8,876 research outputs found

    Resting state connectivity between medial temporal lobe regions and intrinsic cortical networks predicts performance in a path integration task

    Get PDF
    Humans differ in their individual navigational performance, in part because successful navigation relies on several diverse abilities. One such navigational capability is path integration, the updating of position and orientation during movement, typically in a sparse, landmark-free environment. This study examined the relationship between path integration abilities and functional connectivity to several canonical intrinsic brain networks. Intrinsic networks within the brain reflect past inputs and communication as well as structural architecture. Individual differences in intrinsic connectivity have been observed for common networks, suggesting that these networks can inform our understanding of individual spatial abilities. Here, we examined individual differences in intrinsic connectivity using resting state magnetic resonance imaging (rsMRI). We tested path integration ability using a loop closure task, in which participants viewed a single video of movement in a circle trajectory in a sparse environment, and then indicated whether the video ended in the same location in which it started. To examine intrinsic brain networks, participants underwent a resting state scan. We found that better performance in the loop task was associated with increased connectivity during rest between the central executive network (CEN) and posterior hippocampus, parahippocampal cortex (PHC) and entorhinal cortex. We also found that connectivity between PHC and the default mode network (DMN) during rest was associated with better loop closure performance. The results indicate that interactions between medial temporal lobe (MTL) regions and intrinsic networks that involve prefrontal cortex (PFC) are important for path integration and navigation.This work was supported by the Office of Naval Research (ONR MURI N00014-10-1-0936 and MURI N00014-16-1-2832). fMRI scanning was completed at the Athinoula A. Martinos Center for Biomedical Imaging (Charlestown, MA, USA), which receives support from the National Center for Research Resources (NCRR P41RR14075). (ONR MURI N00014-10-1-0936 - Office of Naval Research; MURI N00014-16-1-2832 - Office of Naval Research; NCRR P41RR14075 - National Center for Research Resources)Published versio

    Complementary Roles of Hippocampus and Medial Entorhinal Cortex in Episodic Memory

    Get PDF
    Spatial mapping and navigation are figured prominently in the extant literature that describes hippocampal function. The medial entorhinal cortex is likewise attracting increasing interest, insofar as evidence accumulates that this area also contributes to spatial information processing. Here, we discuss recent electrophysiological findings that offer an alternate view of hippocampal and medial entorhinal function. These findings suggest complementary contributions of the hippocampus and medial entorhinal cortex in support of episodic memory, wherein hippocampal networks encode sequences of events that compose temporally and spatially extended episodes, whereas medial entorhinal networks disambiguate overlapping episodes by binding sequential events into distinct memories.National Institute of Mental Health Grants (MH51570, MH071702); National Science Foundation (Science of Learning Center grant SBE-0354378

    Integrating Spatial Working Memory and Remote Memory: Interactions between the Medial Prefrontal Cortex and Hippocampus

    Get PDF
    In recent years, two separate research streams have focused on information sharing between the medial prefrontal cortex (mPFC) and hippocampus (HC). Research into spatial working memory has shown that successful execution of many types of behaviors requires synchronous activity in the theta range between the mPFC and HC, whereas studies of memory consolidation have shown that shifts in area dependency may be temporally modulated. While the nature of information that is being communicated is still unclear, spatial working memory and remote memory recall is reliant on interactions between these two areas. This review will present recent evidence that shows that these two processes are not as separate as they first appeared. We will also present a novel conceptualization of the nature of the medial prefrontal representation and how this might help explain this areaā€™s role in spatial working memory and remote memory recall

    Integrating visual and tactile information in the perirhinal cortex

    Get PDF
    By virtue of its widespread afferent projections, perirhinal cortex is thought to bind polymodal information into abstract object-level representations. Consistent with this proposal, deficits in cross-modal integration have been reported after perirhinal lesions in nonhuman primates. It is therefore surprising that imaging studies of humans have not observed perirhinal activation during visualā€“tactile object matching. Critically, however, these studies did not differentiate between congruent and incongruent trials. This is important because successful integration can only occur when polymodal information indicates a single object (congruent) rather than different objects (incongruent). We scanned neurologically intact individuals using functional magnetic resonance imaging (fMRI) while they matched shapes. We found higher perirhinal activation bilaterally for cross-modal (visualā€“tactile) than unimodal (visualā€“visual or tactileā€“tactile) matching, but only when visual and tactile attributes were congruent. Our results demonstrate that the human perirhinal cortex is involved in cross-modal, visualā€“tactile, integration and, thus, indicate a functional homology between human and monkey perirhinal cortices

