is scalar since we assume a scalar observation.

Mehra describes a procedure with the following steps [63]:
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1. Guess at the unknown parameters and save the innovation sequence

ν[k] = y[k]−Hδ̂[k|k − 1] (2.14)

where δ̂[k|k − 1] is the MMSE Kalman filter prediction of the state δ[k] given

observations y[0], . . . ,y[k − 1].

2. Estimate the autocorrelation function of the innovations by computing the sample

autocorrelations

Ci =
1

N

N∑
n=1

ν[k]ν[k − i] (2.15)

for i = {0, 1, . . . n}. The estimator specified above is biased but has minimum

variance. Mehra mentions that an unbiased estimator can also be used at the cost

of increased variance. In either case, perform a hypothesis test to determine if the

innovation sequence is white.

3. The parameter estimation procedure has the following inputs:

(a) Estimated steady-state innovation autocorrelations {C0,C1, . . . ,C8}withCi ≈

E[ν[k]ν[k − i]].

(b) The steady-state Kalman gain K from the Kalman filter run in step 1.

The parameter estimation procedure has three steps:

(a) Compute the matrix

z = B−1



C1 +HFKC0

C2 +HFKC1 +HF 2KC1

...

Cn +HFKCn−1 + · · ·+HF nKC0


(2.16)
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where

B =



HF

HF 2

...

HF n−1


. (2.17)

(b) Estimate the measurement noise variance matrix as

R = C0 −Hz (2.18)

(c) Estimate the stability parameters:

k−1∑
j=0

HF jQ(F j−k)>H> = z>(F (−k)>H>−HF kz−
k−1∑
j=0

HF jΩ̂(F j−k))>H>

(2.19)

for k = 1, . . . , n and

Ω̂ = F
(
−Kz> − zK> +C0KK

>)F>. (2.20)

2.2 Mehra Method for the Two-state Model

Below, we provide specific details of the procedure described in 2.1.4 for the two-state

dynamic model with unknown process and measurement noise parameters described in

Section 3.2.1.

2.2.1 Overview of Mehra Procedure

Mehra describes a procedure with the following steps:

1. Guess at the unknown parameters {q21, q22, r} and run a Kalman filter. Store the
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innovation sequence

ν[k] = y[k]−Hx̂[k|k − 1] (2.21)

where x̂[k|k − 1] is the MMSE Kalman filter prediction of the state x[k] given

observations y[0], . . . , y[k − 1].

2. Estimate the autocorrelation function of the innovations by computing the sample

autocorrelations

ci =
1

N

N∑
n=1

ν[k]ν[k − i] (2.22)

for i = {0, 1, 2}. The estimator specified above is biased but has minimum vari-

ance. Mehra mentions that an unbiased estimator can also be used at the cost of

increased variance. In either case, perform a hypothesis test to determine if the in-

novation sequence is white. If the test indicates the innovation sequence is white,

then the process and measurement noise parameters are optimal. If the test indicates

the sequence is not white, then we can use the autocorrelation of the innovation se-

quence in the following parameter estimation procedure to generate better estimates

for {q21, q22, r}.

3. The parameter estimation procedure has the following inputs:

(a) Estimated steady-state innovation autocorrelations {c0, c1, c2}with ci ≈ E[v[k]v[k−

i]].

(b) The steady-state Kalman gain K from the Kalman filter run in step 1.

The parameter estimation procedure has three steps:
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(a) From Mehra equation (21), compute the 2× 1 vector

z = B−1

 c1 + c0HFK

c2 + c1HFK + c0HF
2K

 (2.23)

with

B =

HF
HF 2

 . (2.24)

(b) Estimate the measurement noise variance as

r = c0 −Hz (2.25)

(c) Estimate the process noise parameters {q21, q22} by computing

ω2
0q

2
1

ω2
0q

2
2

 =

 4
3T

−1
6T

2
T 3

−1
T 3


b1
b2

 (2.26)

where

b1 = z>F−>H> −HFz −HΩ̂F−>H> (2.27)

b2 = z>(F−2)>H> −HF 2z −HΩ̂(F−2)>H> −HF Ω̂(F−1)>H> (2.28)

with F−> = (F−1)> and

Ω̂ = F
(
−Kz> − zK> + c0KK

>)F>. (2.29)

The details of how we derived these equations from Mehra are provided in the

following section.
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4. Mehra says the process can be repeated (go back to step 1) but that good estimates

are usually generated after one pass. Our numerical tests have shown this to be true.

The Mehra estimates don’t appear to significantly change after one iteration of the

method.

2.2.2 Solving for the Process Noise Parameters

In this section, we provide the details of the analysis that resulted in the equations in

step 3.c of the parameter estimation procedure. The analysis here is necessary to separate

the unknown parameters from the known/estimated quantities and to form a set of linear

equations by which we can estimate the unknown parameters. We denote F−> = (F−1)>.

From Mehra’s equation (28) with k = 1, we have

HQF−>H> = z>F−>H> −HFz −HΩ̂F−>H>. (2.30)

From Mehra’s equation (28) with k = 2, we have

HQ(F−2)>H> +HFQF−>H> =

z>(F−2)>H> −HF 2z −HΩ̂(F−2)>H> −HF Ω̂(F−1)>H> (2.31)
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A few preliminary results will be useful:

F−> =

 1 0

−T 1

 (2.32)

F 2 =

1 2T

0 1

 (2.33)

(F−2)> =

 1 0

−2T 1

 (2.34)

• Equation (2.30)

We can rewrite the lefthand side of (2.30) as

HQF−>H> =

[
1 0

]ω2
0q

2
1

T 0

0 0

+ ω2
0q

2
2

T 3

3
T 2

2

T 2

2
T



 1 0

−T 1


1

0


(2.35)

=

[
1 0

]ω2
0q

2
1

T 0

0 0

+ ω2
0q

2
2

T 3

3
T 2

2

T 2

2
T



 1

−T

 (2.36)

= Tω2
0q

2
1 −

T 3

6
ω2
0q

2
2 (2.37)

=

[
T −T 3/6

]ω2
0q

2
1

ω2
0q

2
2

 (2.38)

There is no need to simplify the righthand side of (2.30) since this can just be

computed directly in Matlab. We denote

b1 = z>F−>H> −HFz −HΩ̂F−>H> (2.39)
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and our first linear equation is then

[
T −T 3/6

]ω2
0q

2
1

ω2
0q

2
2

 = b1. (2.40)

• Equation (2.31) We can rewrite the first term in the left-hand side of (2.31) as

HQ(F−2)>H> =

[
1 0

]ω2
0q

2
1

T 0

0 0

+ ω2
0q

2
2

T 3

3
T 2

2

T 2

2
T



 1 0

−2T 1


1

0


(2.41)

=

[
1 0

]ω2
0q

2
1

T 0

0 0

+ ω2
0q

2
2

T 3

3
T 2

2

T 2

2
T



 1

−2T

 (2.42)

= Tω2
0q

2
1 −

2T 3

3
ω2
0q

2
2. (2.43)

We can rewrite the second term in the left-hand side of (2.31) as

HFQF−>H> =

[
1 0

]1 T

0 1


ω2

0q
2
1

T 0

0 0

+ ω2
0q

2
2

T 3

3
T 2

2

T 2

2
T



 1 0

−T 1


1

0


(2.44)

=

[
1 T

]ω2
0q

2
1

T 0

0 0

+ ω2
0q

2
2

T 3

3
T 2

2

T 2

2
T



 1

−T

 (2.45)

= Tω2
0q

2
1 −

2T 3

3
ω2
0q

2
2. (2.46)

Hence, (2.31) can be written as

[
2T −4T 3/3

]ω2
0q

2
1

ω2
0q

2
2

 = b2 (2.47)

22



with

b2 = z>(F−2)>H> −HF 2z −HΩ̂(F−2)>H> −HF Ω̂(F−1)>H> (2.48)

from the right-hand side of (2.31).

• Final Equations The linear equations we must solve to estimate the process noise

parameters are then

 T −T 3/6

2T −4T 3/3


︸ ︷︷ ︸

A

ω2
0q

2
1

ω2
0q

2
2

 =

b1
b2

 . (2.49)

If T 6= 0, the A matrix is invertible. We can write

A−1 =

 4
3T

−1
6T

2
T 3

−1
T 3

 . (2.50)

Hence, this procedure will result in a unique solution for the process noise parame-

ters q21 and q22 and the measurement noise parameter r.

2.3 Methodology for Numerical Results

The results in this chapter are based on experimental data gathered with the USRP N210

software defined radio platform. These devices are designed for RF communications and

are commonly used in research and academic settings as well as for rapid development in

industrial and defense applications [65]. A more detailed description of the experiment

testbed and data acquisition procedure can be seen in Appendix B. The platform contains

an FPGA used to stream data between the device and a host computer and it has the ability
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to operate from DC to 6 GHz via interchangeable daughterboards. The intended use is for

the host computer to handle the baseband processing and to configure the RF parameters,

while the upconversion/downconversion and the filters required to bring the signals to RF

frequencies are performed by the device.

2.3.1 Data Acquisition

The USRPs used in the final experiments had the FPGA configured to upconvert/down-

convert I/Q data and to interface with the host computer. The interchangeable daughter-

boards that are used to reach different carrier frequency bands have a frequency range of

1 MHz − 250 MHz. Fig. 2.3 shows the main components of the experimental setup. All

the experiments were performed with the USRPs connected by a coaxial cable to elimi-

nate any effects such as multipath and time-varying channel dynamics and to focus only

on the carrier phase and frequency dynamics of the USRPs.

Rather than using a separate sampler to record the signals generated by the USRP

hardware, our system uses two USRPs with separate but otherwise identical oscillators.

By using identical oscillators, the combined effect of the two independent but otherwise

identical oscillators is statistically twice the effect of just one oscillator, i.e., the effective

process noise covariance is twice that of a single oscillator. This allows us to statistically

characterize the process noise parameters of an individual USRP oscillator.

The ethernet port allows for gigabit ethernet data transfer between the USRP and the

host computer. This connection allows for real time data gathering and analysis even

at high sampling rates. The USRP internal clock is a single 10MHz oscillator that is

converted to the desired carrier frequencies using PLLs.

The transmit power of the USRP was measured to be approximately −2 dBm and an

attenuator of 36 dB was placed on the wired communication link to achieve −38 dBm

of receive power. The main steps of the experiment are shown below, together with the
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Figure 2.3: Experimental setup for data acquisition.
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description of the waveforms at each of the steps.

1. Generate a complex tone at a baseband frequency f so that the baseband signal is

st[k] = Ate
j2πfk (2.51)

where At is the transmitter gain.

2. The transmit USRP modulates the tone with the specified carrier frequency and

transmits it over the wire. The transmitted signal is given as

w[k] = At cos((2π(f + fc)k + φt[k])) (2.52)

where φt[k] represents the time-varying phase offset introduced by the transmitter.

3. The receive USRP demodulates the received tone, samples it and sends it to the

host computer. The resulting baseband signal is given as

sr[k] = AtgAre
j(2π((f+fc)−fc)k+φt[k]−φr[k]+ψ)

= Aej(2πfk+φ[k]) (2.53)

where g is the channel gain,Ar is the receiver gain, and φ[k] = φt[k]−φr[k]+ψ rep-

resents the total transmitter-receiver phase offset, including the channel propagation

phase ψ. In practice, this measurement will be corrupted by noise which is modeled

as the observation in (2.5). Thus, our observation will be y[k] = φ[k] + v[k].

4. The received complex data is stored on the host computer in double precision float-

ing point format for further analysis.

We performed experiments at two nominal carrier frequencies: 15 MHz and 900 MHz.

In both cases, the baseband tone frequency was set to f = 2000 Hz and the baseband
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sampling frequency at the receiver was set to fs = 100× 106/512 MHz = 195, 312.5 Hz.

