64 research outputs found

    Asynchronous Multiparty Session Type Implementability is Decidable - Lessons Learned from Message Sequence Charts

    Get PDF
    Multiparty session types (MSTs) provide efficient means to specify and verify asynchronous message-passing systems. For a global type, which specifies all interactions between roles in a system, the implementability problem asks whether there are local specifications for all roles such that their composition is deadlock-free and generates precisely the specified executions. Decidability of the implementability problem is an open question. We answer it positively for global types with sender-driven choice, which allow a sender to send to different receivers upon branching and a receiver to receive from different senders. To achieve this, we generalise results from the domain of high-level message sequence charts (HMSCs). This connection also allows us to comprehensively investigate how HMSC techniques can be adapted to the MST setting. This comprises techniques to make the problem algorithmically more tractable as well as a variant of implementability that may open new design space for MSTs. Inspired by potential performance benefits, we introduce a generalisation of the implementability problem that we, unfortunately, prove to be undecidable

    Fundamental Approaches to Software Engineering

    Get PDF
    This open access book constitutes the proceedings of the 24th International Conference on Fundamental Approaches to Software Engineering, FASE 2021, which took place during March 27–April 1, 2021, and was held as part of the Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg but changed to an online format due to the COVID-19 pandemic. The 16 full papers presented in this volume were carefully reviewed and selected from 52 submissions. The book also contains 4 Test-Comp contributions

    Constraint-based run-time state migration for live modeling

    Get PDF
    Live modeling enables modelers to incrementally update models as they are running and get immediate feedback about the impact of their changes. Changes introduced in a model may trigger inconsistencies between the model and its run-time state (e.g., deleting the current state in a statemachine); effectively requiring to migrate the run-time state to comply with the updated model. In this paper, we introduce an approach that enables to automatically migrate such runtime state based on declarative constraints defined by the language designer. We illustrate the approach using Nextep, a meta-modeling language for defining invariants and migration constraints on run-time state models. When a model changes, Nextep employs model finding techniques, backed by a solver, to automatically infer a new run-time model that satisfies the declared constraints. We apply Nextep to define migration strategies for two DSLs, and report on its expressiveness and performance

    Constraint-based Run-time State Migration for Live Modeling

    Get PDF
    Live modeling enables modelers to incrementally update models as they are running and get immediate feedback about the impact of their changes. Changes introduced in a model may trigger inconsistencies between the model and its run-time state (e.g., deleting the current state in a statemachine); effectively requiring to migrate the run-time state to comply with the updated model. In this paper, we introduce an approach that enables to automatically migrate such runtime state based on declarative constraints defined by the language designer. We illustrate the approach using Nextep, a meta-modeling language for defining invariants and migration constraints on run-time state models. When a model changes, Nextep employs model finding techniques, backed by a solver, to automatically infer a new run-time model that satisfies the declared constraints. We apply Nextep to define migration strategies for two DSLs, and report on its expressiveness and performance

    Fundamental Approaches to Software Engineering

    Get PDF
    This open access book constitutes the proceedings of the 25th International Conference on Fundamental Approaches to Software Engineering, FASE 2022, which was held during April 4-5, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 17 regular papers presented in this volume were carefully reviewed and selected from 64 submissions. The proceedings also contain 3 contributions from the Test-Comp Competition. The papers deal with the foundations on which software engineering is built, including topics like software engineering as an engineering discipline, requirements engineering, software architectures, software quality, model-driven development, software processes, software evolution, AI-based software engineering, and the specification, design, and implementation of particular classes of systems, such as (self-)adaptive, collaborative, AI, embedded, distributed, mobile, pervasive, cyber-physical, or service-oriented applications

