18 research outputs found

    Laderman matrix multiplication algorithm can be constructed using Strassen algorithm and related tensor's isotropies

    Full text link
    In 1969, V. Strassen improves the classical~2x2 matrix multiplication algorithm. The current upper bound for 3x3 matrix multiplication was reached by J.B. Laderman in 1976. This note presents a geometric relationship between Strassen and Laderman algorithms. By doing so, we retrieve a geometric formulation of results very similar to those presented by O. Sykora in 1977

    Some unimodal sequences of Kronecker coefficients

    Full text link
    We conjecture unimodality for some sequences of generalized Kronecker coefficients and prove it for partitions with at most two columns. The proof is based on a hard Lefschetz property for corresponding highest weight spaces. We also study more general Lefschetz properties, show implications to a higher-dimensional analogue of the Alon--Tarsi conjecture on Latin squares and give related positivity results

    No occurrence obstructions in geometric complexity theory

    Full text link
    The permanent versus determinant conjecture is a major problem in complexity theory that is equivalent to the separation of the complexity classes VP_{ws} and VNP. Mulmuley and Sohoni (SIAM J. Comput., 2001) suggested to study a strengthened version of this conjecture over the complex numbers that amounts to separating the orbit closures of the determinant and padded permanent polynomials. In that paper it was also proposed to separate these orbit closures by exhibiting occurrence obstructions, which are irreducible representations of GL_{n^2}(C), which occur in one coordinate ring of the orbit closure, but not in the other. We prove that this approach is impossible. However, we do not rule out the general approach to the permanent versus determinant problem via multiplicity obstructions as proposed by Mulmuley and Sohoni.Comment: Substantial revision. This version contains an overview of the proof of the main result. Added material on the model of power sums. Theorem 4.14 in the old version, which had a complicated proof, became the easy Theorem 5.4. To appear in the Journal of the AM

    Geometric complexity theory and matrix powering

    No full text
    Valiant's famous determinant versus permanent problem is the flagship problem in algebraic complexity theory. Mulmuley and Sohoni (Siam J Comput 2001, 2008) introduced geometric complexity theory, an approach to study this and related problems via algebraic geometry and representation theory. Their approach works by multiplying the permanent polynomial with a high power of a linear form (a process called padding) and then comparing the orbit closures of the determinant and the padded permanent. This padding was recently used heavily to show no-go results for the method of shifted partial derivatives (Efremenko, Landsberg, Schenck, Weyman, 2016) and for geometric complexity theory (Ikenmeyer Panova, FOCS 2016 and B\"urgisser, Ikenmeyer Panova, FOCS 2016). Following a classical homogenization result of Nisan (STOC 1991) we replace the determinant in geometric complexity theory with the trace of a variable matrix power. This gives an equivalent but much cleaner homogeneous formulation of geometric complexity theory in which the padding is removed. This radically changes the representation theoretic questions involved to prove complexity lower bounds. We prove that in this homogeneous formulation there are no orbit occurrence obstructions that prove even superlinear lower bounds on the complexity of the permanent. This is the first no-go result in geometric complexity theory that rules out superlinear lower bounds in some model. Interestingly---in contrast to the determinant---the trace of a variable matrix power is not uniquely determined by its stabilizer
    corecore