In the 15 MHz experiments, the Basic TX and Basic RX USRP daughter boards were used

and in the 900 MHz experiments, the SBX USRP daughter boards were used [66].

The baseband sampling frequency at the receiver was selected to avoid aliasing. Based

on earlier experiments, the largest recorded frequency offset on the USRP N210s we

observed was approximately 45 kHz at a 900 MHz carrier frequency, and less than 1 kHz

for a carrier frequency of 15 MHz. The USRP hardware uses a 12-bit ADC with a nominal

sampling frequency of 100 MHz that can be later decimated by any value between 4 and

512 leading to the minimum sampling frequency of 100 MHz/512 = 195, 312.5 Hz. This

sampling frequency was used for all of our experiments.

All data processing is done on the host computer connected to the N210 USRPs via

gigabit ethernet cables. Transmitter and receiver objects are instantiated in MATLAB on

two separate USRPs. The transmit radio is configured to transmit the 2000Hz complex

tone and the receive radio is configured to demodulate the data and save it as a complex

variable. The duration of each experiment was approximately ten minutes.

2.3.2 Data Analysis

Since we need to obtain the unwrapped phase of the signal as our observations, we will

need to process the in-phase and quadrature components of the received data. The proce-

dure is described in the steps below using MATLAB functions:

1. First we compute the angle of the complex data x. In this case, x is a complex data

type of length L samples.

phi = angle(double(x));

This generates a wrapped phase vector with values between [−π, π].
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2. We unwrap the phase:

phi_unwrapped = unwrap(phi);

At this point the phase vector contains the expression: 2πfk + φ[k] from equa-

tion 2.53.

3. We need to remove the linear frequency component using the detrend function:

phi_detrended = detrend(phi_unwrapped);

This generates the phase vector φ[k] with the sampling frequency of 195,312.5 Hz.

This frequency is too large for our calculations.

4. We decimate it by a factor of 125 using a custom function. Note that this also filters

the high frequency components from the phase signal.

phi_decimated = decimate_variable(phi_detrended,fs,1562.5);

In this function, fs is the initial sampling frequency and 1562.5 is the final sampling

frequency.

By taking the unwrapped phase from the complex baseband signal in equation2.53 and

removing the linear frequency trend, we obtain the zero mean phase offset progression

phi decimated. This is the term that we use in our Allan variance characterization of the

oscillators, and subsequent evaluation of the tracking performance.
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2.4 Numerical Results

2.4.1 USRP Results

This section presents the numerical results outlining the process of obtaining accurate

Kalman Filter parameters and the performance evaluation of our implementation. All the

analysis is performed on real data obtained from the USRP N210 platform and prediction

errors are computed with respect to the measurements. The empirically-estimated predic-

tion variances are also compared to the variances provided by the Kalman filter’s error

covariance matrices.

Fig. 2.4 shows examples of unwrapped phase offset realizations for multiple exper-

iments. This data was detrended and decimated by a factor of 125. As expected, these

results show the significant phase variations caused by the stochastic behavior of the in-

dependent oscillators in the system.

The phase offset data is then used in the calculation of Allan deviation and subsequent

parameter estimation. Fig. 2.5 illustrates the individual effect of measurement noise and

short and long term stability parameters on the Allan deviation result. It can be seen that

the measurement noise has a large impact on the short term measurements, making the q1

parameter difficult to estimate.

Table 4.2 shows the range of parameters that were determined over five separate ex-

periments. The q1 and q2 parameters in the table are divided by 2 in order to account for

the effect of both the transmitter and receiver clocks. This is due to the combining of the

noise process of the two nodes, as shown in (3.4).

15 MHz Phase Tracking and Prediction Experiments

Figure 2.6 shows the RMS phase prediction error of a Kalman filter tracker compared

to the RMS prediction error from the Kalman filter’s error covariance matrix. This re-
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Figure 2.4: Experimental unwrapped phase offsets between two USRP N210 nodes at 15
MHz.
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Figure 2.5: Least-squares parameter fit with experimental Allan deviation results.

Parameter units min value max value
r rad2 1.6× 10−8 3.3× 10−8

q1 sec 1.4× 10−22 3.02× 10−21

q2 Hz 2.62× 10−18 6.31× 10−18

Table 2.1: USRP VCXO measurement noise, short-term stability and long-term stability
parameter ranges estimated over five separate experiments.

sult shows that at a observation period of T0 = 2 seconds, the maximum RMS phase

prediction error is less than 25 degrees after the Kalman filter achieves steady-state. In

addition, the plot shows that the phase prediction error is consistent with the performance

predictions from the Kalman filter error covariance matrix.

By varying the observation period T0, it is possible to get an idea of the expected

phase offset error and to choose the value that meets the phase offset requirements of a

given system. The Kalman filter phase prediction performance is plotted with respect to

the observation period T0 in Fig. 2.7. These results show that the RMS phase prediction

31



0 2 4 6 8 10 12 14 16
0

5

10

15

20

25

30

35

time (sec)

p
h
a
s
e
 e

rr
o
r 

s
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 (

d
e
g
re

e
s
)

 

 

experimental data

ECM prediction

Figure 2.6: Kalman filter RMS phase error at 15 MHz with observation period T0 =
2 seconds.
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error with measured data is quite close to the error covariance matrix predictions.
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Figure 2.7: RMS phase error: experimental data and ECM predictions versus observation
period T0 at 15 MHz.

To better understand the meaning of these results in the context of distributed trans-

mission systems, we show the performance of a hypothetical distributed transmission

system with Nt = 10 transmitters and Nr = 1 receiver. In [43], theoretical beamforming

and nullforming power gains are derived and shown to only depend on the phase variance.

Fig. 2.8 shows the expected beamforming power of the system given the phase error

of the empirically estimated phase offset predictions. The figure shows a loss of less

than 1 dB in beamforming power when T0 = 2 seconds. In Fig. 2.9, it is shown that the

nullforming power has a steeper drop as expected from the theoretical steady-state results.

In practice, observation periods on the order of of milliseconds are feasible, leading to

very good performance at a carrier frequency of 15 MHz, but also leading to increased
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feedback overhead.
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Figure 2.8: Expected beamforming power at 15 MHz with observation period T0 = 2 sec-
onds.

900 MHz Phase Tracking and Prediction Experiments

In this section, we provide experimental tracking results for phase tracking between two

USRP N210s at a 900 MHz carrier frequency. The increase in carrier frequency from

15 MHz to 900 MHz leads to a much larger process noise covariance matrix and, con-

sequently, requires a smaller observation period T0 to provide satisfactory performance.

The Kalman filter phase tracking and prediction performance assuming an observation

period of T0 = 50 ms is shown in Fig. 2.10 below. The corresponding beamforming and

nullforming expected power is shown in Figs. 2.11 and 2.12.
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Figure 2.9: Expected nullforming power at 15 MHz with observation period T0 = 2 sec-
onds.
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Figure 2.10: Kalman filter RMS phase error at 900 MHz with observation period T0 =
50 ms.
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Figure 2.11: Expected beamforming power at 900MHz with observation period T0 =
50 ms.
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Figure 2.12: Expected nullforming power at 900MHz with observation period T0 =
50 ms.
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Mehra Method and Allan Deviation Comparisons

Using the 15 MHz carrier frequency data, we implement the Mehra method to compare

the tracking performance with the previous Allan Deviation results. We first look at the

parameter estimation results of the two methods. Table 2.2 shows the results of one

experiment computed both using the Mehra method and the Allan deviation method. It

can be seen that the results are similar, with the biggest variation in the q2 long term

stability parameter. This makes sense since the long stability parameter poses the highest

difficulty in estimating.

Parameter units Mehra Allan Deviation
r rad2 8.95× 10−9 1.74× 10−8

q1 sec 4.18× 10−21 1.17× 10−22

q2 Hz 8.08× 10−16 7.06× 10−18

Table 2.2: USRP VCXO parameter comparison between the Mehra method and Allan
deviation method.

Fig. 2.13 shows the correlation of the innovation process when running a Kalman

filter with each parameter. It can be seen that the Allan deviation parameters give both a

smaller zero-lag value and a whiter sequence, compared to the Mehra method.

Finally, in Fig. 2.14 the average Kalman filter tracking performance of the two meth-

ods is shown. It is interesting to observe that, while the Allan deviation parameters make

the phase reach steady state quicker, when reaching steady state, the Kalman filter behaves

similarly. This shows an intrinsic resilience of the Kalman filter.

2.4.2 OCXO Experiments

The same analysis discussed in the previous sections was further applied to additional ex-

perimental data obtain with a more stable Rakon oven controlled oscillator(OCXO) [67].
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Over-the-Wire Experiments

An initial experiment was done in an almost exact fashion with the experiments described

in Section 2.3. For these experiments, a carrier frequency of 8 GHz was used, since the

equipment allowed for higher frequencies than the USRP radios. The data was sampled

at 100 MHz and downsampled by a factor of 1000 before processing. Around 10 minutes

of data were recorded in the experiment.

Fig. 2.15 shows the Allan deviation results for this case. The values for the stability

and measurement noise parameters were found to be: q1 = 2.7855×10−23; q2 = 3.6436×

10−25; r = 5.0716 × 10−4. It should be noted the Mehra method was not applied to this

wire experiment. To evaluate the tracking performance on this data, the parameters were

used in the Kalman filter and the data was split into blocks of 4 seconds and averaged.
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Fig. 2.16 shows the comparison between the phase error of real data and the theoretical

expected results. To make sure that the system works correctly, 2-state model data with

the same parameters was synthesized and plugged into the Kalman filter. We can see that

the real data is doing slightly worse than ideal given the noise, but the results are withing

a couple of degrees.
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Figure 2.16: Kalman filter performance compared to theoretical expectaions.

Over-the-Air Experiments

The final and most interesting results obtained with these methods were done using wire-

less transmission over a 1 kilometer link. This experiment was used as a tuning stage for

a beamforming experiment and our contribution was to extract the stability parameters.

The experiment was done at 2.625 GHz in this case and additional preprocessing was

performed to obtain phase estimates at a rate of 50 Hz. In addition, data from two trans-
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mitters was obtained in parallel. Fig. 2.17 shows the unwrapped and detrended phases

obtained from the two transmitters. It might look curious that the two phases have such

a similar shape, but this can be easily explained. Since the same receive antenna is used

for both transmitter, the bulk of the frequency drift is due to the receive chain, while the

smaller and more random drifts show that the two channels are indeed different.
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Figure 2.17: Phase offset of two transmitters.

For these data sets, both Mehra and Allan deviation methods were used to extract the

parameters.

Tables 2.3 and 2.4 show the results of the two transmitters. In this case the q1 param-

eter has a bigger variation between the two methods, but it is important to note that these

values are much smaller than the values in Table 2.2 due to the higher stability of the local

oscillators.

The corresponding Kalman filter phase error plots are shown in Figs. 2.18 and 2.19.
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Parameter units Mehra Allan Deviation
r rad2 4.29× 10−5 3.18× 10−4

q1 sec 6.09× 10−24 2.37× 10−22

q2 Hz 1.03× 10−24 9.59× 10−24

Table 2.3: Transmitter 1: OCXO measurement noise, short-term and long-term stability
parameters obtained using Mehra and Allan deviation methods.

Parameter units Mehra Allan Deviation
r rad2 6.15× 10−5 8.31× 10−5

q1 sec 2.05× 10−24 3.64× 10−23

q2 Hz 1.03× 10−24 5.56× 10−24

Table 2.4: Transmitter 1: OCXO measurement noise, short-term and long-term stability
parameters obtained using Mehra and Allan deviation methods.

One important aspect here is the 2-seconds update period used which leads to a less than

5 degrees phase error for the 2.625 GHz transmission.