    Machine learning for function synthesis

    Get PDF
    Function synthesis is the process of automatically constructing functions that satisfy a given specification. The space of functions as well as the format of the specifications vary greatly with each area of application. In this thesis, we consider synthesis in the context of satisfiability modulo theories. Within this domain, the goal is to synthesise mathematical expressions that adhere to abstract logical formulas. These types of synthesis problems find many applications in the field of computer-aided verification. One of the main challenges of function synthesis arises from the combinatorial explosion in the number of potential candidates within a certain size. The hypothesis of this thesis is that machine learning methods can be applied to make function synthesis more tractable. The first contribution of this thesis is a Monte-Carlo based search method for function synthesis. The search algorithm uses machine learned heuristics to guide the search. This is part of a reinforcement learning loop that trains the machine learning models with data generated from previous search attempts. To increase the set of benchmark problems to train and test synthesis methods, we also present a technique for generating synthesis problems from pre-existing satisfiability modulo theories problems. We implement the Monte-Carlo based synthesis algorithm and evaluate it on standard synthesis benchmarks as well as our newly generated benchmarks. An experimental evaluation shows that the learned heuristics greatly improve on the baseline without trained models. Furthermore, the machine learned guidance demonstrates comparable performance to CVC5 and, in some experiments, even surpasses it. Next, this thesis explores the application of machine learning to more restricted function synthesis domains. We hypothesise that narrowing the scope enables the use of machine learning techniques that are not possible in the general setting. We test this hypothesis by considering the problem of ranking function synthesis. Ranking functions are used in program analysis to prove termination of programs by mapping consecutive program states to decreasing elements of a well-founded set. The second contribution of this dissertation is a novel technique for synthesising ranking functions, using neural networks. The key insight is that instead of synthesising a mathematical expression that represents a ranking function, we can train a neural network to act as a ranking function. Hence, the synthesis procedure is replaced by neural network training. We introduce Neural Termination Analysis as a framework that leverages this. We train neural networks from sampled execution traces of the program we want to prove terminating. We enforce the synthesis specifications of ranking functions using the loss function and network design. After training, we use symbolic reasoning to formally verify that the resulting function is indeed a correct ranking function for the target program. We demonstrate that our method succeeds in synthesising ranking functions for programs that are beyond the reach of state-of-the-art tools. This includes programs with disjunctions and non-linear expressions in the loop guards

    Large-Scale Analysis of Framework-Specific Exceptions in Android Apps

    Full text link
    Mobile apps have become ubiquitous. For app developers, it is a key priority to ensure their apps' correctness and reliability. However, many apps still suffer from occasional to frequent crashes, weakening their competitive edge. Large-scale, deep analyses of the characteristics of real-world app crashes can provide useful insights to guide developers, or help improve testing and analysis tools. However, such studies do not exist -- this paper fills this gap. Over a four-month long effort, we have collected 16,245 unique exception traces from 2,486 open-source Android apps, and observed that framework-specific exceptions account for the majority of these crashes. We then extensively investigated the 8,243 framework-specific exceptions (which took six person-months): (1) identifying their characteristics (e.g., manifestation locations, common fault categories), (2) evaluating their manifestation via state-of-the-art bug detection techniques, and (3) reviewing their fixes. Besides the insights they provide, these findings motivate and enable follow-up research on mobile apps, such as bug detection, fault localization and patch generation. In addition, to demonstrate the utility of our findings, we have optimized Stoat, a dynamic testing tool, and implemented ExLocator, an exception localization tool, for Android apps. Stoat is able to quickly uncover three previously-unknown, confirmed/fixed crashes in Gmail and Google+; ExLocator is capable of precisely locating the root causes of identified exceptions in real-world apps. Our substantial dataset is made publicly available to share with and benefit the community.Comment: ICSE'18: the 40th International Conference on Software Engineerin

    Efficiently Manifesting Asynchronous Programming Errors in Android Apps

    Full text link
    Android, the #1 mobile app framework, enforces the single-GUI-thread model, in which a single UI thread manages GUI rendering and event dispatching. Due to this model, it is vital to avoid blocking the UI thread for responsiveness. One common practice is to offload long-running tasks into async threads. To achieve this, Android provides various async programming constructs, and leaves developers themselves to obey the rules implied by the model. However, as our study reveals, more than 25% apps violate these rules and introduce hard-to-detect, fail-stop errors, which we term as aysnc programming errors (APEs). To this end, this paper introduces APEChecker, a technique to automatically and efficiently manifest APEs. The key idea is to characterize APEs as specific fault patterns, and synergistically combine static analysis and dynamic UI exploration to detect and verify such errors. Among the 40 real-world Android apps, APEChecker unveils and processes 61 APEs, of which 51 are confirmed (83.6% hit rate). Specifically, APEChecker detects 3X more APEs than the state-of-art testing tools (Monkey, Sapienz and Stoat), and reduces testing time from half an hour to a few minutes. On a specific type of APEs, APEChecker confirms 5X more errors than the data race detection tool, EventRacer, with very few false alarms

    Fundamental Approaches to Software Engineering

    Get PDF
    This open access book constitutes the proceedings of the 25th International Conference on Fundamental Approaches to Software Engineering, FASE 2022, which was held during April 4-5, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 17 regular papers presented in this volume were carefully reviewed and selected from 64 submissions. The proceedings also contain 3 contributions from the Test-Comp Competition. The papers deal with the foundations on which software engineering is built, including topics like software engineering as an engineering discipline, requirements engineering, software architectures, software quality, model-driven development, software processes, software evolution, AI-based software engineering, and the specification, design, and implementation of particular classes of systems, such as (self-)adaptive, collaborative, AI, embedded, distributed, mobile, pervasive, cyber-physical, or service-oriented applications
    • …
    corecore