41,919 research outputs found

    Session Types in a Linearly Typed Multi-Threaded Lambda-Calculus

    Full text link
    We present a formalization of session types in a multi-threaded lambda-calculus (MTLC) equipped with a linear type system, establishing for the MTLC both type preservation and global progress. The latter (global progress) implies that the evaluation of a well-typed program in the MTLC can never reach a deadlock. As this formulated MTLC can be readily embedded into ATS, a full-fledged language with a functional programming core that supports both dependent types (of DML-style) and linear types, we obtain a direct implementation of session types in ATS. In addition, we gain immediate support for a form of dependent session types based on this embedding into ATS. Compared to various existing formalizations of session types, we see the one given in this paper is unique in its closeness to concrete implementation. In particular, we report such an implementation ready for practical use that generates Erlang code from well-typed ATS source (making use of session types), thus taking great advantage of the infrastructural support for distributed computing in Erlang.Comment: This is the original version of the paper on supporting programming with dyadic session types in AT

    Context-Free Session Types for Applied Pi-Calculus

    Get PDF
    We present a binary session type system using context-free session types to a version of the applied pi-calculus of Abadi et. al. where only base terms, constants and channels can be sent. Session types resemble process terms from BPA and we use a version of bisimulation equivalence to characterize type equivalence. We present a quotiented type system defined on type equivalence classes for which type equivalence is built into the type system. Both type systems satisfy general soundness properties; this is established by an appeal to a generic session type system for psi-calculi.Comment: In Proceedings EXPRESS/SOS 2018, arXiv:1808.0807

    A Distributed Calculus for Role-Based Access Control

    No full text
    Role-based access control (RBAC) is increasingly attracting attention because it reduces the complexity and cost of security administration by interposing the notion of role in the assignment of permissions to users. In this paper, we present a formal framework relying on an extension of the π calculus to study the behavior of concurrent systems in a RBAC scenario. We define a type system ensuring that the specified policy is respected during computations, and a bisimulation to equate systems. The theory is then applied to three meaningful examples, namely finding the ‘minimal’ policy to run a given system, refining a system to be run under a given policy (whenever possible), and minimizing the number of users in a given system without changing the overall behavior

    On the relative expressiveness of higher-order session processes

    Get PDF
    By integrating constructs from the λ-calculus and the π-calculus, in higher-order process calculi exchanged values may contain processes. This paper studies the relative expressiveness of HOπ, the higher-order π-calculus in which communications are governed by session types. Our main discovery is that HO, a subcalculus of HOπ which lacks name-passing and recursion, can serve as a new core calculus for session-typed higher-order concurrency. By exploring a new bisimulation for HO, we show that HO can encode HOπ fully abstractly (up to typed contextual equivalence) more precisely and efficiently than the first-order session π-calculus (π). Overall, under session types, HOπ, HO, and π are equally expressive; however, HOπ and HO are more tightly related than HOπ and π

    Work Analysis with Resource-Aware Session Types

    Full text link
    While there exist several successful techniques for supporting programmers in deriving static resource bounds for sequential code, analyzing the resource usage of message-passing concurrent processes poses additional challenges. To meet these challenges, this article presents an analysis for statically deriving worst-case bounds on the total work performed by message-passing processes. To decompose interacting processes into components that can be analyzed in isolation, the analysis is based on novel resource-aware session types, which describe protocols and resource contracts for inter-process communication. A key innovation is that both messages and processes carry potential to share and amortize cost while communicating. To symbolically express resource usage in a setting without static data structures and intrinsic sizes, resource contracts describe bounds that are functions of interactions between processes. Resource-aware session types combine standard binary session types and type-based amortized resource analysis in a linear type system. This type system is formulated for a core session-type calculus of the language SILL and proved sound with respect to a multiset-based operational cost semantics that tracks the total number of messages that are exchanged in a system. The effectiveness of the analysis is demonstrated by analyzing standard examples from amortized analysis and the literature on session types and by a comparative performance analysis of different concurrent programs implementing the same interface.Comment: 25 pages, 2 pages of references, 11 pages of appendix, Accepted at LICS 201

    From Lock Freedom to Progress Using Session Types

    Get PDF
    Inspired by Kobayashi's type system for lock freedom, we define a behavioral type system for ensuring progress in a language of binary sessions. The key idea is to annotate actions in session types with priorities representing the urgency with which such actions must be performed and to verify that processes perform such actions with the required priority. Compared to related systems for session-based languages, the presented type system is relatively simpler and establishes progress for a wider range of processes.Comment: In Proceedings PLACES 2013, arXiv:1312.221

    An Algebra of Hierarchical Graphs and its Application to Structural Encoding

    Get PDF
    We define an algebraic theory of hierarchical graphs, whose axioms characterise graph isomorphism: two terms are equated exactly when they represent the same graph. Our algebra can be understood as a high-level language for describing graphs with a node-sharing, embedding structure, and it is then well suited for defining graphical representations of software models where nesting and linking are key aspects. In particular, we propose the use of our graph formalism as a convenient way to describe configurations in process calculi equipped with inherently hierarchical features such as sessions, locations, transactions, membranes or ambients. The graph syntax can be seen as an intermediate representation language, that facilitates the encodings of algebraic specifications, since it provides primitives for nesting, name restriction and parallel composition. In addition, proving soundness and correctness of an encoding (i.e. proving that structurally equivalent processes are mapped to isomorphic graphs) becomes easier as it can be done by induction over the graph syntax

    Linearly Typed Dyadic Group Sessions for Building Multiparty Sessions

    Full text link
    Traditionally, each party in a (dyadic or multiparty) session implements exactly one role specified in the type of the session. We refer to this kind of session as an individual session (i-session). As a generalization of i-session, a group session (g-session) is one in which each party may implement a group of roles based on one channel. In particular, each of the two parties involved in a dyadic g-session implements either a group of roles or its complement. In this paper, we present a formalization of g-sessions in a multi-threaded lambda-calculus (MTLC) equipped with a linear type system, establishing for the MTLC both type preservation and global progress. As this formulated MTLC can be readily embedded into ATS, a full-fledged language with a functional programming core that supports both dependent types (of DML-style) and linear types, we obtain a direct implementation of linearly typed g-sessions in ATS. The primary contribution of the paper lies in both of the identification of g-sessions as a fundamental building block for multiparty sessions and the theoretical development in support of this identification.Comment: This paper can be seen as the pre-sequel to classical linear multirole logic (CLML). arXiv admin note: substantial text overlap with arXiv:1603.0372
    corecore