2.5 Conclusions

In this chapter we showed a method for extracting measurement and process noise pa-

rameters to facilitate oscillator tracking in a Kalman filtering framework. We tested

our method on experimental data obtained from phase offset measurements between two

USRP N210 devices. By closely matching the Kalman Filter parameters to the experi-

mental data, we show that we can achieve very good tracking performance. Our results

show that parameter estimation is not straightforward since the Allan deviation results are

influenced by measurement noise. Nevertheless, the results show that the phase error of

the Kalman filter output translates into very good beamforming and nullforming perfor-

mance, even for practical observation periods. Moreover, the experimental results agree

closely with the Kalman filter error covariance matrices.
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Figure 2.18: Kalman filter performance comparison for Transmitter 1 OTA experiment.
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Figure 2.19: Kalman filter performance for transmitter 2 OTA experiment.
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Chapter 3

Local and Unified Tracking

This chapter addresses the problem of channel tracking in large distributed systems. We

look at systems that have a large number of independent transmit and receive nodes and

we identify two methods of tracking the channels: local and unified.

3.1 Introduction

We consider the scenario in Fig. 3.1 where a distributed transmission cluster with Nt

transmitters cooperate to form a virtual antenna array. The goal is to simultaneously

steer a beam toward one intended receiver while also steering nulls toward Nr − 1 pro-

tected receivers. The receivers coordinate the transmissions by estimating the forward

link channels and providing feedback to the transmit cluster to facilitate the calculation

of appropriate linear precoding vectors.

The idea of distributed transmit beamforming has been well-studied in the last decade,

e.g., [12, 14–17], but the idea of distributed transmit nullforming has only recently been

considered [32,35,37]. In particular, in [37], the approach was for each receiver to track a

time-varying state of “effective” channel phase and frequency offsets which included the
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Figure 3.1: Distributed transmission scenario.

effect of stochastic clock drifts. Explicit state feedback from the Nr receivers was then

used by the transmit cluster to predict the Nt × Nr channel matrix and compute a zero-

forcing precoding vector for distributed transmission. A simplifying assumption in [37]

was that each receiver individually tracked its Nt effective channel phase and frequency

offsets. This approach is suboptimal since it does not exploit the statistical coupling of

the pairwise phase and frequency offsets across all of the receive nodes.

In this chapter, we study the performance of a distributed nullforming system with

optimal, i.e., “unified”, phase and frequency tracking at the receivers to determine the

potential gains with respect to suboptimal local tracking. In practice, unified tracking

could be achieved by having the receive nodes forward their observations to a master

receive node and having this master receive node apply the overall observation vector to a

unified Kalman filter. Alternatively, the receive nodes could provide their observations to

the transmit cluster via the feedback link and one or more transmit nodes could implement

a unified Kalman filter. In either case, rather than using Nr separate small Kalman filters

to track the effective channel phase and frequency offsets as in [37], a system with unified

tracking uses one large Kalman filter and achieves optimal performance by exploiting the

correlations in the offset states across receive nodes.

This chapter develops a model for unified tracking and compares the performance of
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this approach with respect to local tracking. Our results show that, while beamforming

performance is effectively unchanged, nullforming performance can be significantly im-

proved with unified tracking. In particular, unified tracking tends to provide the largest

nullforming gains over short prediction intervals and for larger networks, e.g., distributed

implementations of massive MIMO [10, 68]. The results also show that local tracking

tends to provide near-optimal performance in systems with high feedback latency. We

provide numerical results that confirm the analysis and compare the performance of local

and unified tracking with varying prediction intervals and network sizes.

3.2 System Model

Each node in the system shown in Fig. 3.1 is assumed to possess a single antenna. The

nominal transmit frequency in the forward link from the distributed transmit cluster to

the receivers is at ωc. All forward link channels are modeled as narrowband, linear, and

time invariant (LTI). Enumerating the transmitters as n = 1, . . . , Nt the receivers as m =

1, . . . , Nr and adopting the convention that the intended receiver is node 1, we denote the

channel from transmit node n to receive node m at carrier frequency ωc as g(n,m) ∈ C for

n = 1, . . . , Nt and m = 1, . . . , Nr.

As in [37], all of the receivers in the system measure and track the channels from the

transmit cluster and to provide feedback to the transmit cluster to facilitate distributed

transmission. Fig. 3.2 shows the effective narrowband channel model from transmit

node n to receive node m which includes the effects of propagation and carrier offset.

Transmissions n → m are conveyed on a carrier nominally at ωc generated at transmit

node n, incur a phase shift of ψ(n,m) = ∠g(n,m) over the wireless channel, and are then

downmixed by receive node m using its local carrier nominally at ωc. At time t, the
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effective narrowband channel from transmit node n to receive node m is modeled as

h(n,m)(τ)=g(n,m)e
j
(
φ
(n)
t (τ)−φ(m)

r (τ)
)

= |g(n,m)|ejφ(n,m)(τ) (3.1)

where φ(n)

t (τ) and φ(m)
r (τ) are the local carrier phase offsets at transmit node n and receive

node m, respectively, at time τ with respect to an ideal carrier reference, and φ(n,m)(τ) =

φ(n)

t (τ)− φ(m)

t (τ) +ψ(n,m) is the pairwise phase offset after propagation between transmit

node n and receive node m at time τ .

local
carrier

LPF

transmit node n

local
carrier

receive node m

h(n,m)(τ)
g(n,m)

∼ ωc∼ ωc

1

Figure 3.2: Effective narrowband channel model including the effects of propagation,
transmit and receive gains, and carrier offset.

3.2.1 Oscillator Dynamics

Each transmit and receive node in the system is assumed to have an independent local

oscillator. These local oscillators have inherent frequency offsets and behave stochasti-

cally, causing phase offset variations in each effective channel from transmit node n to

receive node m even when the propagation channels g(n,m) are otherwise time invariant.

This section describes a discrete-time dynamic model to characterize the dynamics of the

phase variations in h(n,m)(τ).

Based on the two-state models in [53, 54], we define the discrete-time state of the nth

transmit node’s carrier as x(n)

t [k] = [φ(n)

t [k], ω(n)

t [k]]> where φ(n)

t [k] corresponds to the

carrier phase offset in radians at transmit node n with respect to an ideal carrier phase
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reference. The state update of the nth transmit node’s carrier is then

x(n)

t [k + 1] = f(T )x(n)

t [k] + u(n)

t [k] with f(T ) =

1 T

0 1

 (3.2)

where T is an arbitrary sampling period selected to be small enough to avoid phase

aliasing at the largest expected frequency offsets. The process noise vector u(n)

t [k]
i.i.d.∼

N
(
0,Q(n)

t (T )
)

causes the carrier derived from the local oscillator at transmit node n to

deviate from an ideal linear phase trajectory. The covariance of the discrete-time process

noise is derived from a continuous-time model in [53] and is

Q(n)

t (T ) = ω2
cT

p(n)

t + q(n)t
T 2

3
q(n)t

T
2

q(n)t
T
2

q(n)t

 (3.3)

where ωc is the nominal common carrier frequency in radians per second and p(n)

t (units of

seconds) and q(n)t (units of Hertz) are the process noise parameters corresponding to white

frequency noise and random walk frequency noise, respectively. We make the general

change of notation p = q1 and q = q2 to differentiate between different transmitters and

receivers.

The receive nodes in the system also have independent local oscillators used to gen-

erate carriers for downmixing that are governed by the same dynamics as (3.2) with state

x(m)
r [k], process noise u(m)

r [k]
i.i.d.∼ N (0,Q(m)

r (T )), and process noise parameters p(m)
r and

q(m)
r as in (3.3) for m = 1, . . . , Nr.

Since receive nodes can only measure the relative phase and frequency of the transmit
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nodes after propagation, we define the pairwise offset after propagation as

δ(n,m)[k] =

φ(n,m)[k]

φ̇(n,m)[k]

 = x(n)

t [k] +

ψ(n,m)

0

− x(m)

r [k].

Note that δ(n,m)[k] is governed by the state update

δ(n,m)[k + 1] = f(T )δ(n,m)[k] + u(n)

t [k]− u(m)

r [k]. (3.4)

We assume that observations are so short as to only provide useful phase estimates. An

observation of the n→ m channel is then

y(n,m)[k] = hδ(n,m)[k] + v(n,m)[k]

where h = [1, 0] and v(n,m)[k]
i.i.d.∼ N (0, R) is the measurement noise which is assumed

to be spatially and temporally i.i.d.

3.2.2 Local Tracking Model

In the case of local tracking, each receiver uses only its local observations to track the

pairwise offset states with respect to the receiver’s local oscillator. At receiverm, the 2Nt-

dimensional vector state of pairwise offsets is defined as δ(m)[k] = [(δ(1,m)[k])>, . . . , (δ(Nt,m)[k])>]>

and has the state update

δ(m)[k + 1] =


f(T )

. . .

f(T )

δ(m)[k]+


u(1)

t [k]−u(m)
r [k]

...

u(Nt)

t [k]−u(m)
r [k]


= F loc(T )δ(m)[k] +Glocu

(m)[k]. (3.5)
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where

Gloc =


I2 −I2

. . . ...

I2 −I2

 and u(m)[k] =



u(1)

t [k]

...

u(Nt)

t [k]

u(m)
r [k]


(3.6)

and where I2 is the 2× 2 identity matrix. We assume

cov{u(m)[k]} = blockdiag
{
Q(1)

t (T ), . . . ,Q(Nt)

t (T ),Q(m)

r (T )
}

= Q(m)(T )

hence Glocu
(m)[k] ∼ N

(
0,GlocQ

(m)(T )G>loc
)
. The vector observation for the local

Kalman filter is then y(m)[k] = [y(1,m)[k], . . . , y(Nt,m)[k]]> and related to the local state

as

y(m)[k] = hlocδ
(m)[k] + v(m)[k]

where hloc = blockdiag(h, . . . ,h) ∈ RNt×2Nt and v(m)[k] = [v(1,m)[k], . . . , v(Nt,m)[k]]> ∈

RNt is the measurement noise.

3.2.3 Unified Tracking Model

In the case of unified tracking, there is a master receiver or transmitter that aggregates all

of the observations and tracks all of the pairwise offset states in the system. The 2NtNr-

dimensional vector state of pairwise offsets is defined as δ[k] = [(δ(1)[k])>, . . . , (δ(Nr)[k])>]>
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and has the state update

δ[k + 1] =


f(T )

. . .

f(T )

δ[k]+


u(1)

t [k]−u(1)
r [k]

...

u(Nt)

t [k]−u(Nr)
r [k]


= F uni(T )δ[k] +Guniu[k] (3.7)

where the process noise vectoru[k] = [(u(1)

t [k])>, . . . , (u(Nt)

t [k])>, (u(1)
r [k])>, . . . , (u(Nr)

r [k])>]> ∈

R2(Nt+Nr) and

Guni =


I2Nt J2Nt

... . . .

I2Nt J2Nt

∈ R2NtNr×2(Nt+Nr) (3.8)

with J2Nt = −[I2, . . . , I2]
> ∈ R2Nt×2. The NtNr-dimensional vector observation for

the unified Kalman filter is then

y[k] = huniδ[k] + v[k]

wherehuni = blockdiag(h, . . . ,h) ∈ RNtNr×2NtNr and v[k] = [v(1,1)[k], . . . , v(Nt,Nr)[k]]> ∈

RNtNr is the measurement noise.

3.2.4 Discussion

Note that the state update equations (3.5) and (3.7) specify dynamic systems where the

states are coupled only through the correlated process noise. In the local tracking model,

the process noise is correlated only through receive node m’s oscillator as shown in (3.6).

In the unified tracking model, the process noise is correlated through all of the receive
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oscillators as shown in (3.8). While the number of states grows according to the product

NtNr, the number of independent oscillators grows according to the sumNt+Nr. Hence,

since the unified tracker exploits all of the process noise correlations in the system, we can

expect the unified tracker to provide the most significant performance gains with respect

to local tracking in large networks.