    Human Conscious Experience is Four-Dimensional and has a Neural Correlate Modeled by Einstein's Special Theory of Relativity

    Get PDF
    In humans, knowing the world occurs through spatial-temporal experiences and interpretations. Conscious experience is the direct observation of conscious events. It makes up the content of consciousness. Conscious experience is organized in four dimensions. It is an orientation in space and time, an understanding of the position of the observer in space and time. A neural correlate for four-dimensional conscious experience has been found in the human brain which is modeled by Einsteinā€™s Special Theory of Relativity. Spacetime intervals are fundamentally involved in the organization of coherent conscious experiences. They account for why conscious experience appears to us the way it does. They also account for assessment of causality and past-future relationships, the integration of higher cognitive functions, and the implementation of goal-directed behaviors. Spacetime intervals in effect compose and direct our conscious life. The relativistic concept closes the explanatory gap and solves the hard problem of consciousness (how something subjective like conscious experience can arise in something physical like the brain). There is a place in physics for consciousness. We describe all physical phenomena through conscious experience, whether they be described at the quantum level or classical level. Since spacetime intervals direct the formation of all conscious experiences and all physical phenomena are described through conscious experience, the equation formulating spacetime intervals contains the information from which all observable phenomena may be deduced. It might therefore be considered expression of a theory of everything

    Change in background context disrupts performance on visual paired comparison following hippocampal damage

    Get PDF
    The medial temporal lobe plays a critical role in recognition memory but, within the medial temporal lobe, the precise neural structures underlying recognition memory remain equivocal. in this study, visual paired comparison (VPC) was used to investigate recognition memory in a human patient (YR), who had a discrete lesion of the hippocampus, and a group of monkeys with neonatal hippocampal lesions, which included the dentate gyrus, and a portion of parahippocampal region. Participants were required to view a picture of an object on a coloured background. Immediately afterwards, this familiar object was shown again, this time paired with a novel object. All participants displayed a novelty preference, provided the background on which the objects were shown was the same as the one used during the learning phase. When the background of the familiar object was changed between initial familiarization and test, only the control subjects showed a novelty preference; the hippocampal-lesioned monkeys and patient YR showed null preference. The results are interpreted within Eichenbaum and Bunsey's [Eichenbaum, H., & Bunsey, M. (1995). On the binding of associations in memory: Clues from studies on the role of the hippocampal region in paired-associate learning. Current Directions in Psychological Science, 4, 19-23] proposal that the hippocampus facilitates the formation of a flexible representation of the elements that make up a stimulus whereas the parahippocampal region is involved in the formation of a fused representation. (C) 2009 Elsevier Ltd. All rights reserved

    The spectro-contextual encoding and retrieval theory of episodic memory.

    Get PDF
    The spectral fingerprint hypothesis, which posits that different frequencies of oscillations underlie different cognitive operations, provides one account for how interactions between brain regions support perceptual and attentive processes (Siegel etal., 2012). Here, we explore and extend this idea to the domain of human episodic memory encoding and retrieval. Incorporating findings from the synaptic to cognitive levels of organization, we argue that spectrally precise cross-frequency coupling and phase-synchronization promote the formation of hippocampal-neocortical cell assemblies that form the basis for episodic memory. We suggest that both cell assembly firing patterns as well as the global pattern of brain oscillatory activity within hippocampal-neocortical networks represents the contents of a particular memory. Drawing upon the ideas of context reinstatement and multiple trace theory, we argue that memory retrieval is driven by internal and/or external factors which recreate these frequency-specific oscillatory patterns which occur during episodic encoding. These ideas are synthesized into a novel model of episodic memory (the spectro-contextual encoding and retrieval theory, or "SCERT") that provides several testable predictions for future research

    Acetylcholine neuromodulation in normal and abnormal learning and memory: vigilance control in waking, sleep, autism, amnesia, and Alzheimer's disease

    Get PDF
    This article provides a unified mechanistic neural explanation of how learning, recognition, and cognition break down during Alzheimer's disease, medial temporal amnesia, and autism. It also clarifies whey there are often sleep disturbances during these disorders. A key mechanism is how acetylcholine modules vigilance control in cortical layer
    • ā€¦
    corecore