3.3 Receiver-Coordinated Protocol

We assume the receiver-coordinated protocol described in [35, 37]. Forward link trans-

missions are divided into measurement and distributed transmission epochs, repeating pe-

riodically with period Tm. Reverse link transmissions provide feedback from the receive

nodes to the transmit nodes to facilitate linear precoding vector calculation.

Given a measurement at time k and denoting the Kalman filter’s MMSE phase pre-

diction at time ` > k as φ̂(n,m)[` | k], we can write the effective channel prediction for

h(n,m)(τ) at time τ = `T as

ĥ(n,m)[` | k] = |g(n,m)|ejφ̂(n,m)[` | k] (3.9)

since the channel amplitudes |g(n,m)| are assumed to be known. We denote the vector of

channel predictions from all transmit nodes to receive node m as ĥ
(m)

[` | k] ∈ CNt and

the protected receiver predicted channel matrix as Ĥ [`|k] =
[
ĥ

(2)

[`|k], . . . , ĥ
(Nr)

[`|k]
]
∈

CNt×Nr for ` > k.

The MMSE channel predictions are used to calculate the precoding vectorw[`] ∈ CNt

for all ` in the distributed transmission epoch. Under our assumption that the number of

protected receivers is less than Nt, we can select the transmit vector w[`] ∈ CNt to be

orthogonal to ĥ
(m)

[` | k] for all m = 2, . . . , Nr and then use the remaining degrees of

freedom in the transmit vector to maximize the received power at the intended receiver.
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Defining D̂[`|k] = I − Ĥ [`|k]
(
Ĥ

H
[`|k]Ĥ [`|k]

)−1
Ĥ

H
[`|k], the zero-forcing transmit

vector can then be computed as

w[`] = α[`]D̂[`|k]ĥ
(1)

[`|k] (3.10)

where α[`] is selected to satisfy a per-node or total power constraint.

3.4 Performance Analysis

This section analyzes the steady-state performance of local and unified tracking. Our

analysis assumes unit channel magnitudes such that |g(n,m)| = 1, i.i.d. measurement noise

with v[k] ∼ N (0,R) andR = σ2
vI , and identical process noise statistics at each node.

To compute the steady-state prediction covariance of the Kalman filter with measure-

ment period Tm, it can be straightforwardly verified that both the local and unified track-

ing systems satisfy the controllability and observability conditions so that the steady-state

prediction covariance is a unique positive definite matrix specified as the solution to the

discrete-time algebraic Riccati equation [69]. Denoting the prediction covariance as P

(corresponding to either local or unified tracking), the steady-state estimation covariance

(immediately after an observation) is then S = P − Ph>(hPh> + R)−1hP . The

prediction covariance at a prediction time tp after the most recent measurement (during

a distributed transmission epoch) is then P (tp) = F (tp)SF
>(tp) + Q(tp). The (1,1)

element of P (tp) is the variance of the phase prediction, which we denote as σ2
φ(tp). The

(1,3) element ofP (tp) is the covariance of the phase predictions between two transmitters

as observed at one receiver, which we denote as ρ2σ2
φ(tp).

To quantify the performance of distributed beamforming in terms of the prediction co-

variance, suppose that the signal received from the ith transmitter at the intended receiver

is given by ri = αej(φ+φ̃i) where α2 = N−1t is the individual transmit power selected to
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satisfy a unit total power constraint, φ is the nominal beamforming phase, and φ̃i is the

phase error at transmitter i. The mean beamforming power is then

J=E


∣∣∣∣∣
Nt∑
i=1

ri

∣∣∣∣∣
2
=

1

Nt

Nt∑
i=1

E
{
c2i +s

2
i

}
+

1

Nt

Nt∑
i=1

∑
j 6=i

E {cicj+sisj}

where ci = cos(φ̃i) and si = sin(φ̃i). Since c2i + s2i = 1 and cicj + sisj = cos(φ̃i − φ̃j),

we have

J = 1 +
1

Nt

Nt∑
i=1

∑
j 6=i

E
{

cos
(
φ̃i − φ̃j

)}

Under our assumptions, φ̃i are identically distributed (but not independent) zero-mean

Gaussian random variables with variance is σ2
φ(tp) and covariance E

{
φ̃iφ̃j

}
= ρ2σ2

φ(tp)

at prediction time tp. It can then be shown via straightforward integration that E
{

cos
(
φ̃i − φ̃j

)}
=

e−(1−ρ
2)σ2

φ(tp), hence

J = Nte
−(1−ρ2)σ2

φ(tp) +
(

1− e−(1−ρ2)σ2
φ(tp)

)
. (3.11)

Note that (4.33) is the mean beamforming power for a system with a single intended

receiver and no nulls. If the system also steers nulls toward Nr − 1 receivers and the

channel phases are random and independent, we can estimate the beamforming loss due

to nulling as 1− Nr−1
Nt

[37]. Hence, it follows that

J ≈
[
1−Nr − 1

Nt

]
Nte

−(1−ρ2)σ2
φ(tp)+1−e−(1−ρ2)σ2

φ(tp). (3.12)

To quantify the performance of distributed nullforming at the protected receivers in

terms of the prediction covariance, the signal from the ith transmitter at a protected re-

ceiver is assumed to be given by ri = αej(φi+φ̃i) where φi is the nominal received phase
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from the ith transmitter chosen so that
∑Nt

i=1 e
jφi = 0, and φ̃i is the phase error at trans-

mitter i. The mean received power in a null is then

K=E


∣∣∣∣∣
Nt∑
i=1

ri

∣∣∣∣∣
2
=

1

Nt

Nt∑
i=1

E
{
p2i +q

2
i

}
+

1

Nt

Nt∑
i=1

∑
j 6=i

E {pipj+qiqj}

where pi = cos(φi) cos(φ̃i) − sin(φi) sin(φ̃i) and qi = cos(φi) sin(φ̃i) + sin(φi) cos(φ̃i).

Since p2i + q2i = 1 and pipj + qiqj = cos(φi−φj) cos(φ̃i− φ̃j)+sin(φi−φj) sin(φ̃i− φ̃j),

we can write

K = 1 +
1

Nt

Nt∑
i=1

∑
j 6=i

cos(φi − φj)E
{

cos(φ̃i − φ̃j)
}

+
1

Nt

Nt∑
i=1

∑
j 6=i

sin(φi − φj)E
{

sin(φ̃i − φ̃j)
}
.

Straightforward integration yields E
{

cos(φ̃i − φ̃j)
}

= e−(1−ρ
2)σ2

φ(tp) and E
{

sin(φ̃i − φ̃j)
}

=

0, hence

K = 1 +
1

Nt

e−(1−ρ
2)σ2

φ(tp)
Nt∑
i=1

∑
j 6=i

cos(φi − φj)

It can be shown that, since φi satisfy
∑Nt

i=1 e
jφi = 0, the sum

∑Nt
i=1

∑
j 6=i cos(φi − φj) =

−Nt. Hence, the mean received power in a null is

K = 1− e−(1−ρ2)σ2
φ(tp). (3.13)

3.5 Numerical Results

This section presents numerical performance comparisons of distributed beamforming

and nullforming with local and unified tracking. All of the results assume a forward link
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carrier frequency of 900 MHz and a measurement period of Tm = 500 ms. Based on

the Allan variance specifications of the Rakon RFPO45 oscillator [67], the process noise

parameters were set to p(n)

t = p(m)
r = 2.31 · 10−21 and q(n)t = q(m)

r = 6.80 · 10−23 for all

n = 1, . . . , Nt and all m = 1, . . . , Nr. The standard deviation of the phase measurement

error at the receive nodes was set to 10 degrees. All channels were assumed to have unit

magnitude and the transmitter was assumed to have a unit total transmit power constraint.

Fig. 3.3 shows a full simulation of a “small” system with Nt = 10 transmitters and

Nr = 5 receivers. Since the nullforming performance is identical at all of the protected

receivers, the performance of only one null is shown here. The results were averaged

over 3000 realizations of the random initial frequency offsets, clock process noises, and

measurement noises. Measurements occur at t = kTm for k = 0, 1, . . . . After the initial

incoherent period where the Kalman filter has poor estimates with both local and unified

tracking, the effect of the oscillator dynamics and periodic measurements can be seen

in the beamforming and nullforming performance where the performance is relatively

good immediately after a measurement but then degrades as the prediction time becomes

longer. These results show that unified tracking provides a negligible advantage in beam-

forming gain but a potentially significant advantage in nullforming gain, especially as the

Kalman filter converges to steady-state.

Figure 3.4 shows the steady-state performance of distributed beamforming and null-

forming with local and unified tracking for the small system in Fig. 3.3 and a “massive

MIMO” system with Nt = 100 transmitters and Nr = 50 receivers. These results were

generated following the approach in Section 3.4. The small system results are consistent

with Fig. 3.3. The massive MIMO system exhibits increased beamforming gain, as is ex-

pected, but also shows that beamforming performance is essentially the same with local

or unified tracking. The nullforming performance of the massive MIMO system benefits

more from unified tracking, especially over short prediction intervals. The nullforming
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Figure 3.3: Full Kalman filter simulation of a “small” system.
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performance of both systems becomes similar over longer prediction intervals.
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Figure 3.4: Steady-state beamforming and nullforming performance results with “small”
and “massive MIMO” systems.

3.6 Conclusions

This chapter compares the performance of distributed transmission with local and uni-

fied tracking and shows that, while beamforming performance is effectively unchanged

between local and unified tracking, nullforming performance can be significantly im-

proved with unified tracking, especially over short prediction intervals and with larger

networks. The results also show that local tracking tends to provide near-optimal perfor-

mance in systems with high feedback latency. While unified tracking provides optimal

performance, the additional complexity of unified tracking may cause local tracking to be

more appealing in systems with high feedback latency.
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Chapter 4

Accelerometer Compensation of

Kinematic Effects

In this chapter we look at the impact of motion on oscillator stability. By considering a

beamforming systems with many transmitters, we show that acceleration measurements

can be integrated in the state space system to significantly decrease the estimation error.

4.1 Introduction

We consider the distributed multi-input single-output (MISO) communication scenario in

Fig. 4.1 where a transmission cluster with N transmit nodes communicates with a single

receive node. The transmit cluster transmits as a virtual antenna array and uses coherent

transmission techniques, e.g., distributed transmit beamforming [12,14–17] or distributed

transmit nullforming [32,35,37]. We assume each node in the system has an independent

local oscillator and that no exogenous synchronization signals are present. The receiver

facilitates coherent transmission by estimating the combined time offsets and propagation

delays and by providing periodic feedback to the transmit nodes.
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transmit
nodes

receive
node

Figure 4.1: Distributed MISO system model withN transmit nodes and one receive node.
Each node possesses a single antenna and an independent oscillator.

Since each node in the distributed transmission system has an independent local os-

cillator and may experience independent kinematic effects, the time offset and propaga-

tion delay between each transmit node and the receive node is time-varying and must

be tracked and predicted to facilitate passband signal alignment and coherent transmis-

sion. Several recent papers have analyzed the performance of distributed beamforming

and distributed nullforming subject to independent oscillator dynamics [17, 37, 43, 70].

Other than [17], this prior work has primarily focused on the case when the propagation

channels are time-invariant or slowly-varying with respect to the oscillator dynamics. Al-

though kinematic effects were studied in [17], the model did not account for the effect

of acceleration on the frequency of crystal oscillators as described in [71]. All of this

prior work assumed a conventional receiver-coordinated scenario in which the effective

channels are tracked using only periodic feedback from the receive node.

The problem of inertial tracking using Kalman filters has been studied extensively [50,

72–74]. However, a heterogeneous system in which both motion and carrier information

are being considered at the same time has not been considered previously in the literature.

This chapter analyzes the performance of coherent distributed transmission in a MISO

system with independent clock dynamics and time-varying propagation channels. Each
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propagation channel is assumed to be single-path and its time variations are assumed to

be caused by independent kinematics at each transmit node. The receive node is assumed

to be stationary. Our analysis accounts for:

1. The effect of independent oscillators at each node in the system.

2. The effect of acceleration at transmit node i on the frequency of the oscillator at

node i [71].

3. The effect of displacement at transmit node i on the propagation delay of signals

from transmit node i to the receive node

We develop a continuous-time three-state model describing the combined time offset and

propagation delay, normalized rate/frequency offset, and acceleration dynamics between

transmit node i and the receive node. This model is characterized by three parameters cor-

responding to the short-term oscillator stability, long-term oscillator stability, and kine-

matic stability. The continuous-time model is then discretized to facilitate tracking with a

Kalman filter.

Numerical methods are used to compare the performance of the MISO system in two

scenarios: (i) the conventional receiver-coordinated scenario where the combined time

offsets and propagation delays are tracked only through periodic feedback of estimates

from the receive node and (ii) a scenario where, in addition to the periodic time off-

set feedback, each receive node also observes measurements from a local accelerometer.

This could be achieved, for example, by equipping each transmit node with an inertial

measurement unit (IMU). Both time offset feedback and local accelerometer measure-

ments are assumed to be periodic, but the local accelerometer measurements are assumed

to be available much more frequently than feedback from the receive node. Numerical

results show that local accelerometer measurements can significantly improve the perfor-

mance of time offset tracking, consequently improving coherence for distributed transmit
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beamforming and distributed transmit nullforming and also potentially allowing for re-

duced feedback rates with respect to the conventional receiver-coordinated feedback-only

approach.

4.2 System Model

Each node in the system shown in Fig. 4.1 is assumed to possess a single antenna. All

forward link channels are modeled as single-path with identical gain and the time-varying

propagation delay of the channel from transmit node i to the receive node is denoted as

ψi(t) with units of seconds for i = 1, . . . , N .

We assume a protocol in which each transmit node periodically sends a sounding

signal at known time (in the transmit node’s local timebase) and the time-of-arrival of

this signal is estimated at the receive node (in the receive node’s local timebase). The

receive node estimates the combined time offset and propagation delay of each of the

transmit nodes and provides feedback to the transmit nodes to facilitate channel tracking,

passband signal alignment, and distributed coherent transmission. As discussed in [17,

37, 43, 70], the transmit nodes can use Kalman filters to optimally combine this feedback

with previously received feedback to generate minimum mean squared error (MMSE)

predictions and facilitate coherent transmission between feedback updates.

The time-varying time offset and normalized rate/frequency offset between transmit

node i and the receive node (as observed at the receive node) can be written as

δi,1(t) = xi,1(t) + ψi(t)− x0,1(t) (time offset) (4.1)

δi,2(t) = xi,2(t) + ψ̇i(t)− x0,2(t) (frequency offset) (4.2)

where xi,1(t) and xi,2(t) denote the clock offset and normalized clock rate offsets at
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node i, respectively, both with respect to some reference, and where we have adopted

the convention that the receiver is node 0. To be clear, the “time offset” δi,1(t) includes

both the relative clock offset xi,1(t)− x0,1(t) and the propagation delay ψi(t). Similarly,

the “frequency offset” δi,2(t) includes both the relative clock rate offset xi,2(t) − x0,2(t)

and propagation effects in ψ̇i(t). The following sections develop dynamic models for

each of the constituent components in these expressions.

4.2.1 Clock Dynamics

The independent local oscillator at each node in the system behaves stochastically, caus-

ing time variations the each effective channel from transmit node i to the receive node.

Based on the two-state models in [53,54], we can define the state of the oscillator at node i

as

xi(t) =

xi,1(t)
xi,2(t)

 (4.3)

where xi,1(t) is a time offset with units of seconds and xi,2(t) is a rate or frequency offset

with units of sec/sec (dimensionless), both with respect to some nominal reference. The

continuous-time state update equation is given as

ẋi(t) =

0 1

0 0

xi(t) + ξi(t) (4.4)

where ξi(t) = [ξi,1(t), ξi,2(t)]
> and where ξi,1(t) has units of sec/sec (dimensionless) and

ξi,2(t) has units of 1/sec. The white process noise ξi(t) is distributed as

ξi(t) ∼ N (0,Q) (4.5)
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withQ = diag(q1, q2) and with q1 a parameter with units of seconds corresponding to the

short-term stability of the oscillator and q2 a parameter with units of 1/sec corresponding

to the long-term stability of the oscillator. We assume all oscillators in the system to

have the same q1 and q2 parameters. Typical values for short-term and long-term stability

parameters for different classes of oscillators can be found in [75].

4.2.2 Effect of Acceleration on Oscillator Frequency

It is well-known that, due to the mechanical nature of crystal oscillators, acceleration

applied to a crystal oscillator causes a shift in the oscillator frequency [71]. We assume

this effect to be additive with the frequency offsets caused by the non-kinematic clock

dynamics as described in the previous section.

To facilitate exposition, we assume the one-dimensional kinematic model illustrated

in Fig. ??. The displacement from node i to the receiver is denoted as di(t) with units of

meters. Denoting the acceleration on node i is ai(t) = d̈i(t), the results in [71] imply that

the frequency offset caused by acceleration at node i can be expressed as

xi,2(t) = γd̈i(t) = γai(t) (4.6)

where γ is the oscillator acceleration sensitivity parameter with units of sec2/m. Typical

values for the oscillator acceleration sensitivity parameter are described in [71] and are

usually on the order of 10−10 sec2/m. We assume γ is known although this parameter

may need to be estimated and/or calibrated in practice. Taking another derivative, we can

write

ẋi,2(t) = γȧi(t) = γji(t) (4.7)

where ji(t) is the derivative of the acceleration at node i sometimes called the “jerk” [69].
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transmit node i receive node

di(t)

Figure 4.2: One dimensional kinematics model with time-varying displacement di(t).

4.2.3 Effect of Displacement on Propagation Delay

Referring to Fig. 4.2 and assuming a single-path channel from transmit node i to the

receive node, the propagation delay from node i to the receiver is given as

ψi(t) =
di(t)

c
(4.8)

where c is the speed of light. We can take two derivatives to write

ψ̈i(t) =
ai(t)

c
. (4.9)

This equation is consistent with the usual results for non-relativistic Doppler shifts. We

can further define the propagation state

zi(t) =

ψi(t)
ψ̇i(t)

 . (4.10)

It follows that

żi(t) =

0 1

0 0

 zi(t) +

0

1
c

 ai(t). (4.11)
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4.2.4 Complete Continuous-Time Model

We define the state

δi(t) =


xi,1(t) + ψi(t)− x0,1(t)

xi,2(t) + ψ̇i(t)− x0,2(t)

ai(t)

 . (4.12)

Note that the first and second terms of this state vector are the time offset (seconds) and

normalized rate/frequency offset (dimensionless), respectively, of node i as observed at

the receive node through the time-varying propagation delay ψi(t). Unlike the time and

frequency offsets with respect to an unknown reference clock, these offsets are observ-

able.

Using the results from the previous sections, we can write

δ̇i(t) =


0 1 0

0 0 1
c

0 0 0

δi(t)+


1 0 −1 0 0

0 1 0 −1 γ

0 0 0 0 1



ξi(t)

ξ0(t)

ji(t)

 (4.13)

= Aδi(t) +Bηi(t) (4.14)

If we assume the kinematics follow a white-noise jerk model with E[ji(t)ji(t + τ)] =

q3δ(τ) where q3 has units of m2/sec5, then the white process noise ηi(t) is distributed as

ηi(t) ∼ N (0, Q̄) (4.15)

with Q̄ = E[ηi(t)η
>
i (t)] = diag(q1, q2, q1, q2, q3).
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4.2.5 Complete Discrete-Time Model

To facilitate tracking with a Kalman filter, this section derives a discrete-time model from

the continuous-time model developed in the previous section. The continuous-time tran-

sition matrix can be computed as

Φ(t) = eAt =


1 t t2

2c

0 1 t
c

0 0 1

 . (4.16)

Let T denote the sampling period. Using standard methods to convert a continuous-time

system to a discrete-time system, e.g., [76], we have a discrete-time state update given as

δi[k + 1] = Φ(T )δi[k] + ui[k] (4.17)

with

ui[k] =

∫ (k+1)T

kT

Φ((k + 1)T − τ)Bηi(τ) dτ. (4.18)

Note that ui[k] is Gaussian distributed with zero mean since it is a linear function of ηi(τ)

which is Gaussian and zero mean. The discrete-time process noise covariance matrix

requires computing

C(T ) =

∫ T

0

Φ(T − τ)BQ̄B>Φ>(T − τ) dτ. (4.19)

Since

BQ̄B> =


2q1 0 0

0 2q2 + γ2q3 γq3

0 γq3 q3

 (4.20)
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and

Φ(T − τ) =


1 T − τ (T−τ)2

2c

0 1 T−τ
c

0 0 1

 (4.21)

it can be shown that

C(T ) =

∫ T

0

4∑
`=0

X`(T − τ)` dτ (4.22)

= X0T +X1
T 2

2
+X2

T 3

3
+X3

T 4

4
+X4

T 5

5
(4.23)
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where each X` is a symmetric 3 × 3 matrix that is only a function of c, γ, q1, q2, and q3

(not a function of T or τ ). Some linear algebra results in

X0 =


2q1 0 0

0 2q2 + γ2q3 γq3

0 γq3 q3

 , (4.24)

X1 =


0 2q2 + γ2q3 γq3

2q2 + γ2q3
2γq3
c

q3
c

γq3
q3
c

0

 , (4.25)

X2 =


2q2 + γ2q3

3γq3
2c

q3
2c

3γq3
2c

q3
c2

0

q3
2c

0 0

 , (4.26)

X3 =


γq3
c

q3
2c2

0

q3
2c2

0 0

0 0 0

 , and (4.27)

X4 =


q3
4c2

0 0

0 0 0

0 0 0

 . (4.28)

Hence, the discrete-time dynamics are fully characterized by the initial state δi[0], the

time-invariant state update matrixF = Φ(T ), and the discrete-time process noiseui(t) ∼

N (0,C(T )) with covariance C(T ) from (4.22)–(4.28).

4.2.6 Observation Model

At each sampling instant t = kT , transmit node i receives a noisy observation of the ac-

celeration state from its local accelerometer. At less frequent sampling instances t = kTf
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with Tf = MT and M an integer greater than one, transmit node i receives feedback

from the receive node corresponding to a noisy estimate of the time offset state. We

assume no estimates are made of the normalized rate/frequency state. The feedback pe-

riod is denoted as Tf . Assuming zero latency in the feedback from the receive node, the

observation model at node i can be written as

yi[k] = H [k]δi[k] +wi[k] (4.29)

where

H [k] =



0 0 0

0 0 1

 kT
Tf

is not an integer

1 0 0

0 0 1

 kT
Tf

is an integer

(4.30)

and where wi[k] corresponds to measurement noise. It is reasonable to assume the noise

in the accelerometer measurements is independent of the noise in the time offset estimates

at the receive node. Hence

wi[k] ∼ N (0,R) (4.31)

with R = diag(r1, r2). We assume these measurement noise parameters are identical for

all nodes in the system.

Note that the r1 measurement noise parameter specifies the variance of the time offset

measurements at the receive node (which are subsequently fed back over an error-free

link to the transmit nodes to facilitate tracking). It is well-known, e.g. [77, p.55], that

the Cramer-Rao lower bound (CRLB) for delay estimation of signals observed in addi-

tive white Gaussian noise (AWGN) is inversely proportional to the signal-to-noise ratio

(SNR) and the mean squared bandwidth of the signal. The analysis leading to this bound,
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however, assumes a baseband signal is processed to estimate the time offset. Weiss and

Weinstein [78] showed that passband signal delay estimation performance also improves

with carrier frequency when the SNR exceeds a certain threshold. Intuitively, above this

SNR threshold, the presence of the carrier in the passband signal provides additional de-

tail in the correlator output that can be used to refine delay estimates to a fraction of a

carrier period.

As an example, in the case of a pre-integration SNR of 10 dB, bandwidth B =

50 MHz, waveform duration T = 10 µs, and carrier frequency ω0 = 2π · 1 GHz, the

passband CRLB implies that RMS delay estimation errors can be as small as approxi-

mately 4 ps. Experimental results reported in [79] with similar signaling parameters in

an outdoor environment and with off-the-shelf hardware yielded RMS delay estimation

errors of less than 10 ps.

The r2 measurement noise parameter specifies the variance of the noise in the ac-

celerometer measurements. We have assumed here a simplified model for the accelerom-

eter that ignores any amplitude nonlinearities and/or bias effects. The value of r2 depends

on accelerometer noise specifications and the measurement bandwidth. As an example,

the Analog Devices ADXL103/ADXL203 accelerometer datasheet [80] has a noise den-

sity specification of 110µg/
√

Hz. If a single-pole anti-aliasing filter with bandwidth

BW Hz is used to limit the noise prior to sampling, the RMS accelerometer noise can

be calculated as [80]

RMSnoise ≈
(

110
µg√
Hz

)(√
BW · 1.6

)(
9.8 · 10−6

m/s2

µg

)
(4.32)

with units of m/s2 and where the factor of 1.6 is due to the rolloff of the single-pole

anti-aliasing filter. For example, with an accelerometer sampling period of T = 0.01, we

can set BW = 50 Hz and compute RMSnoise ≈ 9.64 × 10−3 m/s2. The r2 parameter
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then follows as r2 = (RMSnoise)2. In this example, we have r2 ≈ 9.3 × 10−5 ≈

1× 10−4 m2/s4.

4.3 Numerical Results

In this section, we demonstrate the performance advantages of using local accelerometer

measurements to improve the effective tracking performance and, consequently, improve

the coherence of the distributed transmission system. Table 4.2 lists the parameters for all

of the numerical results in this section.

The oscillator stability parameters were chosen to be similar to the “good” XO pa-

rameters described in [75]. The white noise jerk process noise intensity was chosen so

that the changes in the acceleration over the sampling period T were on the order of
√
Tq3 = 0.02 m/sec2. The oscillator sensitivity parameter was chosen according to

typical values described in [71]. The measurement noise parameters depend on various

factors such as the integrated SNR and the quality of the accelerometer. We have as-

sumed here sufficient SNR so that the time offset estimation performance follows the

Weiss-Weinstein bounds for passband signals [78] and are on the order of picoseconds

as has been experimentally demonstrated in [51]. The accelerometer measurement vari-

ance r2 was set according to the example calculation based on the ADXL103/ADXL203

accelerometer [80] in the previous section.

Fig. 4.3 shows the tracking performance of a Kalman filter channel tracker with

and without local accelerometer observations using the parameters in Table 4.2 at the

900 MHz nominal carrier frequency averaged over 1000 independent realizations of the

clock and kinematic processes. These results are shown in RMS phase prediction error

(degrees) versus time. At times t = 0, 0.5, 1.0, . . . , the transmit node receives feedback

from the receive node and we see the RMS phase prediction error is small when this feed-
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Table 4.1: Parameters used in numerical simulation.
Parameter Value Units Meaning

q1 10−22 sec oscillator short-
term stability

q2 10−23 1/sec oscillator long-
term stability

q3 4 · 10−2 m2/sec5 white noise jerk
process noise
intensity

γ 10−10 sec2/m oscillator sensitiv-
ity to acceleration

r1 4 · 10−24 sec2 time offset mea-
surement noise
variance

r2 10−4 m2/sec4 accelerometer mea-
surement variance

T 0.01 sec sampling period for
accelerometer mea-
surements

Tf 0.50 sec sampling period
for time offset
measurements
(feedback)

ω0 2π · 900 · 106 rad/sec nominal carrier fre-
quency
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back is received. In the case without local accelerometer observations, the kinematics and

clock dynamics cause the phase predictions to quickly become inaccurate. For the case

with local accelerometer observations, the transmitters use these observations (received

at times t = 0, 0.01, 0.02, . . . ) to better predict the combined time offset and propagation

delay and reduce the RMS phase prediction error between feedback periods. While the

local accelerometer measurements don’t account for the clock dynamics, they do provide

useful information about the kinematic effects on the local clock frequency and changes

in the propagation delay.
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Figure 4.3: RMS phase prediction error in degrees versus time with and without local
accelerometer observations.

Fig. 4.4 shows the beamforming gain of anN = 10 node distributed beamformer with

each transmit node in the system using a Kalman filter to track and predict the effective

channel dynamics. The performance is compared with and without local accelerometer
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observations using the parameters in Table 4.2 at the 900 MHz nominal carrier frequency

averaged over 1000 independent realizations of the clock and kinematic processes and

assume identical channel magnitudes from each transmit node to the receive node. Under

this assumption, it has been shown [43] that the average beamforming gain with respect to

incoherent transmission is related to the variance of the phase prediction errors according

to

E[beamforming gain] = Ne−σ
2
φ(tp) +

(
1− e−σ2

φ(tp)
)

(4.33)

where σ2
φ(tp) denotes the phase prediction variance at prediction time tp from the last

feedback update. In this case, since the ideal beamforming gain of an N = 10 node

array is 10 dB, these results show that local accelerometer observations allow the dis-

tributed transmit array to maintain performance almost indistinguishable from an ideal

beamformer for t > 0.5. If local accelerometer observations are not available, the kine-

matic effects are poorly tracked and the distributed array loses approximately 1 dB of

beamforming gain just prior to receiving a feedback update from the receiver.

Fig. 4.5 shows the nullforming gain of an N = 10 node distributed beamformer with

each transmit node in the system using a Kalman filter to track and predict the effective

channel dynamics under the same assumptions as the previous results. The goal in this

case is to minimize the power at the receiver. Nullforming is used, for example, in cogni-

tive radio underlay networks to avoid interfering with primary users [81]. In [43], it was

shown that the average nullforming gain with respect to incoherent transmission is related

to the variance of the phase prediction errors according to

E[nullforming gain] = 1− e−σ2
φ(tp). (4.34)

where σ2
φ(tp) denotes the phase prediction variance at prediction time tp from the last
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Figure 4.4: Average beamforming gain with respect to incoherent transmission in dB
for an N = 10 node transmit cluster versus time with and without local accelerometer
observations.
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feedback update. These results show that accelerometer observations allow for nulls bet-

ter than 20 dB below incoherent transmission whereas a system without accelerometer

observations has nulls that are often less than 10 dB below incoherent transmission. In-

tuitively, the large performance advantage of the system with accelerometer observations

in this example is due to the fact that nulls tend to be more sensitive to phase prediction

errors than beams. By using local accelerometer measurements, the variance of the phase

prediction errors is significantly reduced and the nullforming performance is significantly

improved.
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Figure 4.5: Average nullforming gain with respect to incoherent transmission in dB for
an N = 10 node transmit cluster versus time with and without local accelerometer obser-
vations.

It is also of interest to understand how accelerometer measurements can be used to

reduce feedback overhead in distributed transmission systems. Fig. 4.6 shows the achiev-

able reduction in the feedback update rate 1
Tf

of a system with accelerometer measure-
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ments achieving equivalent performance of a conventional receiver-coordinated system

without accelerometer measurements. To be specific, we denote the feedback rate with

and without accelerometer measurements as 1

T
(wam)
f

and 1

T
(woam)
f

, respectively. For a fixed

value of T (woam)

f , we compute the performance of the conventional receiver-coordinated

system without accelerometer measurements by temporally averaging the Kalman fil-

ter RMS phase prediction errors after the 20th observation and before the 21st obser-

vation (similar results are obtained by considering beamforming or nullforming gain as

the performance metric). Setting T (wam)

f = T (woam)

f and running the same experiment on

the system with accelerometer measurements results in improved performance (reduced

temporally-averaged RMS phase prediction errors). Keeping the accelerometer measure-

ment period T = 0.01 fixed, we then decrease the feedback update rate 1

T
(wam)
f

until the

system with accelerometer measurements achieves identical performance to the conven-

tional receiver-coordinated system without accelerometer measurements with feedback

update rate 1

T
(woam)
f

.

The results in Fig. 4.6 plot the reduction in the feedback rate
1/T

(woam)
f

1/T
(wam)
f

versus the

feedback rate without accelerometer compensation 1

T
(woam)
f

. For example, a value of two

corresponds to the case where the system with accelerometer compensation can achieve

the same performance as a system without accelerometer compensation by reducing the

feedback rate by a factor of two. These results show how a system with accelerome-

ter measurements can achieve the same performance as a system without accelerometer

measurements with significantly less feedback overhead. Larger feedback rate reductions

occur in this example when the feedback rate in the conventional receiver-coordinated

system is low.
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Figure 4.6: Reduction in feedback rate for a system with accelerometer measurements
achieving equivalent tracking performance of a conventional receiver-coordinated system
without accelerometer measurements. The accelerometer measurement period was fixed
at T = 0.01 seconds.
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4.4 Acceleration Bias

The previous results assumed an ideal accelerometer that measures the acceleration of the

transmit node with just some white noise. In reality however, accelerometers suffer from

a consistent bias, that varies from one device to another. In this section we take a quick

look at the 1-D motion effects on oscillator stability and the tracking performance when

an unknown bias is introduced in the observation model.

4.4.1 Effect of Acceleration Bias

The initial state space model is:

δi[k + 1] = Φ(T )δi[k] + ui[k]

with the states:

δi[k] =


xi,1[k] + ψi[k]− x0,1[k]

xi,2[k] + ψ̇i[k]− x0,2[k]

ai[k]

 .
The states are time (sec), rate (sec/sec) and acceleration (m/sec2). The only differ-

ence is the addition of an unknown bias b[k] in the observations:

yi[k] = H [k]δi[k] + b[k] +wi[k] (4.35)

Note that we are observing phase and acceleration, so the vector is b[k] = [0, b[k]].

To analyze this effect we performed Monte Carlo simulations. For each set of observa-

tions, the bias b[k] was a random number from the distribution N (0, σ2
b ), with σb = 0.05
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m/s2. This simulates the effect of multiple transmitters with different biases on the phase

error. The accelerometer has a sampling frequency of 100Hz, the phase observations are

at 2Hz, and we run 20 seconds long simulations. For quick results we only averaged over

100 runs.

The prediction errors for this case are shown in Fig. 4.7. It is clear that an unknown

and unaccounted for bias has a huge effect on the phase prediction error.
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Figure 4.7: KF prediction error comparison.

4.4.2 Acceleration Bias State-space Model

We add a new state to our original system to minimize the effect of the bias on the tracking

performance. We have previously showed that if the observations have a bias term that

is not accounted for, the KF tracking performance is very poor. We will now develop

a model in which the bias is accounted for in the state space system. The observation
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model will be changed accordingly, to observe the sum of the acceleration term and the

bias term.

4.4.3 Continuous Time Model

Recall that the three state model contained the time offset (sec), normalized rate or fre-

quency offset (sec/sec) and the acceleration of the transmit node:

δi(t) =


xi,1(t) + ψi(t)− x0,1(t)

xi,2(t) + ψ̇i(t)− x0,2(t)

ai(t)

 .
.

We add a new state bi(t) that represents the unknown bias of an accelerometer to form

a 4-state vector:

δi(t) =



xi,1(t) + ψi(t)− x0,1(t)

xi,2(t) + ψ̇i(t)− x0,2(t)

ai(t)

bi(t)


. (4.36)

.

The state space evolution of the system is:

δ̇i(t) = Aδi(t) +Bηi(t) (4.37)

with
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A =



0 1 0 0

0 0 1
c

0

0 0 0 0

0 0 0 0


,B =



1 0 −1 0 0 0

0 1 0 −1 γ 0

0 0 0 0 1 0

0 0 0 0 0 1


(4.38)

and ηi(t) is distributed as

ηi(t) ∼ N (0, Q̄) (4.39)

with Q̄ = E[ηi(t)η
>
i (t)] = diag(q1, q2, q1, q2, q3, q4).

Terms q1 and q2 are the oscillator stability parameters with units of seconds and 1/sec

respectively, q3 is the parameter of the white noise jerk model for the accelerometer, with

units of m2/sec5 and q4 is a very small white noise process parameter for the bias state,

with units of m2/sec5.

4.4.4 Discrete Time Model

The discrete time model can be derived after the computation of the continuous time

transition matrix:

Φ(t) = eAt =



1 t t2

2c
0

0 1 t
c

0

0 0 1 0

0 0 0 1


. (4.40)

The discrete-time state update equation becomes:
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δi[k + 1] = Φ(T )δi[k] + ui[k] (4.41)

where T is the sampling period. The discrete time noise process ui[k] has a covariance

matrix which can be computed from the equation:

C(T ) =

∫ T

0

Φ(T − τ)BQ̄B>Φ>(T − τ) dτ. (4.42)

4.4.5 Observation Model

We assume we observe the sum of the acceleration and the bias at a higher rate than the

phase measurements. The observation model is:

yi[k] = H [k]δi[k] +wi[k] (4.43)

where

H [k] =



0 0 0 0

0 0 1 1

 kT
Tf

is not an integer

1 0 0 0

0 0 1 1

 kT
Tf

is an integer

(4.44)

and measurement noise

wi[k] ∼ N (0,R) (4.45)

withR = diag(r1, r2).
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4.4.6 4-State Simulation Results

The bias term was given an initial state variance of (0.05m/sec)2. We simulated 1000

separate runs to obtain an average behavior.

An example of the state evolution is shown in Fig. 4.8. It can be seen that the bias has

a constant offset.
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Figure 4.8: Example of state evolution.

Fig. 4.9 shows the RMS phase errors in three scenarios: when there is no acceleration

information, when the acceleration has zero bias and when the acceleration has a bias

term. It can be seen that the Kalman filter takes a couple of intervals to adapt to the bias

term, but that in steady state the performance is very similar to the zero bias case.

A closer look in Fig. 4.10 shows that there is a slight performance loss due to the

unknown bias, but less than a half of a degree.

The results show that the bias can cause problems to the channel tracking if it is
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Figure 4.9: Phase error of the Kalman filter state phase predictions compared to the actual
state.

unaccounted for, but by extending the state space description to include it we are able to

minimize the performance loss.

4.4.7 Expansion to Three Dimensions

This section expands the previous 1-D model to a 3-D kinematic model. We develop an 8-

state system model in which acceleration measurements from three axes are obtained and

used together with the acceleration sensitivity vector to improve the tracking performance

of a Kalman filter. We will show the derivation of the state space system and simulation

results.

Compared to the one dimensional motion described in the previous sections, the three

dimensional motion has a nonlinear effect on the propagation delay. In addition, the

sensitivity of the oscillator to acceleration effects also has a three dimensional behavior.
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Figure 4.10: Phase error of the Kalman filter state phase predictions compared to the
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To simplify the model, we make the following assumptions:

• The distance between the two nodes is much larger than the distance traveled by

the transmitter during the simulation.

• The axes are chosen such that the x-axis is in the direction of the receiver.

• The sensitivity vector showing the direction in which acceleration affects the oscil-

lator rate (frequency) is known.
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Figure 4.11: Diagram showing one fixed receiver and one moving transmitter.

Fig. 4.11 shows a diagram of two nodes, one fixed receiver and one moving transmit-

ter. In the three dimensional case, the acceleration and bias terms become vectors. Denot-

ing ai(t) =

[
axi(t) ayi(t) azi(t)

]>
as the acceleration vector, and bi(t) =

[
bxi(t) byi(t) bzi(t)

]>
as the bias vector, we can write the new state vector as:

90



δi(t) =



xi,1(t) + ψi(t)− x0,1(t)

xi,2(t) + ψ̇i(t)− x0,2(t)

ai(t)

bi(t)


. (4.46)

.

We assume that only the motion on the x-axis is affecting the propagation delay be-

tween Tx and Rx. Thus we can write the propagation delay term as:

ψi(t) =
dxi(t)

c
(4.47)

By taking the double derivative we obtain:

ψ̈i(t) =
axi(t)

c
. (4.48)

For the effect of acceleration on the oscillator frequency, we use all three acceleration

directions together with the sensitivity vector Γ. This leads to a similar ”jerk” model as

the 1D case. By taking the dot product of the derivative of the acceleration vector (jerk)

and the sensitivity vector, we can obtain the effect on the frequency (rate) terms as:

xi,2(t) = Γ · ȧi(t) = γxjxi(t) + γyjyi(t) + γzjzi(t) (4.49)

Note that here the bold assumption is that Γ is constant (implying no rotation of the node)

and known.

4.4.8 3D Continuous Time Model

The state space evolution of the system has the same form as in the 1D case. However,

note that there are 8 states now. Hence, A is an 8x8 matrix and B is an 8x10 matrix to
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account for all the noise terms. The state space model is:

δ̇i(t) = Aδi(t) +Bηi(t) (4.50)

with:

A =



0 1 0 . . . 0

0 0 1
c
. . . 0

0 0 0 . . . 0

...
...

... . . . ...

0 0 0 . . . 0


,B =



1 0 −1 0 0 0 0 0 0 0

0 1 0 −1 γx γy γz 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1



, ηi(t) =



ξi(t)

ξi(t)

ji(t)

βi(t)



(4.51)

and ηi(t) is distributed as

ηi(t) ∼ N (0, Q̄) (4.52)

with Q̄ = E[ηi(t)η
>
i (t)] = diag(q1, q2, q1, q2, q3, q3, q3, q4, q4, q4).

Terms q1 and q2 are the oscillator stability parameters with units of seconds and 1/sec

respectively, q3 is the parameter of the white noise jerk model for the accelerometer, with

units of m2/sec5 and q4 is a very small white noise process parameter for the bias states,

with units of m2/sec5.
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4.4.9 3D Discrete Time Model

The discrete time model can be derived after the computation of the continuous time

transition matrix:

Φ(t) = eAt =



1 t t2

2c
. . . 0

0 1 t
c

. . . 0

0 0 1 . . . 0

...
...

... . . . ...

0 0 0 . . . 1


. (4.53)

The discrete-time state update equation becomes:

δi[k + 1] = Φ(T )δi[k] + ui[k] (4.54)

where T is the sampling period. The discrete time noise process ui[k] has a covariance

matrix which can be computed from the equation:

C(T ) =

∫ T

0

Φ(T − τ)BQ̄B>Φ>(T − τ) dτ. (4.55)

4.4.10 3D Observation Model

We assume we observe the sum of the acceleration and the bias at a higher rate than the

phase measurements. The observation model is:

yi[k] = H [k]δi[k] +wi[k] (4.56)
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where

H [k] =





0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0

0 0 0 1 0 0 1 0

0 0 0 0 1 0 0 1


kT
Tf

is not an integer



1 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0

0 0 0 1 0 0 1 0

0 0 0 0 1 0 0 1


kT
Tf

is an integer

(4.57)

and measurement noise

wi[k] ∼ N (0,R) (4.58)

withR = diag(r1, r2, r2, r2).

The values for the simulation parameters are shown in the table below:

The bias terms were given an initial state variance of (0.05m/sec)2. We simulated

1000 separate runs to obtain an average behavior.

Fig. 4.12 shows the RMS phase errors in three scenarios: when there is no acceleration

information, when the acceleration has zero bias and when the acceleration has a bias

term. It can be seen that the Kalman filter takes a couple of intervals to adapt to the bias

term, but that in steady state the performance is very similar to the zero bias case.

The results are similar to the 1D case, showing that in this scenario and with our

assumptions, the model states can be tracked.

One test we performed was to look at a mismatched sensitivity vector and analyze

how this affects the performance. For this, we modified the Γ vector by flipping the axes
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Table 4.2: Parameters used in 3D simulation.

Parameter Value Units Meaning

q1 10−22 sec oscillator short-term stability

q2 10−23 1/sec oscillator long-term stability

q3 4 · 10−2 m2/sec5 white noise jerk process noise
intensity

q4 1 · 10−25 m2/sec5 white noise bias process noise
intensity

γx 10−10 sec2/m oscillator sensitivity to accel-
eration

γy 10−12 sec2/m oscillator sensitivity to accel-
eration

γz 2 · 10−12 sec2/m oscillator sensitivity to accel-
eration

r1 4 · 10−24 sec2 time offset measurement noise
variance

r2 10−4 m2/sec4 accelerometer measurement
variance

T 0.01 sec sampling period for ac-
celerometer measurements

Tf 0.50 sec sampling period for time off-
set measurements (feedback)

ω0 2π · 900 · 106 rad/sec nominal carrier frequency
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Figure 4.12: Phase error of the Kalman filter state phase predictions compared to the
actual state.

(e.g. γx = 10−12,γy = 10−12 and γz = 10−10). This in turn would change the discrete

time noise covariance matrix computed in 4.55. By using the original covariance matrix

in the Kalman filter, we compared the Kalman filter performance.

Fig. 4.13 shows that the mismatch in Γ has a significant effect on the offset error.

4.5 Conclusion

In this chapter we developed a model and analyzed the performance of distributed coher-

ent transmission in a MISO communication system with time-varying propagation chan-

nels. The analysis accounted for the effects of independent clock dynamics as well as the

effects of independent kinematics on the frequency of each transmit node and the delay of

each propagation channel. Two scenarios were considered: (i) the conventional receiver-
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Figure 4.13: Phase error of the Kalman filter state phase prediction when the KF has a
wrong sensitivity vector.
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coordinated scenario where the time offsets are tracked only through periodic feedback

from the receive node and (ii) an accelerometer-assisted scenario where, in addition to

the periodic time offset feedback, each receive node also observes measurements from a

local accelerometer. Numerical results demonstrated that local accelerometer measure-

ments can improve the ability of each node to track its time offset with respect to the

receive node, consequently improving coherence for distributed transmit beamforming

and distributed transmit nullforming and also allowing for reduced feedback rates with

respect to the conventional feedback-only approach.

The analysis in this chapter was first simplified by the one-dimensional kinematics

assumption as depicted in Fig. ??. In general, with two-dimensional or three-dimensional

kinematics, the orientation of the accelerometer with respect to the sensitivity axis of

the oscillator [71] and the direction of the propagation channel may be unknown and

possibly time-varying. Since the orientation affects elements of the state update matrix

F and the process noise covariance C(T ), it is critical to generate accurate estimates of

these parameters to facilitate optimal tracking and coherent transmission. Methods for

accelerator compensation with two-dimensional and three-dimensional kinematics would

be an interesting extension to this work.

The three dimensional results are showing that the model we have can be tracked with

3D motion. The assumption that in short intervals only the acceleration in the direction

of the receiver affects the propagation path is realistic since the distance to the receiver is

much bigger. However, the assumption that the sensitivity vector is known and constant

should be modified. As previously discussed, an online way of determining the sensitivity

vector should be explored. The error in Fig. 4.13 is again due to Kalman filter parame-

ter mismatch. We have already implemented covariance matrix estimation based on the

whitening of the innovation process, using adaptive Kalman filtering.
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Chapter 5

Summary and Future Work

In this final chapter the main ideas of this dissertation are summarized and future research

directions are identified.

5.1 Conclusions

The synchronization problem is very important in D-MIMO applications. Unlike antenna

systems or MIMO applications where frequency compensation can be performed once

the signal has been received, the coherency requirement leads to a need for space-time

synchronization. By exchanging channel state information, such as phase and frequency

offsets, transmit vectors can be computed at transmit nodes to create beams or nulls in a

desired direction. In this dissertation we show both why synchronization is important and

how it can be used in very large clusters and also how real world applications could reach

very strict synchronization goals. The results can be broken into three main sections:

• Chapter2 introduce experimental data and the problem of parameter mismatch for

the Kalman filter. We first show the experimental setup, give an idea of what the

phase and frequency noises look like and develop methods of determining the noise
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parameters to match our theoretical 2-state model approximation. The Allan devi-

ation is introduced as a good candidate for characterizing the frequency drift and

we show that the theoretical Kalman filter performance matches the experimen-

tal results. Then we introduce a covariance whitening method that uses adaptive

Kalman filtering to find the parameters that whiten the innovation process. A myr-

iad of results from many experiments are shown. We use both low precision clocks

in software defined radios and more expensive oven controlled oscillators to show

different performance levels.

• In Chapter 3, theoretical bounds on the beamforming and nullforming performance

of very large transmit and receive clusters are derived and tested against intensive

simulations. We compared the performance of two scenarios, local and unified

tracking in terms of nullforming and beamforming power. Sharper nulls could be

steered in a large centralized Kalman filter, while the beamforming performance

was similar with either one big Kalman filter or many local ones. For a large system

with 100 transmitters and 50 receivers, the benefits were even higher.

• In Chapter 4 the problem of motion is tackled. A moving transmit node is shown to

have two effects on a wireless channel. The motion changes the propagation delay

between transmitter and receiver and also affects the frequency of the oscillator. We

first showed that in one dimensional motion, these effects can be canceled almost

entirely by simply using accelerometer measurements. Then, we show that in the

three-dimensional case, certain assumption need to be made to have a relatively

small state space system that can track and compensate for the motion effects.

A takeaway from this research is that synchronization between nodes can only be achieved

over small time intervals and that the more precise an oscillator is, the longer that time

interval can be.We show how those intervals can be estimated. The results in Fig. 2.7
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show an example of these time intervals can be estimated on the USRP platform.

5.2 Future Work

There are many directions that this research can point to. The Kalman filter is an integral

part of this research, and many different implementations can be explored. The use of

extended Kalman Filters can provide better estimates. In addition, Kalman filters that

have uncertain covariance parameters can be used to mitigate the parameter mismatch

problem [82].

Another question that should be answered is if the oscillator stability parameters

change with the carrier frequency. The assumptions we made were that the parameters

are independent of the carrier frequency, which only serves as a scaling factor.

The 2-state model showed good performance, but in the literature higher clock models

are used, which could improve on the model, especially for low cost less stable oscillators

[47, 57].

The problem of accelerometer compensation can also be extended to more general

cases. Determining the sensitivity vector for an accelerometer could be done in real time

using the gyroscopes that exist in inertial measurement units and the orientation could be

used to adjust the acceleration vector.
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Appendix A

Example of Two Transmitters to One

Receiver Beamforming

This experiment is an early testbed for beamforming/nulforming tests using the USRP

N210 hardware. In this setup, two USRPs are set to transmit a tone at the same frequency,

are hooked up to a passive splitter/combiner and the output is connected to a third receive

USRP. Figure A.1 shows the block diagram of the setup. The setup for this experiment

uses two function generators. One of the function generators is used as a reference for

one transmitter and the receive USRP while the second function generator provides the

10MHz reference for the second transmitter.

In this experiment, two USRPs were setup as follows:

• Carrier Frequency fc = 15 MHz

• CW tone f = 2000 Hz

• Duty cycle of 60%

The hardware setup is similar to Figure A.1, but the two transmitters are using the

same reference while the receiver is using the second function generator as a reference.
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Figure A.1: Block diagram of a 2 to 1 setup

Figure A.2: Demodulated result showing the overlapping of the two transmitters
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Figure A.3: Oscilloscope capture

In Figure A.2, it can be clearly observed how the two separate USRPs are combining.

It is important to observe that because the two transmitters are running off the same clock

reference, the frequency stays the same and only the amplitude varies due to the phase

offsets. Using trigonometric analysis and by measuring the amplitudes of the respective

regions (Tx1, Tx2, Tx1+Tx2), it was determined that the phase angle in this experiment

was φ = 0.5131 radians.

An oscilloscope capture of the carrier band signal also confirms these results.

We show a testbed for a synchronized transmission setup. We see in this preliminary

work that the two signals can be combined constructively if the same clock reference is

used. However, the challenge of independent clock source synchronization is still present

and it will be tackled in the next chapters.
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Appendix B

USRP Detailed Experiment Description

This appendix describes the hardware setup and experimental framework for obtaining

very accurate phase and frequency measurements.

B.1 Hardware Setup

Distributed transmission systems require precise estimation and prediction of the chan-

nel characterstics. Even in systems with time-invariant channels, the independent oscil-

lators at each node in the distributed transmission system cause the effective channels

between each transmitter and receiver to become time-varying. It has been shown that

tracking methods, e.g., Kalman filtering, can be quite effective at estimating the time-

varying phase and frequency offsets in each independent transmit/receive oscillator pair.

In order to implement a Kalman filter for oscillator tracking, however, it is important to

have an accurate dynamic model for the systems including, for example, good estimates

of the short-term and long-term stability parameters of the oscillators. This document

describes an experimental procedure for collecting data that can be subsequently ana-

lyzed for the purpose of developing an accurate dynamic model for the oscillators in a
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distributed transmission system. While the focus is on Universal Software defined Radio

Platforms (USRPs), the procedure is general and can be implemented on other hardware.

B.2 Hardware Description

The devices used for this experiments are USRP N210 software defined radios. These are

devices that can be configured to modulate and demodulate baseband signals at various

carrier frequencies. Data is transferred using an ethernet connection and processing is

performed on a separate general purpose computer. Figure B.1 shows a block diagram of

the setup used in most of the experiments. It is important to note that the attached function

generator blocks are used to generate a 10MHz clock signal source. However, the internal

clock reference provided by an internal 100MHz oscillator could also be used.

Transmitter
USRP N210

Receiver
USRP N210

SMA

Host Computer
MATLAB Transmitter & 

Receiver objects

ETHERNET
SWITCH

SMA

C A
REF INB

RF1

C A
REF IN

B
RF1

36dB Attenuator

CAT 5

CAT 5

CAT 5

SMA

SMA

Function 
Generator

10MHz

Function 
Generator

10MHz

Figure B.1: System block diagram.

The radios used in this experiment have two benefits. One benefit is an FPGA that

can be configured to upconvert/downconvert I/Q data and to interface with the host com-

puter. Another benefit is the interchangeable daughterboards that are used to reach dif-

ferent carrier frequency bands, anywhere from DC to 6 GHz. The daughterboards that
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were used in our experiments are the Basic Tx and Basic Rx, with a frequency range of

1 MHz−250 MHz and the SBX boards with a frequency range of 400 MHz−4400 MHz.

Figure B.2 shows the front of the device with a description of the ports used. Ports A

A C 

B 

D 

A: 10 MHz External Reference 
B: Tx/Rx 
 
 
 

C: Ethernet Connection to Computer 
D: Power Input 
 

Figure B.2: USRP N210 overview.

and B use SMA cables to connect to the function generator and to the other USRP N210

through the attenuator. The ethernet port allows for gigabit ethernet data transfer between

the USRP and the host computer. This connection allows for real time data gathering and

analysis even at high sampling rates. The internal clock is a single 100MHz oscillator

that is converted to the desired carrier frequencies using PLLs. Our goal is to characterize

the behavior of this oscillator as accurately as possible.

Rather than using a separate sampler to record the signals generated by the USRP

hardware, we are using two USRPs that have identical oscillators. We believe that by

matching the oscillators we will have less uncertainty in the origin of process noise. This

way, the combined effect of the two oscillators will statistically be twice the effect of just

one oscillator. Thus we can statistically characterize their behavior.

In addition, the USRPs can use an external reference clock. The Ref In port accepts

a 10 MHz square or sinusoidal input that is used for clock generation. We use function

generators which have much better behaved outputs as references to perform additional
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Figure B.3: Test setup.

experiments.

B.3 Experiment Description

Figure B.3 shows an example experiment where two USRP N210s use two separate func-

tion generators as external references. The transmit power of the USRP was measured to

be approximately −6 dBm and an attenuator of 36 dB was placed on the communication

link to have −40 dBm of receive power. The main steps of the experiment are shown

below, together with the description of the waveforms at each of the steps.

• In MATLAB, instantiate a transmit object and generate a tone at a baseband fre-

quency f .

x(t) = Ate
j2πft (B.1)

Transmit Object:
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hSDRu = comm.SDRuTransmitter(’IPAddress’, ’192.168.10.11’,

...

’CenterFrequency’, 900.0e6, ’InterpolationFactor’, 512);

modSignal = exp(1i*2*pi*f*t)’;

while 1

step(hSDRu, modSignal);

end

• The transmit USRP modulates the tone with the specified carrier frequency and

transmits it over the wire.

u(t) = Atg cos((2π(f + fc)t+ φt(t))) (B.2)

Here, φt(t) represents the time-varying phase offset introduced by the transmitter.

• In MATLAB, instantiate a receive object and start saving the received data.

Receive Object:

hSDRu = comm.SDRuReceiver(’192.168.10.12’,

’CenterFrequency’, 900e6, ...

’DecimationFactor’, 512,’OutputDataType’,’double’, ...

’Gain’,32,’FrameLength’,FrameLength);

data = step(hSDRu);

• The receive USRP demodulates the received tone, samples it and sends it to the

host computer.

y[k] = gej(2πfk/fs)+φ[k] (B.3)
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φ[k] = φr[k] − φt[k] + ψ represents the total transmitter-receiver phase offset,

including the propagation delay ψ.

• The received complex data is stored on the host computer in double precision float-

ing point format for further analysis.

Data collection should be done at a sampling frequency that is at least twice the largest

frequency offset of the transmit/receive pair. The largest recorded frequency offset on the

USRP N210s was around 45 kHz at a 900 MHz carrier frequency, and on the order of

hundreds of MHz for a carrier frequency of 30M Hz. However, the USRP hardware

uses a 12-bit ADC with a nominal sampling frequency of 100 MHz that can be later

decimated by any value between 4 and 512 leading to a smallest sampling frequency of

100 MHz/512 = 195, 312.5 Hz.

All the processing of the data is done on the host computer that is connected to the

N210 radios via gigabit ethernet cables. Using MATLAB, transmitter and receiver ob-

jects are instantiated on two separate radios. The transmit radio is configured to transmit

the 2000Hz complex tone and the receive radio is configured to demodulate the data and

save it as a complex variable. Two USRP N210 software defined radios are used with

over the wire communication. In these experiments, the Basic TX and Basic RX daughter

boards were used [66]. The parameters used are:

• fc = 30 MHz - Nominal carrier frequency

• f = 2000 Hz - Baseband calibration tone

• fs = 100× 106/512 MHz = 195, 312.5 Hz - Sampling frequency of baseband sig-

nal
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The tone is recorded by the receiver for 70 million samples resulting in around 350 sec-

onds of data. Figure B.4 shows an example of a received complex signal. As mentioned
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Figure B.4: Complex Measurement

above, the data comes from the 12-bit ADC and is casted into the MATLAB double float-

ing point format. In addition, the radios have automatic gain control (AGC). The complex

signal is used for performing phase offset calculations or for frequency estimation.
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